一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种新能源充电系统和交流充电桩及其充电方法与流程

2021-10-09 14:52:00 来源:中国专利 TAG:充电 交流 新能源 方法 系统


1.本发明属于交流充电桩技术领域,更具体的说,尤其涉及一种新能源充电系统和交流充电桩及其充电方法。


背景技术:

2.随着电动汽车的大规模发展,交流充电桩的需求与日俱增;交流充电桩的输入端与交流电网直接连接,交流充电桩的输出端都装有充电枪,以通过该充电枪为电动汽车充电。
3.现有的交流充电桩是独立工作系统,无法实时获取光伏电力容量,不能跟随光伏系统实时调整输出功率,不能广泛的适用于多种场合。


技术实现要素:

4.有鉴于此,本发明的目的在于提供一种新能源充电系统和交流充电桩及其充电方法,用于实现交流充电桩的输出功率跟随输入可用功率,以达到能效最优。
5.本发明第一方面公开了一种交流充电桩的充电方法,包括:
6.检测所述交流充电桩所在系统的输入可用功率;
7.当所述输入可用功率大于等于单相阈值且小于三相阈值时,控制所述交流充电桩通过自身的充电枪为电动汽车提供单相充电;其中,所述单相阈值小于所述三相阈值;
8.当所述输入可用功率大于等于所述三相阈值时,控制所述交流充电桩通过自身的充电枪为所述电动车提供三相充电。
9.可选的,在所述检测所述交流充电桩所在系统的输入可用功率之后,还包括:
10.在所述输入可用功率小于所述单相阈值时,控制所述交流充电桩处于休眠状态,不为电动汽车提供充电。
11.可选的,所述交流充电桩通过自身充电枪为电动汽车充电的同时,还包括:
12.当输入可用功率变化时,根据输入可用功率实时调整所述充电枪的输出功率。
13.可选的,所述输入可用功率为电网功率,或者,新能源功率;
14.可选的,所述单相阈值为单相电压与单相电流的乘积;
15.所述三相阈值为三相电压与三相电流的乘积;
16.其中,所述单相电流和三相电流是固定值,所述单相电压和所述三相电压为根据所述交流充电桩的输入电压进行相应变换得到的电压。
17.可选的,控制所述交流充电桩通过自身的充电枪为电动汽车提供单相充电,包括:闭合三相线缆和中性线缆中任意两相上的继电器;
18.控制所述交流充电桩通过自身的充电枪为所述电动车提供三相充电,包括:闭合三相线缆上所有继电器。
19.可选的,检测所述交流充电桩所在系统的输入可用功率之后,还包括:
20.在所述交流充电桩的充电过程中,若所述交流充电桩检测到需在单相充电和三相
充电这两模式之间进行切换,则所述交流充电桩进行充电枪信号切换、以完成充电模式的切换。
21.可选的,所述交流充电桩检测到需在单相充电和三相充电这两模式之间进行切换,包括:
22.检测到所述输入可用功率从所述单相阈值变化到所述三相阈值,或者从所述三相阈值变化到所述单相阈值时,判定所述交流充电桩检测到需在单相充电和三相充电这两模式之间进行切换。
23.可选的,所述交流充电桩进行充电枪信号切换、以完成充电模式的切换包括:
24.在所述充电枪信号为第一信号时,建立所述交流充电桩与电动汽车的连接;
25.以及,
26.在所述充电枪信号为第二信号时,断开所述交流充电桩与电动汽车的连接。
27.可选的,在检测所述交流充电桩所在系统的输入可用功率之前,还包括:
28.判断所述交流充电桩是否处于功率跟随模式;所述功率跟随模式为所述交流充电桩的输出功率跟随所述输入可用功率;
29.若所述交流充电桩处于所述功率跟随模式,则执行所述检测所述交流充电桩所在系统的输入可用功率的步骤。
30.可选的,在所述判断所述交流充电桩是否处于功率跟随模式之后,若所述交流充电桩不处于功率跟随模式,则还包括:
31.判定所述交流充电桩处于正常工作模式,并控制所述交流充电桩直接按照最大功率输出。
32.本发明第二方面公开了一种交流充电桩,所述交流充电桩包括:控制器、多个继电器和至少一个充电枪;
33.所述充电枪的输出端口作为所述交流充电桩的输出端;
34.所述交流充电桩的输入端与所述充电枪之间通过三相线缆连接;
35.在所述三相线缆上均设置有至少一个继电器;
36.各个所述继电器均受控于所述控制器;
