一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种高强度高导电性合成纤维/石墨烯复合纸及其制备方法与流程

2021-09-25 02:04:00 来源:中国专利 TAG:导电性 合成纤维 石墨 制备 高强


1.本发明属于造纸制备技术领域,具体涉及一种高强度高导电性合成纤维/石墨烯复合纸及其制备方法。


背景技术:

2.导电纸是一种具有导电性的功能纸,可广泛用于防静电包装、电磁屏蔽,导热散热,新能源和传感领域等等。石墨烯作为高导电,高导热的二维纳米材料,容易与木质纤维复合,可以作为造纸助剂添加到纸张之中,提高纸张的导电导热性能。随着近几年来石墨烯的工业化制备技术的逐渐成熟,石墨烯的成本降低,石墨烯导电纸又再次受到大家的广泛关注。
3.石墨烯导电纸一般使用常见的木质造纸纤维作为基底,负载石墨烯湿法抄造成纸。石墨烯的负载量高度影响复合纸的性能,负载量越高,复合纸的导电导热性则越好。因此,高性能的复合纸,往往需要添加大量的石墨烯。然而,片层结构的石墨烯材料,会阻碍纸张纤维之间的相互作用。复合纸在添加石墨后,导电导热性能提高的同时,其机械强度会明显降低。另外,木质纤维在使用的过程中也存在容易吸水受潮的问题。受潮后的复合纸强度进一步下降,而且容易滋生霉菌,影响产品的使用。为了解决这些问题,可以使用聚丙烯、聚乙烯、聚丙烯腈、聚酯等合成纤维代替木质纤维,但是此类合成纤维密度低、亲水性差,在疏解分散的过程中,纤维倾向于悬浮在表面,在水中容易相互缠结絮聚,产生大量气泡,即使在分散时加入大量的水、分散剂、抑泡剂和消泡剂,依然很难达到较好的分散效果,造成复合纸匀度差,强度低。此外,纤维表面的气泡也会影响石墨烯在纤维表面的负载,造成石墨烯流失严重,复合纸导电性能差。而且,流失的石墨烯会堵塞造纸网孔,造成滤水困难,影响复合纸的制备。


技术实现要素:

4.为克服现有技术的缺点和不足,本发明的首要是提供一种高强度高导电性合成纤维/石墨烯复合纸的制备方法。
5.本发明的另一目的是提供由上述制备方法得到的高强度高导电性合成纤维/石墨烯复合纸。
6.本发明的目的通过以下技术方案实现:
7.一种高强度高导电性合成纤维/石墨烯复合纸的制备方法,包括以下步骤:
8.1)合成纤维分散剂的制备:所述合成纤维分散剂为分散剂1、分散剂2或分散剂3;
9.分散剂1:采用稀酸溶解壳聚糖,得到壳聚糖溶液;然后滴加稀碱溶液至体系的ph为7

9,获得壳聚糖沉淀;将沉淀洗涤至中性,分散于水中,获得分散剂1;分散剂1中壳聚糖沉淀的浓度为1~5wt%;
10.分散剂2:对纸浆纤维进行高浓打浆,打浆度为50

70
°
sr,然后加入水溶性阳离子型高分子助剂和阴离子型高分子助剂,搅拌5

15min,获得分散剂2;所述搅拌的转速为100

300rpm;
11.分散剂3:向纳米纤维素的水分散液中,加入水溶性阳离子型高分子助剂或金属盐,搅拌3

5min,获得分散剂3;所述纳米纤维素是将木浆纤维通过tempo氧化和高压均质得到;纳米纤维素的水分散液的质量分数为0.1

0.5%;
12.2)合成纤维的分散:
13.将合成纤维、水和合成纤维分散剂通过疏解机进行疏解分散,获得合成纤维浆料;
14.3)复合浆料的制备:
15.将石墨烯浆料与合成纤维浆料混匀,加入阳离子型助留剂,搅拌均匀,获得复合浆料;
16.4)复合纸抄造:
17.将复合浆料通过湿法抄造技术进行抄造成型,干燥,热压,获得高强度高导电性合成纤维/石墨烯复合纸。
18.步骤1)的分散剂1中所述壳聚糖溶液的浓度为1

