一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种利用低温法回收电解水制氢副产氧气的装置及方法与流程

2021-10-29 22:48:00 来源:中国专利 TAG:制氢 低温 氧气 气体 装置


1.本发明涉及气体分离技术,具体涉及一种利用低温法回收电解水制氢副产氧气的装置及方法,属于制氢氧技术领域。


背景技术:

2.绿氢能源作为一种清洁能源越来越多的应用于市场中,利用风光水等可再生能源发电所产生的绿电资源结合绿色电解水项目制取绿氢是具有良好发展前景的方法。在电解水制取氢时,其阴极副产物氧气常常被直接放空处理,从安全性跟经济性上都欠妥。如何绿色环保回收绿电电解水制氢副产品氧气并合理利用是目前绿色电解水制氢工艺上一个急需解决的问题,有利于经济性的利用和推广绿氢技术。
3.利用深冷法空分设备生产高压氧气和液氧是目前市场最通用的做法,也是最经济的方法,即便如此,jb/t 8693

2015 《大中型空气分离设备》5.3产品性能要求对于基本性能参数中规定的氧气压力不高于3.0mpag的制氧单耗在0.599

0.65kw.h/m3之间。
4.因此,设计一种安全高效的利用低温法回收绿色电解水制氢副产氧气的方法及装置,以便将绿色电解水制氢废弃放空的副产品氧气转化为用户其他装置所需要的高压氧气或液氧,变废为宝,大大降低用户所需高压氧气和液氧的制氧单耗,降低用户整体的碳排放,成为所属技术领域技术人员亟待解决的问题。


技术实现要素:

5.本发明要解决的技术问题是:提供一种利用低温法回收电解水制氢副产氧气的装置及方法,解决绿色电解水制氢工艺中副产品氧气的浪费问题,同时降低用户的整体碳排放,实现高效节能的目的,为实现上述目的,本发明采用的如下技术:一种利用低温法回收电解水制氢副产氧气的装置,所述电解水制氢副产氧气装置包括氧气纯化系统,加压及换热系统,循环气体压缩及膨胀制冷系统;所述氧气纯化系统包括氧自过热器,氧加热器,氧气净化器,冷水机组,氧气纯化器,阀门及各装备之间连通用的直管段,用于获得纯净的氧气。其中氧自过热器的氧气输入端连接于电解水制氢系统的氧气输出端,氧自过热器的氧气输出端连接于氧加热器的氧气输入端。氧加热器的氧气输出端连接于氧气净化器的氧气输入端,氧气净化器的净化氧气输出端连接于冷水机组的氧气输入端,冷水机组的氧气输出端连接于氧气纯化器的氧气输入端,氧气纯化器输出端纯化后氧气通过管道送入加压及换热系统。
6.作为优选:所述加压及换热系统包括板式换热器及保冷箱,低温液氧泵,所述循环气体压缩及膨胀制冷系统包括气体压缩系统和膨胀制冷系统;压缩系统包括气体增压机,用于获得压缩气体;膨胀制冷系统包括至少一台增压透平膨胀机,膨胀机增压端、冷却器、膨胀机膨胀端。
7.作为优选:所述循环气体压缩及膨胀制冷系统与加压及换热系统高度耦合,循环气体压缩及膨胀制冷系统中从外部引入一股循环气体,循环气体可以为氮气、空气、氩气或
其他可适用于循环的气体中的一种或几种,优选为氩气,所述板式换热器设置三个正流通道和三个逆流通道,三个正流通道分别为纯化后氧气通道、增压后气体通道和增压膨胀气体通道,三个逆流通道分别为高压氧气产品通道、节流气体回收通道和膨胀气体回收通道,所述板式换热器的纯化后氧气通道输入端连接于氧气纯化器的氧气输出端,板式换热器的纯化后氧气通道输出端连接于液氧泵的输入端;板式换热器的增压后气体通道输入端连接于增压透平膨胀机的压缩端后冷却器的输出端,板式换热器的增压后气体通道输出端连接于节流阀的输入端;板式换热器的增压膨胀气体通道输入端连接于循环压缩机的一段输出端,板式换热器的增压膨胀气体通道输出端连接于膨胀机膨胀端的输入端;板式换热器的高压氧气产品通道输入端连接于液氧泵的输出端,板式换热器的氧气产品通道输出端连接于高压氧气产品输出管道;板式换热器的节流气体回收通道输入端连接于节流阀的输出端,板式换热器的节流气体回收通道输出端连接于循环压缩机的输入端;板式换热器的膨胀气体回收通道输入端连接于膨胀机膨胀端的输出端,板式换热器的膨胀气体回收通道输出端连接于循环压缩机的输入端。所述循环压缩机的输入端连接于板式换热器的节流气体回收通道和膨胀气体回收通道的输出端,循环压缩机的一段输出端连接于板式换热器的增压膨胀气体的输入端,循环压缩机的末级输出端连接于膨胀机增压端。所述膨胀机增压端的输入端连接于循环压缩机的末级输出端,膨胀机增压端的输出端连接于冷却器的输入端。
8.作为优选:所述电解水制氢副产氧气装置还可以生产液氧产品,在收集产品时,采用液氧泵将液氧加压到高压液氧,利用循环气体增压换热,将高压液氧气化为高压氧气。
9.作为优选:所述循环气体压缩及膨胀制冷系统中的循环气体可以为氮气、空气、氩气或其他可适用于循环的气体中的一种或几种组合。
10.一种利用低温法回收电解水制氢副产氧气的装置的方法,包括以下步骤:步骤1:出绿色电解水制氢装置的副产氧气进入到氧自过热器中,被预加热至一定温度,当温度满足进入氧纯化器时,通过管道直接进入到氧纯化器中,当氧自过热温度不满足进入氧纯化器的要求时,则先进入氧加热器进行加热,加热后进入到氧纯化器中;加热后的氧气在氧纯化器中发生化学反应,将氧气中的杂质h2转化为h2o,co转化为co2;反应结束后的氧气进入到氧自过热器的热端,与出电解水制氢装置的副产氧气进行热交换降温,并通过经冷却机组冷却后继续降温,在此过程中将底部冷凝下来的水直接排空,冷却后的气体进入到氧净化器中除去氧气中的杂质;步骤2:净化后的氧气进入到板式换热器中,在换热器中与逆流的膨胀后的氩气等进行换热,使氧气被冷却到液态,得到液氧,这部分液氧分为两股,其中一股液体直接出冷箱收集,得到液氧产品;一股通过液氧泵提升液氧压力,再送入到板式换热器的冷端,进行热交换,得到带压氧气;步骤3:一股补充循环氩气与板式换热器返流回来的膨胀氩气等混合,进入到气体压缩机中进行压缩,加压后分为两路,一路经增压机中段抽出的增压氩气送入板式换热器,经板式换热器冷却至中部某个温度后抽出送入膨胀机膨胀,膨胀后的氩气返回板式换热器冷端作为冷源冷却热流体,返流氩气复热后出板式换热器热端再送入循环增压机的入口;一路经增压机末级输出端抽出后送入膨胀机增压端继续增压冷却,增压冷却后的循环氩气进入板式换热器作为高压热源气化高压液氧,被板式换热器冷却后的高压循环氩气出板式
换热器后,又节流返回板式换热器冷端作为冷源冷却热流体,这股节流流体复热后出板式换热器热端再送入循环增压机的入口。
11.作为优选:所述氧纯化器中使用的催化剂活性组分为钯、铂、铈金属及其氧化物中的一种或几种。
12.作为优选:所述氧净化器中使用的净化剂为氧化铝和分子筛;其催化剂的填装方式为规整填料。
13.本发明具有的有益效果如下:本发明用于回收绿色电解水制氢副产氧气,利用安全的低温法将电解水制氢废弃的副产氧气转化成具有商业价值的液氧及高压氧气。本发明的流程形式组织合理,膨胀机与增压机的合理匹配缩小了最大换热温差,降低复热、补足冷损,实现了安全高效氧气的液化及高压液氧的气化。本发明通过换热器可直接得到液氧产品,经过液氧泵对液氧加压后进行换热得到的带压氧气产品,压力高。本发明中使用的膨胀制冷气体可以循环使用,节约能源,环保绿色。本发明将绿色电解水制氢副产的氧气变废为宝,输送给高压氧气用户,生产单位高压气氧的能耗不高于0.13kw.h/m3,大大低于常规低温精馏法制取高压氧气的单耗,降低了碳排放,同时实现了企业经济效益和环境效益的双赢。
附图说明
14.图1是本发明的示意图。
15.图2是本发明第一种变形实例示意图。
16.图3是本发明第二种变形实例示意图。
17.图4是本发明第三种变形实例示意图。
具体实施方式
18.下面将结合附图对本发明作详细的介绍:如图1

