一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种具有晶型取向固体氧化物燃料电池电解质材料及其制备方法与流程

2021-10-20 00:00:00 来源:中国专利 TAG:电解质 氧化物 固体 燃料电池 材料


1.本发明属于固体氧化物燃料电池电解质材料技术领域,具体涉及到一种具有晶型取向固体氧化物燃料电池电解质材料及其制备方法。


背景技术:

2.燃料电池是21世纪最有希望的新一代绿色能源动力系统,是解决当前能源危机和环境污染等问题的有力举措。近些年来,燃料电池在电池能源领域取得了巨大的成果,同时也还保持着飞速的发展。燃料电池具有高效率转换、长时间稳定性、低排放和低成本等优点,而且其所具有的能源可再生、燃料来源多元化等特性都使其适用范围在不断的扩大。燃料电池的主要应用领域就是汽车动力系统,尽管燃料电池在汽车等领域上得到了成功的应用,但消费者仍期望综合性能更好的燃料电池体系,而这些需求给电解质的研究与开发工作者提出了更高的要求,汽车性能的逐步提升对汽车的供能系统提出了更大的要求和挑战,这也使得当前的燃料电池难以再满足未来的需求。电解质是固态电池的关键材料,提高燃料电池的综合性能可以从电解质材料入手,电解质材料的结构与电池的性能尤为相关,控制电解质中晶体的生长成为解决问题的关键所在。
3.燃料电池体系中,固体氧化物燃料电池应用和发展更加广泛,例如:bi4ti3o
12
,众多研究工作者也采用了很多技术手段来对电解质进行改性:如通过不同的烧结温度来控制氧离子导体的晶粒大小,由于晶粒大小与氧离子导体的电导性能存在一定的规律,因此通过改变晶粒大小可以改善氧离子导体的电导性能;如通过非晶相来修饰晶界得以改善电解质整体的电导率。
4.现有技术在一定程度上改善了固体氧化物电解质的电导性能,但是效果却不够理想。晶界阻碍氧离子传导虽然提出理论依据,但烧结制备得到的多晶体电解质没有本质上改善固体氧化物电解质的整体性能。制备晶粒沿电极方向生长的电解质有利于减少氧离子传导过程中晶界的阻碍作用,因此,需要一种能够有效控制多晶固体氧化物电解质生长的制备方案。


技术实现要素:

5.本发明的目的是提供一种具有晶型取向固体氧化物燃料电池电解质材料及其制备方法,可以制备出具有晶形取向的bi4ti3o
12
固态氧化物电解质柱状晶材料,且物相单一、结构稳定、晶形取向均匀。
6.为达上述目的,本发明提供了一种具有晶型取向固体氧化物燃料电池电解质材料的制备方法,包括以下步骤:
7.(1)将铋源和钛源混合后研磨至粉末状无颗粒感,于压力为10

12mpa条件下压制5

10min,得生坯;
8.(2)将生坯进行热处理后得到样品,将样品于惰性气体的保护下进行co2激光器激
光加热,加热至1400

1600℃并保温5

10s,以3k/s的冷却速率冷却至室温,制得具有晶型取向固体氧化物燃料电池电解质材料。
9.进一步地,激光加热的装置设置为:将耐火砖放在水冷装置上,然后将金属基板放在耐火砖上,最后将块状的样品放在基板上,将装置于密封条件下抽真空至1*10
‑3pa后,充入惰性气体并保持常压。
10.采用上述方案的有益效果是:将样品熔化后,由于样品底部接触的钨基板和耐火砖连着水冷装置,这样的装置相当于在样品的上下两端建立了一个纵向温度场:顶部是高于熔点的高温状态,底部是水冷装置的室温状态。特定温度梯度场的建立以及3k/s的冷速会使得从熔体中长出的晶体会受到生长方向的限制,即沿着热流相反的方向进行生长。
11.进一步地,铋源为三氧化二铋,纯度为99.99%;钛源为二氧化钛,纯度为99.99%,铋源与钛源按照摩尔数为x:y的比例配料;
12.其中:x为1.01、1.03、1.05、1.07、1.09和1.1中的一种,y为1.5。
13.采用上述方案的有益效果是:bi2o3随着温度的升高会出现一定程度的挥发,改变了初始的bi2o3与tio2的比例,而tio2受温度条件的影响下无明显挥发,调整比例可以得到纯的bi4ti3o
12
的相。
14.进一步地,研磨的具体过程为:将铋源和钛源混合后置于研钵中加入乙醇进行研磨,研磨时间为1.5