2wt%;所述稀碱溶液的浓度为1

2wt%;在搅拌的条件下,滴加稀碱溶液,搅拌的转速为100

300rpm;所述稀酸的浓度为1

2wt%;
19.所述壳聚糖的粘度为500

800mpa
·
s,所述酸包括盐酸、甲酸、乙酸、乳酸、苹果酸、抗坏血酸等常见无机酸和有机酸,碱包括氢氧化钠、氢氧化钾、氨水、碳酸钠等常见碱。
20.步骤1)的分散剂2中所述纸浆纤维为较长(>3mm)的木纤维、棉纤维或麻纤维,打浆浆浓为20

30%(纤维在纸浆中质量百分比的浓度)。
21.种类包括针叶木纤维、阔叶木纤维、禾本科、棉、麻等。
22.步骤1)的分散剂2中所述阳离子型高分子助剂为阳离子聚丙烯酰胺(分子量100

200万),聚乙烯亚胺(分子量100

200万),阳离子瓜尔胶(分子量100

200万)或聚酰胺环氧氯丙烷树脂(分子量10

20万),所述阴离子型高分子助剂为羧甲基纤维素(分子量20

30万),或阴离子聚丙烯酰胺(分子量100

200万)。
23.所述阳离子型高分子助剂以水溶液的形式使用,溶液的浓度为0.5

1.5wt%;阴离子型高分子助剂以水溶液的形式使用,溶液的浓度为0.5

1.5wt%;
24.所述水溶性阳离子型高分子助剂的用量为纸浆的0.5

1wt%,阴离子型高分子助剂的用量为纸浆的0.5

1wt%;水溶性阳离子型高分子助剂与阴离子型高分子助剂的用量相同。
25.步骤1)的分散剂3中所述水溶性阳离子型高分子助剂为阳离子聚丙烯酰胺(分子量10

20万),聚乙烯亚胺(分子量10

20万)或聚酰胺环氧氯丙烷树脂(分子量10

20万)。所述阳离子型高分子助剂以水溶液的形式使用,溶液的浓度为0.5

1.5wt%;所述阳离子型高分子助剂加入量为纳米纤维素质量的0.1

1%。
26.步骤1)的分散剂3中所述金属盐为含有金属离子的盐,金属离子为三价铁离子或三价铝离子,所述金属盐以水溶液的形式使用,水溶液的浓度为0.5

2mol/l,金属盐的加入量为纳米纤维素质量的1

2%。
27.分散剂3中,搅拌的转速为500

700rpm。
28.步骤1)的分散剂3中所述纳米纤维素水分散液的浓度为0.1

0.5wt%,纳米纤维素的直径20~50nm,长度1

2μm。
29.步骤2)中所述合成纤维的长度为2

6mm,直径为10

20μm;
30.所述合成纤维为聚乙烯、聚丙烯、聚酯、聚丙烯腈、双组分纤维(es)、聚乳酸、聚酰胺、维纶、pet中的一种以上;
31.当选用多种合成纤维时,所述合成纤维包括低熔点合成纤维和高熔点合成纤维;所述低熔点合成纤维和高熔点合成纤维的质量比为1:(4

8)。
32.所述低熔点合成纤维包括es纤维、聚乙烯纤维;所述高熔点合成纤维为聚丙烯纤维、聚酯纤维、聚丙烯腈纤维、聚酰胺纤维、维纶纤维、聚乳酸纤维;
33.所述合成纤维素分散剂的加入量为合成纤维质量的3

8%;所述疏解的转速为500

2000rpm。
34.步骤2)中所述合成纤维在合成纤维浆料中浓度为0.2

0.5wt%。
35.步骤3)中所述石墨烯浆料的浓度为1~5wt%;
36.所述石墨烯浆料中石墨烯通过介质研磨法制备,在介质研磨法中石墨烯在(石墨烯和水)中的浓度为8

