一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种场效应晶体管器件及其控制方法与流程

2021-10-24 05:18:00 来源:中国专利 TAG:地说 晶体管 器件 效应 实施


1.本发明的实施例涉及一种半导体器件,更具体地说,尤其涉及一种场效应晶体管(fet)器件。


背景技术:

2.开关电源中通常包括一个或多个场效应晶体管(fet),它们具有独立的栅极驱动器。如图1所示,场效应晶体管101耦接至驱动器集成电路(ic)102。场效应晶体管101具有栅极端子gate、源极端子source、以及漏极端子drain。栅极端子gate耦接至驱动ic102以接收电压vg。源极端子source耦接至驱动ic102以接收电压vs。
3.然而,存在于驱动路径上的寄生参数(例如,从电压vg到栅极端子gate的寄生参数,以及从vs到源极端子source的寄生参数)可能对场效应晶体管101的开关产生不利影响。存在于驱动路径上的寄生参数例如包括在驱动器ic102和场效应晶体管101的栅极端子gate之间的寄生阻抗103,以及在在驱动器ic102和场效应晶体管101的源极端子source之间的寄生阻抗104。寄生阻抗103和104会对场效应晶体管101产生不利的影响,例如减慢开关过程,从而导致开关损耗增加以及效率降低,在开关过程中产生振铃,从而产生电磁干扰,在栅极端子gate上的应力增加,或者在场效应晶体管101关断之后又错误的将其开通。


技术实现要素:

4.为解决上述技术问题,本发明提供一种效应晶体管器件及其制造方法。
5.根据本发明的实施例,提出了一种场效应晶体管器件,具有漏极端子、源极端子、第一栅极端子、以及第二栅极端子,所述场效应晶体管器件包括:衬底,具有第一导电类型;第一漏极条块布局,包括具有第二导电类型的第一漂移区,以及具有第二导电类型的第一漏极区;第二漏极条块布局,包括具有第二导电类型的第二漂移区,以及具有第二导电类型的第二漏极区;多个重复的源极条块布局,每个源极条块布局包括具有第二导电类型的源极区以及具有第一导电类型的体区,所述多个重复的源极条块布局中的至少一个位于第一漏极条块布局和第二漏极条块布局之间;第一漏极接触,位于衬底的上方,并和第一漏极区接触,所述第一漏极接触连接至场效应晶体管器件的漏极端子;第二漏极接触,位于衬底的上方,并和第二漏极区接触,所述第二漏极接触连接至场效应晶体管器件的第一栅极端子;源极接触,位于衬底的上方,并和源极区以及体区接触,所述源极接触连接至场效应晶体管器件的源极端子;第一栅极区,位于衬底的上方,并位于源极区和第一漏极区之间,所述第一栅极区连接至场效应晶体管器件的第一栅极端子;第二栅极区,位于衬底的上方,并位于源极区和第二漏极区之间,所述第二栅极区连接至场效应晶体管器件的第二栅极端子。
6.根据本发明的实施例,还提出了一种场效应晶体管器件,包括:衬底,具有第一导电类型;第一漏极区,具有第二导电类型;第一漏极接触,位于衬底的上方并和第一漏极区相接触,所述第一漏极接触连接至场效应晶体管器件的漏极端子;第二漏极区,具有第二导电类型;第二漏极接触,位于衬底的上方并个第二漏极区相接触,所述第二漏极接触连接至
场效应晶体管器件的第一栅极端子;源极区,具有第二导电类型,所述源极区位于第一漏极区和第二漏极区之间;源极接触,位于衬底的上方并和源极区相接触,所述源极接触连接至场效应晶体管器件的源极端子;第一栅极区,位于源极区和第一漏极区之间,所述第一栅极区连接至场效应晶体管器件的第一栅极端子;以及第二栅极区,位于源极区和和第二漏极区之间,所述第二栅极区连接至场效应晶体管器件的第二栅极端子。
7.根据本发明的实施例,还提出了一种制造场效应晶体管器件的方法,包括:形成衬底;在衬底中形成体区、第一漂移区、以及第二漂移区;在第一漂移区形成第一漏极区,在第二漂移区形成第二漏极区,以及在体区形成源极区;在衬底的上方形成和源极区相接触的源极接触、和第一漏极区相接触的第一漏极接触、以及和第二漏极区相接触的第二漏极接触;在第一漏极区和源极区之间形成第一栅极区,以及在第二漏极区和源极区之间形成第二栅极区;以及形成连接至第一漏极接触的漏极端子、连接至源极接触的源极端子、连接至第一栅极区和第二漏极接触的第一栅极端子、以及连接至第二栅极区的第二栅极端子。
附图说明
8.为了更好的理解本发明,将根据以下附图对本发明进行详细描述。其中相同的元件具有相同的附图标记。以下附图仅用于说明,不一定按实际比例绘制。
9.图1示出了具有独立的栅极驱动器的场效应晶体管电路10;
10.图2

