一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种硼化锆增强SiC-AlN固溶主相纳米复相陶瓷烧结体的制备方法与流程

2021-10-19 23:59:00 来源:中国专利 TAG:烧结 纳米 陶瓷 增强 方法

一种硼化锆增强sic

aln固溶主相纳米复相陶瓷烧结体的制备方法
技术领域
1.本发明涉及一种硼化锆增强sic

aln固溶主相纳米复相陶瓷烧结体的制备方法,具体涉及一种利用聚合物转化结合热压烧结工艺制备zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的方法,属于纳米陶瓷领域。


背景技术:

2.纳米陶瓷是陶瓷材料的一个重要分支,一般是由颗粒尺寸在100nm以下的粉末烧结得到的多晶陶瓷。当陶瓷晶粒尺寸不断减少时,晶界密度会不断增加,晶界处的原子数量也急剧增加。由于这种独特界面的存在,纳米陶瓷与传统的粗晶粒陶瓷相比具有更加优异的性能,如超塑性、可加工性、透明度、抗辐射性以及强度和硬度等。根据hall

petch关系,陶瓷材料的强度随晶粒尺寸的降低而增大。因此,纳米陶瓷往往具有非常优异的力学性能,在国防、航空航天等领域具有巨大的应用价值。
3.纳米sic陶瓷由于具有高强度、高硬度、耐磨、耐化学腐蚀以及优良的抗热震性而备受关注。目前,纳米sic陶瓷的制备技术主要有化学气相合成、水热溶剂热、溶胶

凝胶法等。但这些方法对设备要求较高,难以大规模生产。而聚合物衍生陶瓷(pdcs)工艺可以方便快捷制备纳米sic陶瓷。pdcs工艺是将sic的前驱体聚合物聚碳硅烷(pcs)直接裂解,pcs裂解会放出co、co2、h2、ch4、hcho等小分子气体,原位生成纳米sic陶瓷骨架,最终完成从聚合物到陶瓷的转变。利用pcs裂解制备的sic纳米陶瓷,其微观结构一般认为是由游离碳组成的网络及其内部包含的sic纳米域构成。
4.然而,利用pcs裂解制备的纳米sic陶瓷微观结构难以控制。


技术实现要素:

5.为了解决以上问题,本发明旨在探索一种利用聚合物转化结合热压烧结工艺制备zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的方法,用于高效制备晶粒细小、力学性能优异的纳米复相陶瓷。
6.第一方面,本发明提供了一种zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的制备方法,包括:将sic的前驱体pcs交联固化并研磨,得到pcs粉体;将所述pcs粉体和aln粉体、zrb2粉体、溶剂混合,得到浆料;将所得浆料干燥过筛,得到混合粉体;将所得混合粉体经高温裂解后得到无机混合粉体;将所述无机混合粉体置于惰性气氛中,在1900~2100℃下热压烧结,得到所述纳米复相陶瓷烧结体。
7.利用pdcs工艺制备的sic陶瓷其晶粒虽为纳米尺寸,但是在pcs裂解的过程中由于大量小分子气体的放出,会产生大量的孔隙和裂纹,致使其力学性能降低。考虑到这一点,本发明将aln和zrb2添加到pcs中,得到晶粒细小的纳米复相陶瓷和提高pdcs产品的力学性能,二者相辅相成,不可分割。aln可与sic在较宽的组成和温度范围内形成连续固溶体,细化主相晶粒;同时,aln作为烧结助剂,可促进sic陶瓷的致密化。zrb2作为一种典型的增强
相,对纳米sic陶瓷具有增强增韧的作用。采用热压工艺,可使加热加压同时进行,缩短晶粒生长时间,降低晶粒尺寸;而且可以促进烧结致密化,弥补pcs裂解易产生缺陷的不足。以上特点使得zrb2增强sic

aln固溶主相纳米复相陶瓷具有优异的力学性能。
8.较佳的,所述pcs交联固化为:将液态pcs(即液态聚碳硅烷)与交联剂混合均匀后置于惰性气氛中于100~300℃下交联2~5小时,优选地,所述pcs交联固化的升温速率为1℃/min~10℃/min。
9.较佳的,所述交联剂为铂催化剂或过氧化物催化剂,优选为过氧化二异丙苯(dcp);液态pcs交联剂的含量为液态pcs的0.2~0.6wt%,优选为0.4wt%。
10.较佳的,以粉体总和100wt%计,所述zrb2粉体的含量为5~25wt%,所述aln粉体的含量为5~25wt%,所述pcs粉体的含量为50~90wt%。
11.较佳的,所述浆料的固含量为65~70wt%。固含量太高,浆料粘度过大,不易混合均匀;固含量太低,浆料粘度过小,容易沉降分层。
12.较佳的,所述高温裂解为:以1℃/min~3℃/min的升温速率升温至800~1500℃并保温0.2~2小时。该裂解过程需使pcs完全裂解成sic并产生部分游离c。根据热重(tg)分析,pcs发生裂解的主要温度范围为200~800℃,1200℃之后几乎不再发生失重,证明pcs裂解完成;对裂解后的样品进行x射线衍射(xrd)分析,发现只存在sic和c的峰,也可以证明pcs完全裂解,游离c的产生是不可避免的。
13.较佳的,无机混合粉体的粒径在50~250μm之间。一般来说,粉体粒径越小,越容易烧结。
14.较佳的,所述热压烧结的烧结温度为1900~2100℃,热压烧结的保温时间为1~4小时;优选的,所述热压烧结的升温速率为2℃/min~20℃/min。
15.第二方面,本发明提供了上述制备方法得到的纳米复相陶瓷烧结体,所述纳米复相陶瓷烧结体包含固溶相sic