10wt%,介质研磨法中分散介质为聚乙烯吡咯烷酮(k12),分散介质的添加量为浆料(石墨烯和水)质量的1

1.6%。
37.步骤3)中所述搅拌的转速为200

500rpm;
38.步骤3)中阳离子助留剂为阳离子聚丙烯酰胺(分子量100

200万)、聚乙烯亚胺(分子量100

200万)、聚酰胺环氧氯丙烷树脂(分子量10

30万);
39.阳离子聚丙烯酰胺、聚乙烯亚胺、聚酰胺环氧氯丙烷树脂各自以水溶液的形式使用;阳离子聚丙烯酰胺(分子量100

200万)水溶液的浓度为0.05

0.2wt%,聚乙烯亚胺(分子量100

200万)水溶液的浓度为0.05

0.1wt%,聚酰胺环氧氯丙烷树脂水溶液的浓度为0.1

0.2wt%。
40.所述阳离子助留剂用量为石墨烯质量的1

4%。
41.石墨烯浆料中石墨烯与合成纤维浆料中合成纤维的质量比为(3~7):(7~3)。
42.步骤4)中所述干燥为90

105℃干燥5

10分钟;所述热压的条件为125~135℃,5

10mpa热压3

5分钟。
43.三种絮状合成纤维分散剂皆可有效分散合成纤维,获得强度稳定、表面均匀的复合纸。与分散剂2对比,分散剂1的再生壳聚糖表面带正电,对石墨烯有更好的留着作用;而分散剂3的纳米纤维素比表面积最大,也可以更好地吸附石墨烯,因此在相同条件下,分散剂1和3所获得的复合纸导电性更优异。
44.本发明与现有技术相比,具有如下优点和有益效果:
45.(1)本发明制备了三种不同类型的絮状高分子分散剂,该亲水性絮状高分子物质可以缠绕和附着在合成纤维的表面,降低纤维之间的相互作用,防止合成纤维在水中疏解时的相互缠结和絮聚,有效抑制纤维对气泡的捕捉,因此提高了合成纤维的水分散性。与常规的合成纤维分散方法相比,改方法不需要添加常规亲水改性助剂,纤维分散剂,抑泡剂和消泡剂,也可以明显提高疏解浆浓,降低水用量,从而大大降低了成本。
46.(2)本发明制备了三种不同类型的高分子分散剂,该絮状高分子分散剂比表面积高,表面电位高,容易吸附石墨烯浆料,可以提高石墨烯在合成纸中的留着率和与合成纤维之间的附着力。
47.(3)使用该分散剂后,合成纸中纤维和石墨烯分布均匀,石墨烯留着率高,因此该
合成纸机械强度高,导电性良好。
附图说明
48.图1为实施例1中聚烯烃双组分纤维和聚丙烯纤维分散于水中的情况图;
49.图2为实施例1制备的pp/石墨烯复合纸成型情况;
50.图3为实施例3制备的pet/石墨烯复合纸成型情况;
51.图4为实施例1