2.5h,研磨至粉末样品细腻无颗粒感。
15.采用上述方案的有益效果是:乙醇可以保持样品为糊状,以使得样品得到充分研磨提高研磨效率,并且乙醇挥发性强,无需再进行去除。
16.进一步地,热处理包括以下过程:将生坯置于可控程序热处理炉内,室温下以4

6℃/min升温至180

210℃,并保温100

150min;再以4

6℃/min升温至750

850℃;再以1

3℃/min的速率升温至1000

1050℃,保温700

750min,最后炉内冷却至室温。
17.采用上述方案的有益效果是:加热到180

210℃的目的是使得之前研磨后的有机物完全挥发掉,而4

6℃/min加热到750

850℃后又1

3℃/min升温到1000

1050℃的目的是在高温阶段使得样品本身有充分的反应时长,保证生坯不开裂。
18.进一步地,步骤(2)中样品激光加热的基座为纯度99.999%的钨基板,惰性气体为氩气,可以防止钨基板被氧化,co2激光器的功率为100w。
19.根据具有晶型取向固体氧化物燃料电池电解质材料的制备方法制备得到的具有晶型取向固体氧化物燃料电池电解质材料。
20.进一步地,包括bi
4.04
ti3o
12.06
、bi
4.12
ti3o
12.18
、bi
4.2
ti3o
12.3
、bi
4.28
ti3o
12.42
、bi
4.36
ti3o
12.54
和bi
4.4
ti3o
12.6

21.综上所述,本发明具有以下优点:
22.1、本发明首次采用激光超高温度梯度快速凝固的技术手段制备得到具有晶形取向固体氧化物燃料电池电解质材料,方法简便,操作灵活可行;
23.2、本发明制备的电解质材料具有特定晶形取向结构,形貌独特,这种特殊的晶体形状有利于氧离子在其内部的传导作用,减少了离子传输过程中晶界总的阻碍效果,提高了电解质材料的电导性能;
24.3、本发明所制备具有晶形取向固体氧化物燃料电池电解质材料经检测:所制材料为规则的柱状晶体形,相互紧密排列分布,柱状晶的宽度约为12μm,长度可达100

200μm不
等,形貌总体规整,尺寸分布较为集中;
25.4、本发明所制备的具有晶形取向固体氧化物燃料电池电解质材料为柱状晶,具有更加完整的晶体结构、较高的结构稳定性,能够有效的提高所得材料的稳定性,对工业化生产应用具有重要的意义。
附图说明
26.图1为实施例6制备得到的具有晶形取向固体氧化物燃料电池电解质材料经腐蚀后的sem图;
27.图2为实施例6制备得到的具有晶形取向固体氧化物燃料电池电解质材料的sem图。
28.图3为实施例6制备得到的具有晶形取向固体氧化物燃料电池电解质材料的eis图。
具体实施方式
29.以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
30.实施例1
31.本实施例提供了一种bi
4.04
ti3o
12.06
电解质材料的制备方法,包括以下步骤:
32.(1)按纯度为99.99%的三氧化二铋与纯度为99.99%的二氧化钛摩尔比为1.01:1.5配料,得配料ⅰ;
33.(2)将配料ⅰ放置在玛瑙研钵内顺时针研磨混合均匀,研磨时适当加入酒精保持研磨样品呈糊状,研磨时长2h,研磨至酒精挥发完全后取出样品,得配料ⅱ;
34.(3)将配料ⅱ放置在直径为20mm的圆柱形模具中,施加10mpa的压力,慢慢施压,等到压力维持在该数值下稳定5min,得到生坯ⅰ;
35.(4)将生坯ⅰ置于可控程序热处理炉中按照一定热处理程序进行处理,得样品ⅰ;其中热处理程序为:室温下以5℃/min升温到200℃,在200℃下保温120min,200℃以5℃/min升温到800℃,800℃以2℃/min升温到1000℃,在1000℃保温720min,最后炉冷至室温;
36.(5)将样品ⅰ取出一小块放置在纯度为99.999%的钨基板上,整体置于ar气氛条件下,用co2激光器对样品进行加热至1500℃保温5s,然后以3k/s的冷速降温冷却至室温,得到具有晶形取向固体氧化物燃料电池电解质材料bi
4.04
ti3o
12.06