aln、增强相zrb2和残余游离碳;所述固溶相sic

aln的含量为65~80wt%;所述增强相zrb2的含量为6~27wt%;所述残余游离碳的含量为8~14wt%。
16.较佳的,所述固溶相sic

aln的晶粒尺寸为80~160nm。
17.较佳的,所述纳米复相陶瓷烧结体的密度为3.10~3.55g
·
cm
‑3,抗弯强度为350~600mpa,弹性模量为250~370gpa,维氏硬度为16~25gpa,断裂韧性k
ic
值为4~8mpa
·
m
1/2

18.有益效果:
19.1、本发明最显著的特征在于利用聚合物转化结合热压烧结工艺制备了具有优异力学性能的纳米复相陶瓷,在国防、航空航天等领域具有巨大的应用价值。
20.2、本发明中,所制备的纳米复相陶瓷烧结体经过高温烧结,sic和aln形成连续固溶体,纳米zrb2分布在固溶相基体的边界形成网状结构,sic

aln固溶相基体的晶粒尺寸在100nm左右。
21.3、本发明中,所制备的纳米复相陶瓷烧结体密度为3.10~3.55g
·
cm
‑3,力学性能得到较大提升,抗弯强度为350~600mpa,弹性模量为250~370gpa,维氏硬度为16~25gpa,断裂韧性k
ic
值为4~8mpa
·
m
1/2

附图说明
22.图1为实施例2制备的zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的抛光面微
观形貌图。
23.图2为对比例1制备的zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的断面微观形貌图。
24.图3为实施例2制备的zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的透射电镜图。
具体实施方式
25.以下结合附图和实施例,对本发明的具体实施方式作进一步详细描述。应理解,以下附图和实施例用于说明本发明,而非限制本发明。
26.在本公开中,选用pcs作为sic的前驱体,将pcs交联固化后研磨,得到pcs粉体。再将pcs粉体和aln粉体、zrb2粉体、溶剂混合,得到浆料。将浆料干燥,以除去溶剂,然后过筛,得到混合粉体。再将混合粉体置于惰性气氛中高温裂解,放出小分子气体,使得pcs转变为sic,并产生部分游离碳。随后热压烧结,最终得到zrb2增强的sic

aln固溶主相纳米复相陶瓷。pcs裂解可原位生成sic纳米晶。aln可与sic形成sic

aln固溶体,具有细化sic晶粒的作用。同时,aln作为烧结助剂,易于促进陶瓷的致密化;zrb2作为一种典型的增强相,能够显著提高纳米复相陶瓷的力学性能。采用热压烧结工艺,可以使加热加压同时进行,弥补pcs裂解过程中产生的孔隙、裂纹等缺陷。同时,热压烧结晶粒生长受到抑制,可有效避免晶粒异常长大。
27.以下示例性地说明本发明利用聚合物转化结合热压烧结工艺制备zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的方法。
28.将sic的前驱体pcs交联固化并研磨,得到pcs粉体。称取一定量的液态pcs,加入0.2~0.6wt%(优选为0.4wt%)的交联剂,所述交联剂可为铂催化剂或过氧化物催化剂,优选为过氧化二异丙苯(dcp)。混合均匀后置于惰性气氛中于100~300℃下交联2~5小时。再将交联固化后的pcs研磨成粉体。
29.称料。计算称量pcs、aln、zrb2粉体混合所需原料质量,其中zrb2含量可为5~25wt%、aln含量可为5~25wt%、pcs含量可为50~90wt%。更优选,zrb2含量为10wt%、aln含量为10wt%、pcs含量为80wt%。优选采用高纯的原料(例如aln粉体的纯度≥99.8%,zrb2粉体的纯度≥99.5%)。原料粒径优选控制在0.05~2μm。
30.配制浆料。将粉体原料和溶剂混合进行研磨或球磨,制备均匀的浆料。可控制浆料中固体含量为65~70wt%。浆料中所用溶剂成分可为丙酮、乙醇、正丁醇、环己酮等。其中,球磨可用sic磨球,质量为原料粉体总质量的1~3倍。控制该球磨混合的转速在150~300转/分钟之间,球磨时间控制在2~8小时。在上述研磨或球磨过程中不再添加溶剂。
31.将浆料干燥、过筛,得到混合粉体。先通过50~100℃干燥后,再过80~120目筛,获得混合粉体。此时,混合粉体的粒径一般在50~250μm之间。
32.再次过筛,经过热压烧结,得到纳米复相陶瓷烧结体。将裂解后的粉体继续过80~120目筛,获得无机混合粉体。此时,无机混合粉体的粒径一般在50~250μm之间。将无机混合粉体放入模具中在惰性气氛下进行热压烧结。惰性气氛优选氩气。热压烧结的烧结温度可为1900~2100℃。热压烧结的保温时间可为1~4小时。得到的纳米复相陶瓷烧结体的化学式为zrb2/(sic