6和对比例的拉伸曲线图,图中实例1~6分别对应实施例1~6。
具体实施方式
52.下面结合实施例对本发明作进一步详细的说明,但本发明的实施方式不限于此。对于未特别注明的工艺参数,可参照常规技术进行。
53.实施例1
54.(1)合成纤维分散剂1的制备:
55.用2wt%浓度的醋酸溶液溶解壳聚糖,制备2wt%的壳聚糖酸溶液;在200rpm搅拌状态下,滴加2wt%浓度的氢氧化钠溶液,调节ph至9,得到絮状的壳聚糖沉淀,用水洗涤至中性,在水中分散保存备用,水中分散的壳聚糖沉淀的浓度为2wt%;
56.(2)合成纤维的分散:
57.将质量比为1:8的es纤维和聚丙烯纤维,加入到浆料疏解机中,加水调配至浆浓为0.2wt%,加入分散剂1,疏解1000转分散纤维,分散剂1用量为合成纤维质量的6wt%,获得合成纤维浆料;
58.(3)复合浆料的制备:
59.将石墨烯浆料加水稀释至5wt%,加到合成纤维浆料中,再加入浓度为0.1wt%,分子量为100万的阳离子聚丙烯酰胺溶液,边加边搅拌(300rpm)至复合浆料中水变澄清;体系中,石墨烯与合成纤维的质量比为3:7,阳离子聚丙烯酰胺的添加量为石墨烯质量的2%;
60.(4)复合纸抄造:
61.通过手动抄片机将复合浆料抄造成纸,经105℃干燥10分钟,130℃,5mpa热压3分钟后成纸,获得复合纸。
62.实施例2
63.(1)合成纤维分散剂1的制备:
64.用浓度为2%的盐酸溶解壳聚糖,制备2wt%的壳聚糖酸溶液,在200rpm搅拌状态下滴加2wt%浓度的氢氧化钾溶液,加至ph为8,得到絮状的壳聚糖沉淀,用水洗涤至中性,在水中分散保存备用,水中分散的壳聚糖沉淀的浓度为2wt%;
65.(2)合成纤维的分散:
66.将质量比为1:4的聚乙烯纤维和聚丙烯腈纤维,加入到浆料疏解机中,加水调配至浆浓为0.5wt%,加入分散剂1,疏解1000转分散纤维,分散剂1用量为合成纤维质量的8wt%,获得合成纤维浆料;
67.(3)复合浆料的制备:
68.将石墨烯浆料加水稀释至5wt%,加到合成纤维浆料中,再加入浓度为0.2wt%,分子量为200万的阳离子聚丙烯酰胺溶液,边加边搅拌(400rpm)至复合浆料中水变澄清;体系
中,石墨烯与合成纤维的质量比为1:1,阳离子聚丙烯酰胺的添加量为石墨烯质量的3%;
69.(4)复合纸抄造:
70.使用凯塞法自动抄纸系统将复合浆料抄造成纸,经105℃干燥8分钟,130℃热压5min后成纸,获得复合纸。
71.实施例3
72.(1)合成纤维分散剂2的制备:
73.调配纸浆浓度为25wt%,使用盘式磨浆机对阔叶木纸浆纤维进行高浓打浆,打至打浆度为70
°
sr,然后加入浓度为1wt%,分子量100万阳离子聚丙烯酰胺溶液和浓度为1wt%,分子量100万阴离子聚丙烯酰胺溶液,200rpm搅拌10分钟至纤维呈交联絮状,阴离子助剂和阳离子助剂的总添加量为纸浆质量的2%,阴离子助剂和阳离子助剂相同;
74.(2)合成纤维的分散:
75.将质量比为1:6的es纤维和pet纤维,加入到浆料疏解机中,加水调配浆浓为0.2wt%,加入分散剂2,疏解1500转分散纤维,分散剂2用量为合成纤维质量的6wt%,获得合成纤维浆料;
76.(3)复合浆料的制备:
77.将石墨烯浆料加水稀释至3wt%,加到合成纤维浆料中,再加入浓度为0.05wt%,分子量为100万的聚乙烯亚胺溶液,边加边搅拌(300rpm)至复合浆料中水变澄清;体系中,石墨烯与合成纤维的质量比为3:7,聚乙烯亚胺的添加量为石墨烯质量的1%。
78.(4)复合纸抄造:
79.使用凯塞法自动抄纸系统将复合浆料抄造成纸,经105℃干燥10分钟,135℃,6mpa热压5min后成纸,获得复合纸。
80.实施例4
81.(1)合成纤维分散剂2的制备:
82.调配纸浆浓度为30wt%,使用盘式磨浆机对针叶木纸浆纤维进行高浓打浆,打至打浆度为60
°
sr,然后加入浓度为0.5wt%,分子量100万阳离子瓜尔胶溶液和浓度为0.5wt%,分子量20万的羧甲基纤维素溶液,200rpm搅拌10分钟至纤维呈交联絮状,阴离子助剂和阳离子助剂的总添加量为纸浆质量的2%,阴离子助剂和阳离子助剂等量;
83.(2)合成纤维的分散:
84.将质量比为1:7的聚乙烯纤维和聚酰胺纤维,加入到浆料疏解机中,加水调配浆浓为0.3wt%,加入分散剂2,疏解2000转分散纤维,分散剂2用量为合成纤维质量的7wt%,获得合成纤维浆料;
85.(3)复合浆料的制备:
86.将制备的石墨烯浆料加水稀释至3wt%,加到合成纤维浆料中,再加入浓度为0.1wt%,分子量为30万的聚酰胺环氧氯丙烷水溶液,边加边搅拌(300rpm)至复合浆料中水变澄清;石墨烯与合成纤维的质量比为1:1,聚乙烯亚胺的添加量为石墨烯质量的4%。