4所示,一种利用低温法回收电解水制氢副产氧气的装置,所述电解水制氢副产氧气装置包括氧气纯化系统,加压及换热系统,循环气体压缩及膨胀制冷系统;所述氧气纯化系统包括氧自过热器1,氧加热器2,氧气净化器3,冷水机组4,氧气纯化器6,阀门及各装备之间连通用的直管段,用于获得纯净的氧气,其中氧自过热器1的氧气输入端连接于电解水制氢系统的氧气输出端,氧自过热器1的氧气输出端连接于氧加热器2的氧气输入端,氧加热器2的氧气输出端连接于氧气净化器3的氧气输入端,氧气净化器的净化氧气输出端连接于冷水机组4的氧气输入端,冷水机组4的氧气输出端连接于氧气纯化器6的氧气输入端,氧气纯化器6输出端纯化后氧气通过管道送入加压及换热系统。
19.所述加压及换热系统包括板式换热器8及保冷箱,低温液氧泵12,所述循环气体压缩及膨胀制冷系统包括气体压缩系统和膨胀制冷系统;压缩系统包括气体增压机7,用于获得压缩气体;膨胀制冷系统包括至少一台增压透平膨胀机,膨胀机增压端9、冷却器10、膨胀机膨胀端11。
20.所述循环气体压缩及膨胀制冷系统与加压及换热系统高度耦合,循环气体压缩及膨胀制冷系统中从外部引入一股循环气体,所述板式换热器8设置三个正流通道和三个逆流通道,三个正流通道分别为纯化后氧气通道、增压后气体通道和增压膨胀气体通道,三个
逆流通道分别为高压氧气产品通道、节流气体回收通道和膨胀气体回收通道,所述板式换热器8的纯化后氧气通道输入端连接于氧气纯化器6的氧气输出端,板式换热器8的纯化后氧气通道输出端连接于液氧泵12的输入端;板式换热器8的增压后气体通道输入端连接于增压透平膨胀机的压缩端9后冷却器10的输出端,板式换热器8的增压后气体通道输出端连接于节流阀v4的输入端;板式换热器8的增压膨胀气体通道输入端连接于循环压缩机7的一段输出端,板式换热器8的增压膨胀气体通道输出端连接于膨胀机膨胀端11的输入端;板式换热器8的高压氧气产品通道输入端连接于液氧泵12的输出端,板式换热器8的氧气产品通道输出端连接于高压氧气产品输出管道;板式换热器8的节流气体回收通道输入端连接于节流阀v4的输出端,板式换热器8的节流气体回收通道输出端连接于循环压缩机7的输入端;板式换热器8的膨胀气体回收通道输入端连接于膨胀机膨胀端11的输出端,板式换热器8的膨胀气体回收通道输出端连接于循环压缩机7的输入端,所述循环压缩机7的输入端连接于板式换热器8的节流气体回收通道和膨胀气体回收通道的输出端,循环压缩机7的一段输出端连接于板式换热器8的增压膨胀气体的输入端,循环压缩机7的末级输出端连接于膨胀机增压端9,所述膨胀机增压端9的输入端连接于循环压缩机7的末级输出端,膨胀机增压端9的输出端连接于冷却器10的输入端。
21.所述电解水制氢副产氧气装置还可以生产液氧产品,在收集产品时,采用液氧泵将液氧加压到高压液氧,利用循环气体增压换热,将高压液氧气化为高压氧气。
22.所述循环气体压缩及膨胀制冷系统中的循环气体可以为氮气、空气、氩气或其他可适用于循环的气体中的一种或几种组合。
23.一种利用低温法回收电解水制氢副产氧气的装置的方法,包括以下步骤:步骤1:出绿色电解水制氢装置的副产氧气进入到氧自过热器中,被预加热至一定温度,当温度满足进入氧纯化器时,通过管道直接进入到氧纯化器中,当氧自过热温度不满足进入氧纯化器的要求时,则先进入氧加热器进行加热,加热后进入到氧纯化器中;加热后的氧气在氧纯化器中发生化学反应,将氧气中的杂质h2转化为h2o,co转化为co2;反应结束后的氧气进入到氧自过热器的热端,与出电解水制氢装置的副产氧气进行热交换降温,并通过经冷却机组冷却后继续降温,在此过程中将底部冷凝下来的水直接排空,冷却后的气体进入到氧净化器中除去氧气中的杂质;步骤2:净化后的氧气进入到板式换热器中,在换热器中与逆流的膨胀后的氩气等进行换热,使氧气被冷却到液态,得到液氧,这部分液氧分为两股,其中一股液体直接出冷箱收集,得到液氧产品;一股通过液氧泵提升液氧压力,再送入到板式换热器的冷端,进行热交换,得到带压氧气;步骤3:一股补充循环氩气与板式换热器返流回来的膨胀氩气等混合,进入到气体压缩机中进行压缩,加压后分为两路,一路经增压机中段抽出的增压氩气送入板式换热器,经板式换热器冷却至中部某个温度后抽出送入膨胀机膨胀,膨胀后的氩气返回板式换热器冷端作为冷源冷却热流体,返流氩气复热后出板式换热器热端再送入循环增压机的入口;一路经增压机末级输出端抽出后送入膨胀机增压端继续增压冷却,增压冷却后的循环氩气进入板式换热器作为高压热源气化高压液氧,被板式换热器冷却后的高压循环氩气出板式换热器后,又节流返回板式换热器冷端作为冷源冷却热流体,这股节流流体复热后出板式换热器热端再送入循环增压机的入口。
24.所述氧纯化器中使用的催化剂活性组分为钯、铂、铈金属及其氧化物中的一种或几种,所述氧净化器中使用的净化剂为氧化铝和分子筛;其催化剂的填装方式为规整填料。
具体实施例
25.附图1所示为采用二段式增压单膨胀流程的安全高效的利用低温法回收绿色电解水制氢副产氧气的装置。
26.出绿色电解水制氢系统的压力约为1.6mpag的副产氧气首先进入氧气净化系统,在氧气净化系统中,氧气首先在氧气净化器3中将h