3示出了根据本发明一实施例的场效应晶体管器件20的剖视图;
11.图4示出了根据本发明一实施例的场效应晶体管器件20的电路框图;
12.图5

6示出了根据本发明其它实施例的场效应晶体管器件20的剖视图;
13.图7示出了根据本发明一实施例的制造场效应晶体管器件的方法流程图70。
具体实施方式
14.下面将详细描述本发明的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。在以下描述中,为了提供对本发明的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的电路、材料或方法。
15.在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。相同的附图标记指示相同的元件。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。说明书和权利要求书中的术语“左”、“右”、“内”、“外”、“前”、“后”、“上”、“下”、“上”、“下”、“上”、“下”、“上”、“下”等,用于描述目的,不一定用于描述永久相对位置。应当理解,这样使用的术语在适当的情况下是可互换的,使得本文所描述的技术的实施例能够在除本文所示或以其他方式描述的以外的其他方向上操作。
16.为了减小场效应晶体管的栅极路径噪声引起的不利影响,根据本发明实施例的场
效应晶体管器件使用相同的掩膜集和处理步骤,将功率场效应晶体管和下拉场效应晶体管集成在同一芯片上。
17.图2

3示出了根据本发明一实施例的场效应晶体管器件20的剖视图。
18.场效应晶体管器件20在具有第一导电类型的衬底201(如“p
‑”
)中形成。场效应晶体管器件20包括条块式的布局,源极和漏极条块交替排列。通常,传统的场效应晶体管器件由相同结构的重复的漏极条块组成。然而,作为图2所示的一个实施例,本发明所示的场效应晶体管器件20包括漏极条块布局320、漏极条块布局330,以及多个重复的源极条块布局310。漏极条块布局320和漏极条块布局330具有不同的布局尺寸。至少一个源极条块布局310位于漏极条块布局320和漏极条块布局330之间。在一个实施例中,漏极条块布局330的尺寸小于漏极条块布局320的尺寸。在一个实施例中,漏极条块布局320和源极条块布局310共同形成功率场效应晶体管,并且漏极条块布局330和源极条块布局310共同形成下拉场效应管。在一个实施例中,在衬底201中形成的具有第一导电类型的掩埋层202(如“p”),用于隔离漏极条块布局320和漏极条块布局330。
19.如图3所示,每个源极条块布局310包括具有第二导电类型的源极区211(如“n ”)和具有第一导电类型的体区,其中第二导电类型和第一导电类型相反。在一个实施例中,体区包括第一区域212(“p ”)、第二区域205(“p
‑”
)、和第三区域204(“p”)。在一个实施例中,源极区211具有分别分布在体区两侧的第一部分和第二部分,例如第一区域212在中间,源极区211的第一部分和第二部分分别位于第一区域212的两侧。漏极条块布局320包括具有第二导电类型的漂移区203(“n”)和形成于漂移区203的具有第二导电类型的漏极区207(“n ”)。漏极区330包括具有第二导电类型的漂移区206(“n”)和形成于漂移区206的具有第二导电类型的漏极区217(“n ”)。在一个实施例中,漂移区203比漂移区206宽。
20.场效应晶体管器件20进一步包括由栅极氧化物209和栅极多晶硅210组成的第一栅极区。第一栅极区横向位于漏极区207和源极区211之间,以便在第一栅极区下建立沟道。在一个实施例中,栅极氧化物209和源极区211相接触。在一个实施例中,栅极氧化物209位于漂移区203的一部分、体区的一部分、以及源极区211的一部分之上,并且栅极多晶硅210位于栅极氧化物209的上方。场效应晶体管器件20进一步包括由栅极氧化物215和栅极多晶硅216组成的第二栅极区。第二栅极区横向位于漏极区217和源极区211之间,以便在第二栅极区下建立沟道。在一个实施例中,栅极氧化物215和源极区211相接触。在一个实施例中,栅极氧化物215位于漂移区206的一部分、体区的一部分、以及源极区211的一部分之上,并且栅极多晶硅216位于栅极氧化物215的上方。
21.在一个实施例中,栅极多晶硅210耦接到栅极端子gate,以及栅极多晶硅216耦接到栅极端子gateb。漏极区207上方的漏极接触208耦接到漏极端子drain。第一区域212和源极区211上方的源极接触214耦接到源极端子source。漏极区217上方的漏极接触218耦接到栅极端子gate。在一个实施例中,漏极接触208、漏极接触218和源极接触214包括硅化物。
22.图4示出了根据本发明一实施例的场效应晶体管器件20的电路框图。如图4所示,场效应晶体管器件20包括功率场效应管器件22和下拉场效应管器件23。功率场效应管器件22包括耦接到漏极端子drain的漏极221、耦接到栅极端子gate的栅极222、耦接到源极端子source的源极223和体234。
23.在一个实施例中,下拉场效应晶体管23具有与功率场效应晶体管22相同的器件结
构,但是下拉场效应晶体管23具有更小的器件布局。在一个实施例中,如图2所示,第二栅极区的横向宽度lg2小于第一栅极区的横向宽度lg1,和/或从漏极区217的边缘到栅极氧化物215的边缘的空间ld2小于从漏极区207的边缘到栅极氧化物209的边缘的空间ld1。
24.在一个实施例中,功率场效应晶体管22包括多个功率场效应晶体管单元。每个功率场效应晶体管单元由漏极区207、源极区211、体区、栅极氧化物209和栅极多晶硅210组成。下拉场效应晶体管23包括多个下拉场效应晶体管单元。每个下拉场效应晶体管单元由漏极区217、源极区211、体区、漏极接触218、源极接触214、栅极氧化物215、和栅极多晶硅216组成。功率场效应晶体管单元和下拉场效应晶体管单元具有共同的衬底和源极条块布局。
25.本发明实施例的场效应晶体管器件20不需要额外的掩膜,从而在一块芯片上集成功率场效应晶体管22和下拉场效应晶体管23时,对总芯片尺寸具有较小的影响,因为下拉场效应晶体管23的电导和面积通常比功率场效应管22小好几个数量级。
26.图5