87.(4)复合纸抄造:
88.使用手动抄片机将复合浆料抄造成纸,经95℃干燥10分钟后,再经135℃,10mpa热压5min后成纸,获得复合纸。
89.实施例5
90.(1)合成纤维分散剂3的制备:
91.使用木浆纤维通过tempo氧化和高压均质制备质量分数为0.2%的纳米纤维素,加入浓度为1mol/l的氯化铁溶液,氯化铁添加量为纳米纤维素质量的2%,然后在500rpm条件下搅拌5分钟得到交联絮状的纳米纤维素;
92.(2)合成纤维的分散:
93.将质量比为1:8的es纤维和聚酯纤维,加入到浆料疏解机中,加水调配浆浓为0.5wt%,加入分散剂3,疏解1000转分散纤维,分散剂3用量为合成纤维质量的5wt%,获得合成纤维浆料;
94.(3)复合浆料的制备:
95.将石墨烯浆料加水稀释至2wt%,加到合成纤维浆料中,再加入浓度为1wt%,分子量为200万的聚乙烯亚胺溶液,边加边搅拌(300rpm)至复合浆料中水变澄清;石墨烯与合成纤维的质量比为3:7,聚乙烯亚胺的添加量为石墨烯质量的3%;
96.(4)复合纸抄造:
97.使用凯塞法自动抄纸系统将复合浆料抄造成纸,经105℃干燥5分钟后,125℃,8mpa热压5min后成纸,获得复合纸。
98.实施例6
99.(1)合成纤维分散剂3的制备:
100.使用木浆纤维通过tempo氧化和高压均质制备质量分数为0.1wt%的纳米纤维素水分散液,加入浓度为0.1wt%分子量为10万的聚酰胺环氧氯丙烷树脂溶液,聚酰胺环氧氯丙烷树脂的添加量为纳米纤维素质量的1%,为在600rpm速度搅拌5分钟得到交联絮状的纳米纤维素;
101.(2)合成纤维的分散:
102.将质量比为1:5的聚乙烯纤维和维纶纤维,加入到浆料疏解机中,加水调配浆浓为0.3wt%,加入分散剂3,疏解1500转分散纤维,分散剂3用量为合成纤维质量的6wt%,获得合成纤维浆料;
103.(3)复合浆料的制备:
104.将石墨烯浆料加水稀释至3wt%,加到合成纤维浆料中,再加入浓度为1wt%,分子量为200万的阳离子聚丙烯酰胺水溶液,边加边搅拌(500rpm)至复合浆料中水变澄清;石墨烯与合成纤维的质量比为7:3,聚乙烯亚胺的添加量为石墨烯质量的4%;
105.(4)复合纸抄造:
106.使用凯塞法自动抄纸系统将复合浆料抄造成纸,经100℃干燥5分钟后,130℃,5mpa热压3min后成纸,获得复合纸。
107.对比例1
108.使用质量比为1:8的es纤维和聚丙烯纤维,添加市售消泡剂和分散剂(peo)进行分散,添加石墨烯进行抄纸。peo添加量为合成纤维质量的8%,石墨烯与合成纤维质量比为3:7,其他条件与实施例1一致。
109.对比例2
110.使用质量比为1:8的es纤维和聚丙烯纤维,添加市售消泡剂和分散剂(peo)进行分散,添加石墨烯进行抄纸。peo添加量为合成纤维质量的8%,石墨烯与合成纤维质量比为7:
3,其他条件与实施例1一致,由于纤维表面附着大量气泡,石墨烯无法留着在合成纸上,堵住网孔,无法成型。
111.表1为不同实例所制备的复合纸的表面方块电阻和抗张强度。可以看到对比例的电阻相对较低,而且标准偏差较大,说明复合纸不均匀。而添加了本发明所制备了分散剂的复合纸,导电性均匀,方块电阻低。与市面上的导电碳布相比,本发明导电性可以相比拟,在强度上具有很大的优势。
112.表1不同实施例和对比例的表面电阻和抗张强度
[0113] 石墨烯含量方块电阻(ω/sq)抗张强度(mpa)实施例130wt%12.6
±
1.314.86
±
2.36实施例250wt%4.7
±
0.513.49
±
1.87实施例330wt%13.2
±
1.114.45
±
2.18实施例450wt%5.1
±
0.615.89
±
2.59实施例530wt%12.9
±
1.615.54
±
1.59实施例670wt%1.9
±
0.412.23
±
2.79对比例130wt%440.6
±
130.48.24
±
1.98市面产品1碳布1.1
±
0.36.58
±
1.16
[0114]
图1为实施例1中聚烯烃双组分纤维和聚丙烯纤维分散于水中的情况图;
[0115]
图2为实施例1制备的pp/石墨烯复合纸成型情况;
[0116]
图3为实施例3制备的pet/石墨烯复合纸成型情况;
[0117]
图4为实施例1

6和对比例的拉伸曲线图。
[0118]
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