37.该材料可以明显看到成块聚集的杂相较为集中的分布在材料中,高倍率下仍然可以观察到较为明显的裂纹和孔洞。
38.实施例2
39.本实施例提供了一种bi
4.12
ti3o
12.18
电解质材料的制备方法,包括以下步骤:
40.(1)按纯度为99.99%的三氧化二铋与纯度为99.99%的二氧化钛摩尔比为1.03:1.5配料,得配料ⅰ;
41.(2)将配料ⅰ放置在玛瑙研钵内顺时针研磨混合均匀,研磨时适当加入酒精保持研磨样品呈糊状,研磨时长2h,研磨至酒精挥发完全后取出样品,得配料ⅱ;
42.(3)将配料ⅱ放置在直径为20mm的圆柱形模具中,施加12mpa的压力,慢慢施压,等到压力维持在该数值下稳定5min,得到生坯ⅰ;
43.(4)将生坯ⅰ置于可控程序热处理炉中按照一定热处理程序进行处理,得样品ⅰ;其中热处理程序为:室温下以5℃/min升温到200℃,在200℃下保温120min,200℃以5℃/min升温到800℃,800℃以2℃/min升温到1000℃,在1000℃保温720min,最后炉冷至室温;
44.(5)将样品ⅰ取出一小块放置在纯度为99.999%的钨基板上,整体置于ar气氛条件下,用co2激光器对样品进行加热至1500℃保温5s,然后以3k/s的冷速降温冷却至室温,得到具有晶形取向固体氧化物燃料电池电解质材料bi
4.12
ti3o
12.18

45.该材料可以看到少量的杂相分布在材料中,高倍率下仍然可以看到一定数目的孔洞。
46.实施例3
47.本实施例提供了一种bi
4.2
ti3o
12.3
电解质材料的制备方法,包括以下步骤:
48.(1)按纯度为99.99%的三氧化二铋与纯度为99.99%的二氧化钛摩尔比为1.05:1.5配料,得配料ⅰ;
49.(2)将配料ⅰ放置在玛瑙研钵内顺时针研磨混合均匀,研磨时适当加入酒精保持研磨样品呈糊状,研磨时长2h,研磨至酒精挥发完全后取出样品,得配料ⅱ;
50.(3)将配料ⅱ放置在直径为20mm的圆柱形模具中,施加10mpa的压力,慢慢施压,等到压力维持在该数值下稳定5min,得到生坯ⅰ;
51.(4)将生坯ⅰ置于可控程序热处理炉中按照一定热处理程序进行处理,得样品ⅰ;其中热处理程序为:室温下以5℃/min升温到200℃,在200℃下保温120min,200℃以5℃/min升温到800℃,800℃以2℃/min升温到1000℃,在1000℃保温720min,最后炉冷至室温;
52.(5)将样品ⅰ取出一小块放置在纯度为99.999%的钨基板上,整体置于ar气氛条件下,用co2激光器对样品进行加热至1500℃保温5s,然后以3k/s的冷速降温冷却至室温,得到具有晶形取向固体氧化物燃料电池电解质材料bi
4.2
ti3o
12.3

53.该材料可以明显的看到杂相较为分散的分布在材料中,高倍率下可以观察到较为明显的裂纹和孔洞。
54.实施例4
55.本实施例提供了一种bi
4.28
ti3o
12.42
电解质材料的制备方法,包括以下步骤:
56.(1)按纯度为99.99%的三氧化二铋与纯度为99.99%的二氧化钛摩尔比为1.07:1.5配料,得配料ⅰ;
57.(2)将配料ⅰ放置在玛瑙研钵内顺时针研磨混合均匀,研磨时适当加入酒精保持研磨样品呈糊状,研磨时长2h,研磨至酒精挥发完全后取出样品,得配料ⅱ;
58.(3)将配料ⅱ放置在直径为20mm的圆柱形模具中,施加10mpa的压力,慢慢施压,等到压力维持在该数值下稳定5min,得到生坯ⅰ;
59.(4)将生坯ⅰ置于可控程序热处理炉中按照一定热处理程序进行处理,得样品ⅰ;其中热处理程序为:室温下以5℃/min升温到200℃,在200℃下保温120min,200℃以5℃/min升温到800℃,800℃以2℃/min升温到1000℃,在1000℃保温720min,最后炉冷至室温;
60.(5)将样品ⅰ取出一小块放置在纯度为99.999%的钨基板上,整体置于ar气氛条件下,用co2激光器对样品进行加热至1500℃保温5s,然后以3k/s的冷速降温冷却至室温,得
到具有晶形取向固体氧化物燃料电池电解质材料bi
4.28
ti3o
12.42