37.所述控制器用于执行本发明第一方面任一项所述的交流充电桩的充电方法。
38.可选的,所述交流充电桩的输入端与所述充电枪之间还通过中性线缆连接;
39.在所述中性线缆上均设置有至少一个继电器。
40.可选的,还包括:计量模块;
41.所述计量模块设置于各个所述继电器与所述交流充电桩的输入端之间;
42.所述控制器与所述计量模块通信连接。
43.可选的,所述控制器还用于与自身所在系统中功率变换单元和充电枪中的至少一个进行通信。
44.可选的,还包括:与所述控制器通信的人机交互模块。
45.本发明第三方面公开了一种新能源充电系统,包括:功率变换单元、新能源模块和交流充电桩;其中:
46.所述新能源模块通过所述功率变换单元与所述交流充电桩相连;
47.所述功率变换单元或所述交流充电桩用于执行本发明第一方面任一项所述的交
流充电桩的充电方法。
48.可选的,所述交流充电桩包括:多个继电器和至少一个充电枪;
49.所述交流充电桩的输入端与所述充电枪之间通过三相线缆连接;
50.在所述三相线缆上均设置有至少一个继电器;
51.所述充电枪的输出端口作为所述交流充电桩的输出端。
52.可选的,在所述功率变换单元用于执行所述充电方法时,各个所述继电器均受控于功率变换单元的内部控制器;
53.在所述交流充电桩用于执行所述充电方法时,所述交流充电桩还包括:控制器;各个所述继电器均受控于所述交流充电桩的控制器,所述交流充电桩的控制器与所述计量模块通信连接。
54.可选的,所述交流充电桩与所述功率变换单元集成在一起。
55.可选的,所述交流充电桩独立设置于所述新能源充电系统中;
56.所述交流充电桩的控制器与所述功率变换单元的内部控制实时通信。
57.可选的,所述交流充电桩与所述功率变换单元之间的通信方式为rs485通信方式。
58.可选的,所述新能源模块包括:光伏发电单元风力发电单元、储能装置、和氢能中的至少一种。
59.从上述技术方案可知,本发明提供的一种充电方法,包括:在交流充电桩处于功率跟随模式时,检测交流充电桩所在系统的输入可用功率,并在输入可用功率大于等于单相阈值且小于三相阈值时,控制交流充电桩通过自身的充电枪为电动汽车提供单相充电;以及,在输入可用功率大于等于三相阈值时,控制交流充电桩通过自身的充电枪为电动车提供三相充电;从而通过调整充电相数来调整交流充电桩的输出功率,进而实现交流充电桩的输出功率跟随输入可用功率,以达到能效最优,达到碳平衡。
附图说明
60.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
61.图1是本发明实施例提供的一种交流充电桩的充电方法的示意图;
62.图2是本发明实施例提供的一种交流充电桩的示意图;
63.图3是本发明实施例提供的另一种交流充电桩的示意图;
64.图4是本发明实施例提供的另一种交流充电桩的示意图;
65.图5是本发明实施例提供的一种新能源充电系统的示意图;
66.图6是本发明实施例提供的另一种新能源充电系统的示意图;
67.图7是本发明实施例提供的另一种新能源充电系统的示意图;
68.图8是本发明实施例提供的另一种新能源充电系统的示意图。
具体实施方式
69.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例
中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
70.在本技术中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
71.本发明实施例提供了一种交流充电桩的充电方法,用于解决现有技术中交流充电桩是独立工作系统,无法实时获取光伏电力容量,不能跟随光伏系统实时调整输出功率,或者是调整功率范围比较小,不能广泛的适用于多种场合的问题。
72.该交流充电桩的具体连接关系是:
73.交流充电桩的第一端通过功率变换单元与新能源模块相连、以接收新能源模块的输出功率。
74.交流充电桩中的充电枪用于与电动汽车相连,以使交流充电桩实现为电动汽车充电。
75.该交流充电桩的充电方法,参见图1,包括:
76.s101、检测交流充电桩所接新能源模块的输入可用功率。