2、
co等杂质反应成h2o和co2等;然后在氧气纯化器6中将氧气中的h2o、co2等吸附,出氧气纯化器6后的氧气中co2和h2o含量不大于1ppm;净化后的氧气再继续送入板式换热器8,经板式换热器8中返流冷流体冷却至液态;随后部分液氧送入液氧泵12,经液氧泵12加压至8.7mpag高压液氧;被液氧泵加压后的高压液氧继续返流回板式换热器8,经板式换热器8复热后出界区送入用户管网。
27.循环气体经氩气循环压缩机7加压后分为两路:一路从氩气循环压缩机7一段抽出,压力约为3.5mpag的氩气直接进入板式换热器8的热端,被板式换热器冷却至约172k后抽出送入膨胀机膨胀端11膨胀,膨胀到约1.6mpag后的流体返回板式换热器8的冷端作为冷源被复热至常温后出板式换热器8回到氩气循环压缩机7的入口。
28.一路从氩气循环压缩机7末级压力约7.2mpag抽出并进入膨胀机增压端9继续加压至8.2mpag。高压氩气经冷却器10冷却后送入板式换热器8的热端,作为高压换热热源并被冷流体冷却至高压液氩出板式换热器8。出板式换热器8的高压液氩经节流阀v4节流至约1.5mpag后再返回板式换热器8的冷端作为冷源冷却高压氩气及氧气等热流,此股流体被板式换热器8复热后送入氩气循环压缩机7的入口。
29.考虑氩气循环增压机7及膨胀机增压端9存在一定的泄漏量,在氩气循环增压机7入口考虑加入适当的循环氩气作为补充。
30.附图2所示为采用一段式增压单膨胀流程的安全高效的利用低温法回收绿色电解水制氢副产氧气的装置。
31.出绿色电解水制氢系统的压力为1.3mpag的氧气首先进入氧气净化系统,在氧气净化系统中,氧气首先在氧气净化器3中将h
2、
co等杂质反应成h2o和co2等;然后在氧气纯化器6中将氧气中的h2o、co2等吸附,出氧气纯化器6后的氧气中co2和h2o含量不大于1ppm;净化后的氧气再继续送入板式换热器8,经板式换热器8中返流冷流体冷却至液态;随后部分液氧送入液氧泵12,经液氧泵12加压至8.5mpag高压液氧;被液氧泵加压后的高压液氧继续返流回板式换热器8,经板式换热器8复热后出界区送入用户管网。
32.循环空气经空气循环压缩机7加压至6.0mpag后分为两路:一路继续进入膨胀机增压端9继续加压至7.2mpag高压空气。高压空气经冷却器10冷却后送入板式换热器8的热端,作为高压换热热源并被冷流体冷却至高压液体出板式换热器8。出板式换热器8的高压液空经节流阀v4节流至2.3mpag后再返回板式换热器8的冷端作为冷源冷却高压空气及氧气等热流,此股流体被板式换热器8复热后送入循环压缩机7的入口。
33.另一路直接进入板式换热器8的热端,被板式换热器冷却至约155k后抽出送入膨
胀机膨胀端9膨胀,膨胀后的流体返回板式换热器8的冷端作为冷源被复热至常温后出板式换热器8回到空气循环压缩机7的入口。
34.考虑空气循环增压机7及膨胀机增压端9存在一定的泄漏量,在空气循环增压机7入口考虑加入适当的循环空气作为补充。
35.附图3所示为采用两段式增压单膨胀流程的安全高效的利用低温法回收绿色电解水制氢副产氧气的装置。
36.出电解水制氢系统的压力为1.3mpag的氧气首先进入氧气净化系统,在氧气净化系统中,氧气首先在氧气净化器3中将h
2、
co等杂质反应成h2o和co2等;然后在氧气纯化器6中将氧气中的h2o、co2等吸附,出氧气纯化器6后的氧气中co2和h2o含量不大于1ppm;净化后的氧气再继续送入板式换热器8,经板式换热器8中返流冷流体冷却至液态;随后部分液氧送入液氧泵12,经液氧泵12加压至8.5mpag高压液氧;被液氧泵加压后的高压液氧继续返流回板式换热器8,经板式换热器8复热后出界区送入用户管网。
37.氩气经氩气循环压缩机7加压后分为两路:一路从氩气循环压缩机7一段抽出,压力约为3.5mpag的氩气又进入膨胀机增压端9继续加压至约5.0mpag。5.0mpag的高压氩气经冷却器10冷却后送入板式换热器8的热端,被板式换热器冷却至约170k后抽出送入膨胀机膨胀端11膨胀,膨胀后的流体返回板式换热器8的冷端作为冷源被复热至常温后出板式换热器8回到循环压缩机7的入口。
38.一路从氩气循环压缩机7末级约7.2mpag抽出后直接进入板式换热器8的热端,作为高压换热热源,被冷流体冷却至高压液体后出板式换热器8。出板式换热器8的高压液氩经节流阀v4节流至约1.5mpag后,再返回板式换热器8的冷端作为冷源冷却高压气体及氧气等热流,此股流体被板式换热器8复热后送入氩气循环压缩机7的入口。
39.考虑氩气循环增压机7及膨胀机增压端9存在一定的泄漏量,在氩气循环增压机7入口考虑加入适当的循环氩气作为补充。
40.附图4所示为采用一级增压多膨胀流程的安全高效的利用低温法回收绿色电解水制氢副产氧气的装置。
41.出电解水制氢系统的压力为1.3mpag的氧气首先进入氧气净化系统,在氧气净化系统中,氧气首先在氧气净化器3中将h
2、
co等杂质反应成h2o和co2等;然后在氧气纯化器6中将氧气中的h2o、co2等吸附,出氧气纯化器6后的氧气中co2和h2o含量不大于1ppm;净化后的氧气再继续送入板式换热器8