61.该材料可以看到少量聚集的杂相在材料中,高倍率下可以观察到一定数量的凹坑。
62.实施例5
63.本实施例提供了一种bi
4.36
ti3o
12.54
电解质材料的制备方法,包括以下步骤:
64.(1)按纯度为99.99%的三氧化二铋与纯度为99.99%的二氧化钛摩尔比为1.09:1.5配料,得配料ⅰ;
65.(2)将配料ⅰ放置在玛瑙研钵内顺时针研磨混合均匀,研磨时适当加入酒精保持研磨样品呈糊状,研磨时长2h,研磨至酒精挥发完全后取出样品,得配料ⅱ;
66.(3)将配料ⅱ放置在直径为20mm的圆柱形模具中,施加10mpa的压力,慢慢施压,等到压力维持在该数值下稳定5min,得到生坯ⅰ;
67.(4)将生坯ⅰ置于可控程序热处理炉中按照一定热处理程序进行处理,得样品ⅰ;其中热处理程序为:室温下以5℃/min升温到200℃,在200℃下保温120min,200℃以5℃/min升温到800℃,800℃以2℃/min升温到1000℃,在1000℃保温720min,最后炉冷至室温;
68.(5)将样品ⅰ取出一小块放置在纯度为99.999%的钨基板上,整体置于ar气氛条件下,用co2激光器对样品进行加热至1500℃保温5s,然后以3k/s的冷速降温冷却至室温,得到具有晶形取向固体氧化物燃料电池电解质材料bi
4.36
ti3o
12.54

69.该材料可以看到极少数的杂相存在于材料中,但总体来说相组成较为均匀,裂纹和孔洞的数量明显减少。
70.实施例6
71.本实施例提供了一种bi
4.4
ti3o
12.6
电解质材料的制备方法,包括以下步骤:
72.(1)按纯度为99.99%的三氧化二铋与纯度为99.99%的二氧化钛摩尔比为1.1:1.5配料,得配料ⅰ;
73.(2)将配料ⅰ放置在玛瑙研钵内顺时针研磨混合均匀,研磨时适当加入酒精保持研磨样品呈糊状,研磨时长2h,研磨至酒精挥发完全后取出样品,得配料ⅱ;
74.(3)将配料ⅱ放置在直径为20mm的圆柱形模具中,施加10mpa的压力,慢慢施压,等到压力维持在该数值下稳定5min,得到生坯ⅰ;
75.(4)将生坯ⅰ置于可控程序热处理炉中按照一定热处理程序进行处理,得样品ⅰ;其中热处理程序为:室温下以5℃/min升温到200℃,在200℃下保温120min,200℃以5℃/min升温到800℃,800℃以2℃/min升温到1000℃,在1000℃保温720min,最后炉冷至室温;
76.(5)将样品ⅰ取出一小块放置在纯度为99.999%的钨基板上,整体置于ar气氛条件下,用co2激光器对样品进行加热至1500℃保温5s,然后以3k/s的冷速降温冷却至室温,得到具有晶形取向固体氧化物燃料电池电解质材料bi
4.4
ti3o
12.6

77.以氢氟酸、浓硝酸以及水按照体积比1:1:10的比例配置腐蚀剂,对实施例6制备的材料进行30s的腐蚀,如图1

2所示,该材料在sem图中可以看到主要相为bi4ti3o
12
,含有极少量的bi2o3,主要相bi4ti3o
12
组成均匀致密,无明显的孔洞和裂纹存在,经过腐蚀后的样品可以清晰的看到晶粒轮廓,其生长方向是沿着温度梯度的方向,因此晶粒呈现出规则的柱状晶形貌,相互紧密排列分布,柱状晶的宽度约为12μm,长度可达100

200μm不等,形貌总体规整,尺寸分布较为集中;如图3所示,在实施例6制备的材料的电化学性能图中,电化学阻
抗谱图中试样的电导率随着温度的升高而逐渐升高,试样表现出稳定的温度

电导变化趋势。
78.虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