77.由上述说明可知,该输入可用功率可以是新能源模块的输出功率,当然也可以认为是该输入可用功率为功率变换单元的输出功率,还可以该输入可用功率认为是交流充电桩接收到的功率,不做具体限定,视实际情况而定即可,均在本技术的保护范围内。
78.在实际应用中,该输入可用功率为电网功率,或者,新能源功率;此处不做具体限定,视实际情况而定即可,均在本技术的保护范围内。
79.当输入可用功率大于等于单相阈值且小于三相阈值时,执行步骤s102;然而,当步骤当输入可用功率大于等于三相阈值时,执行步骤s103。
80.s102、控制交流充电桩通过自身的充电枪为电动汽车提供单相充电。
81.其中,单相阈值小于三相阈值。
82.当输入可用功率大于等于单相阈值且小于三相阈值时,说明该输入可用功率能够支持单相充电,但不能够支持三相充电;因此,交流充电桩可以通过自身的充电枪wie电动汽车提供单相充电。
83.在实际应用中,单相阈值为单相电压与单相电流的乘积。
84.其中,单相电流是固定值,单相电压根据交流充电桩的输入电压进行相应变换得到的电压。
85.也就是说,单相阈值是可变值,其与交流充电桩的输入电压相关。
86.在实际应用中,步骤s102的过程可以是:闭合三相线缆和中性线缆中任意两相上的继电器;如闭合三相线缆中的a相线缆和中性线缆上所有继电器。
87.s103、控制交流充电桩通过自身的充电枪为电动车提供三相充电。
88.当输入可用功率大于等于三相阈值时,说明该输入可用功率能够支持三相充电;因此,交流充电桩30可以通过自身的充电枪wie电动汽车提供三相充电。
89.其中,单相充电过程中,其输出功率较小、充电慢;而三相充电过程中,其输出功率较大、充电快。
90.再是应用中,该三相阈值为三相电压与三相电流的乘积。
91.其中,三相电流是固定值,三相电压为根据交流充电桩的输入电压进行相应变换得到的电压。
92.也就是说,三相阈值是可变值,其与交流充电桩的输入电压相关。
93.在实际应用中,步骤s103的过程可以是:闭合三相线缆上所有继电器。
94.需要说明的是的,在中性线缆上也设置有继电器时,还可以闭合中性线缆上的所有继电器。
95.在本实施例中,通过调整充电相数来调整交流充电桩的输出功率,进而实现交流充电桩的输出功率跟随输入可用功率,以达到能效最优,达到碳平衡。
96.此外,在步骤s101之后,若输入可用功率小于单相阈值,还包括:
97.s104、控制交流充电桩处于休眠状态,不为电动汽车提供充电。
98.输入可用功率小于单相阈值时,说明该输入可用功率足以为电动汽车进行充电,因此,该交流充电桩休眠,不进行充电。
99.需要说明的是,电动汽车充电有最小充电电流,当交流充电桩可输出的充电电流小于最小充电电流,则电动汽车无法充电。一般情况下,电动汽车最小充电电流不能小于6a,否则无法充电。以欧洲标称电压:单相230v,三相400v计算,即单相最小充电功率约1.38kw,也即单相阈值;三相最小充电功率约4.156kw,也即三相阈值。
100.值得说明的是,传统三相交流充电桩,如果要实现功率跟随,那么输入可用功率只有超过三相阈值才能充电,而本技术实现只要输入可用功率大于单相阈值就可以充电,能量更加绿色环保。传统单相交流充电桩,可以在大于单相阈值时就开始充电,但是功率最大不能超过7.4kw,就无法继续跟随,会造成绿电利用率低,该7.4kw为标准规定,单相最大电流不能超过32a;而本技术的交流充电桩进行三相充电时,其最大输出电流可以达到16a,及功率达到11kw,整个功率跟随范围更广泛。
101.另外,传统交流充电桩仅能三相输出或单相输出,无法实现同一款设备在不同时刻,输出不同的电压。而本实施例中,交流充电桩可以实现三相输出、单相输出随时切换的功能;不但能更提高功率利用率,还能使交流充电桩适用于多种应用场景,适应性强。
102.在实际应用中,在交流充电桩通过自身充电枪为电动汽车充电的同时,还可以包括:当输入可用功率变化时,根据输入可用功率实时调整充电枪的输出功率;也就是说,交流充电桩并不是以固定电流为电动汽车充电,以进一步使该输出功率与输入可用功率进行跟踪;更加优化功率利用率。
103.具体的,当输入可用功率大于等于单相阈值且小于三相阈值时,控制交流充电桩通过自身的充电枪为电动汽车提供单相充电,并实时调整自身输出电流、以调整自身的输出功率。