1、8

2,经板式换热器8

1、8

2中返流冷流体冷却至液态;随后部分液氧送入液氧泵12,经液氧泵12加压至8.7mpag高压液氧;被液氧泵加压后的高压液氧继续返流回板式换热器8

1、8

2,经板式换热器8

1、8

2复热后出界区送入用户管网。
42.氩气经氩气循环压缩机7加压至3.5mpag后分为两路:一路氩气进入高温膨胀机增压端9

1增压到约5.2mpag后经气体经冷却器10

1冷却后送入低温膨胀机增压端9

2继续增压到约7.7mpag,经冷却器10

2冷却后送入板式换热器8

1的热端,作为高压换热热源依次经过板式换热器8

1、板式换热器8

2,此股高压氩流体被分为两股:一股被冷流体冷却至高压液氩出板式换热器8

2,出板式换热器8

2的高压液氩经节流阀v4节流至1.5mpag后再返回板式换热器8

2的冷端,作为冷源依次通过板式换热器8

2、板式换热器8

1来冷却高压氩气及氧气等热流,此股流体依次经过板式换热器8

2、板式换热器8

1复热后送入循环压缩机7的入口;一股从板式换热器8

2中部约150k抽出
后送入低温膨胀机膨胀端11

2,经低温膨胀机膨胀端11

2膨胀后,作为返流冷源依次通过板式换热器8

2、板式换热器8

1,复热后送入循环压缩机7的入口。
43.一路氩气直接进入板式换热器8

1的热端,被板式换热器8

1冷却至约178k后抽出送入高温膨胀机膨胀端11

1膨胀,膨胀后的流体返回板式换热器8

1的冷端作为冷源被复热至常温后出板式换热器8

1回到循环压缩机7的入口。
44.考虑氩气循环增压机7及膨胀机增压端9

1、9

2存在一定的泄漏量,在循环增压机7入口考虑适当的循环气体补充。
45.最后,需要注意的是,本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