6示出了根据本发明其它实施例的场效应晶体管器件20的剖视图。如图5

6所示,下拉场效应晶体管23分成许多小块,即许多小单元,例如分布成许多小的漏极条块布局330。每个下拉场效应晶体管单元保护功率场效应晶体管22的相应的局部部分,从而降低下拉场效应晶体管23和功率场效应晶体管22之间的内部寄生阻抗,从而获得更快的相应时间和更好的静电保护。因此,场效应晶体管器件20在快速开关和振铃期间可以具有显著不同的栅极电压和/或源极电压。
27.图7示出了根据本发明一实施例的制造场效应晶体管器件的方法流程图70,包括步骤s71

s76。
28.在步骤s71,形成衬底。在一个实施例中,在衬底中形成掩埋层。
29.在步骤s72,在衬底中形成体区、第一漂移区和第二漂移区。
30.在步骤s73,在第一漂移区中形成第一漏极区,在第二漂移区中形成第二漏极区,以及在体区中形成源极区。
31.在步骤s74,在衬底上方形成与源极区和体区相接触的源极接触,在衬底上方形成与第一漏极区接触的第一漏极接触,以及在衬底上方形成与第二漏极区接触的第二漏极接触。
32.在步骤s75,在第一漏极区和源极区之间形成第一栅极区,并且在第二漏极区和源极区之间形成第二栅极区。在一个实施例中,第一栅极区的横向宽度大于第二栅极区的横向宽度。在一个实施例中,从第一漏极区边缘到第一栅极区边缘的空间大于从第二漏极区边缘到第二栅极区边缘的空间。在一个实施例中,第一栅极区包括第一栅极氧化物和第一栅极多晶硅,并且第一栅极氧化物接触源极区。在一个实施例中,第二栅极区包括第二栅极氧化物和第二栅极多晶硅,并且第二栅极氧化物接触源极区。
33.在步骤s76,形成连接到第一漏极接触的漏极端子,形成连接到源极接触的源极端子,形成连接到第一栅极区和第二漏极接触的第一栅极端子,以及形成连接到第二栅极区的第二栅极端子。
34.注意,在上述方法中,如图7所示的步骤也可以用不同的顺序来实现。例如,可以同时执行两个连续的步骤,或者有时以相反的顺序来执行上述步骤。
35.虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示
例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