aln)。
33.性能表征:采用阿基米德法所得纳米复相陶瓷烧结体的密度为3.10~3.55g
·
cm
‑3;采用陶瓷材料弯曲强度测试所得纳米复相陶瓷烧结体的三点抗弯强度为350~600mpa;采用维氏硬度仪所得纳米复相陶瓷烧结体的维氏硬度为16~25gpa;采用开槽韧性测试所得纳米复相陶瓷烧结体的开槽韧性(断裂韧性)k
ic
为4~8mpa
·
m
1/2

34.综上所述,本发明的zrb2增强sic

aln固溶相纳米复相陶瓷烧结体的性能优异,在国防、航空航天领域具有巨大的潜力。
35.下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
36.实施例1
37.取40g含乙烯基氢聚碳硅烷(kh

vhpcs

1s),加入0.16g(0.4wt%)dcp,超声分散10min,然后在n2气氛下以5℃/min的升温速率升温至140℃,保温4h。将交联固化后的pcs研磨成粉体。取38.25g(85wt%)pcs粉体,4.5g(10wt%)aln,2.25g(5wt%)纳米zrb2粉体,共45g,粉体配成浆料(溶剂为无水乙醇)固体含量为65wt%,sic磨球共90g,混合球磨4h。将干燥过筛后的粉体置于ar气氛下以3℃/min的升温速率升温至1200℃并保温0.5h进行pcs裂解。将裂解后的混合粉体再次过筛。将第二次过筛后的粉体放入石墨模具中在ar气氛下以10℃/min的速率升温至2000℃并保温1h进行热压烧结,最终得到zrb2增强的sic

aln固溶主相纳米复相陶瓷烧结体。所得烧结体的密度3.22g
·
cm
‑3,抗弯强度为423.34mpa,弹性模量为336.27gpa,断裂韧性为5.83mpa
·
m
1/2
,维氏硬度23.58gpa。
38.实施例2
39.取40g液态含乙烯基氢聚碳硅烷(kh

vhpcs

1s),加入0.16g(0.4wt%)dcp,超声分散10min,然后在n2气氛下以5℃/min的升温速率升温至140℃,保温4h。将交联固化后的pcs研磨成粉体。取36g(80wt%)pcs粉体,4.5g(10wt%)aln,4.5g(10wt%)纳米zrb2粉体,共45g,粉体配成浆料(溶剂为无水乙醇)固体含量为65wt%,sic磨球共90g,混合球磨4h。将干燥过筛后的粉体置于ar气氛下以3℃/min的升温速率升温至1200℃并保温0.5h进行pcs裂解。将裂解后的混合粉体再次过筛。将第二次过筛后的粉体放入石墨模具中在ar气氛下以10℃/min的速率升温至2000℃并保温1h进行热压烧结,最终得到zrb2增强的sic

aln固溶主相纳米复相陶瓷烧结体。所得烧结体的密度3.23g
·
cm
‑3,抗弯强度为455.56mpa,弹性模量为311.36gpa,断裂韧性为6.49mpa
·
m
1/2
,维氏硬度22.99gpa。
40.图1为实施例2制备的zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的抛光面微观形貌图,可以看出灰色区域的sic

aln固溶相基体被白色的纳米zrb2网络包裹。
41.图2为对比例1制备的zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的断面微观形貌图,可看到断裂形式主要为沿晶断裂。
42.图3为实施例2制备的zrb2增强sic

aln固溶主相纳米复相陶瓷烧结体的透射电镜
图,可以看到晶粒尺寸为100nm左右。
43.对比例1
44.本对比例1中纳米复相陶瓷烧结体的制备过程参见实施例2,区别在于:不加入纳米zrb2粉体。
45.对比例2
46.本对比例2中纳米复相陶瓷烧结体的制备过程参见实施例2,区别在于:热压烧结温度为1950℃。
47.表1为本发明所得纳米复相陶瓷烧结体的制备工艺参数: pcs:aln:zrb2(wt%)热压烧结温度(℃)实施例185:10:52000实施例280:10:102000对比例190:10:02000对比例280:10:101950
48.表2为本发明所得纳米复相陶瓷烧结体的性能参数:
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