104.当输入可用功率大于等于三相阈值时,控制交流充电桩通过自身的充电枪为电动车提供三相充电,并实时调整自身输出电流、以调整自身的输出功率。
105.调整交流充电桩的输出功率的具体过程为:通过pwm信号来控制占空比,进而调整交流充电桩的输出电流;也就是书,调整电流的方式为通过pwm信号来控制占空比的方式。
也即通过调整pwm信号波形来调整占空比,进而实现调整输出电流;如交流充电桩根据实际可输出功率,折算成电流后再将其转化成pwm信号;进而电动汽车可以根据pwm信号中的占空比调整实际充电电流。pwm信号和电流的换算关系为:pwm=i/0.6。其中,0.6为标准规定iec61851中规定的。
106.在上述任一实施例汇中,在步骤s101之后还包括:
107.在交流充电桩的充电过程中,若交流充电桩检测到需在单相充电和三相充电这两模式之间进行切换,则控制交流充电桩进行充电枪信号切换、以完成充电模式切换。充电枪信号切换的过程可以是模拟插拔枪、软件唤醒信号、实际插拔枪等,此处不做具体限定,视实际情况而定即可。
108.具体的,交流充电桩检测到需在单相充电和三相充电这两模式之间进行切换时的过程为:检测到输入可用功率从单相阈值变化到三相阈值,或者三相阈值变化到单相阈值时,判定交流充电桩检测到需在单相充电和三相充电这两模式之间进行切换。
109.交流充电桩进行充电枪信号切换、以完成充电模式的切换具体过程可以为:
110.在充电枪信号为第一信号时,建立交流充电桩与电动汽车的连接;以及,在充电枪信号为第二信号时,断开交流充电桩与电动汽车的连接。
111.在此以模拟拔插枪动作为例进行说明,交流充电桩自动进行模拟插枪动作的具体过程为:建立交流充电桩与电动汽车的通信连接。交流充电桩自动进行模拟拔枪动作的具体过程为:断开交流充电桩与电动汽车的通信连接。
112.具体的,当在充电过程中,输入可用功率从单相阈值变化到三相阈值,或者三相阈值变化到单相阈值,则交流充电桩自动进行拔枪插枪动作;其中,拔枪插枪动作的原因是为了重新唤醒电动汽车;电动汽车充电过程中,若充电相数发生变化的话,会引起电动汽车故障,所以需要先拔枪停止充电,再插枪启动充电,进而确保充电正常进行,并以最优功率充电。
113.自动拔枪动作通过交流充电桩与电动汽车的通信连接断开来实现,也即,交流充电桩自动进行模拟拔枪动作的过程为:断开交流充电桩与电动汽车的通信连接;如在欧标电力系统中断开cp(control pilot function,控制引导功能)、确认连接功能pp、保护接地导体pe;在国标电力系统中断开cp、cc、保护接地导体pe。自动插枪动作通过交流充电桩与电动汽车的通信建立连接来实现,也即,交流充电桩自动进行模拟插枪动作的过程为:建立交流充电桩与电动汽车的通信连接;如在欧标电力系统中建立cp、确认连接功能pp、保护接地导体pe;在国标电力系统中建立cp、cc(connection confirm function、确认连接功能)、保护接地导体pe。
114.在上述任一实施例中,在步骤s101之前,还可以包括:判断交流充电桩是否处于功率跟随模式。
115.其中,功率跟随模式为交流充电桩的输出功率跟随输入可用功率。
116.若交流充电桩处于功率跟随模式,则执行步骤s101。
117.若交流充电桩不处于功率跟随模式,则判定交流充电桩处于正常工作模式,并控制交流充电桩直接按照最大功率输出。
118.也就是说,该交流充电桩支持多种运行模式;如正常工作模式和功率跟随模式。在正常工作模式下,该交流充电桩直接按照最大功率输出。在功率跟随模式下,该交流充电桩
根据输入可用功率,实时调整交流充电桩的输出功率。并不是单一的运行模式;另外,功率跟随模式下,其输出功率随着输入可用功率变化而变化;以达到能效最优,达到碳平衡。
119.可选的,上述交流充电桩的充电方法,可以应用于欧标电力系统或国标电力系统。当然也可以应用于其他电力系统,视实际情况而定即可,均在本技术的保护范围内。
120.本发明另一实施例提供了一种交流充电桩,参见图3,该交流充电桩30包括:计量模块31、控制器33、多个继电器(如图3所示的rl1、rl2、rl3和rl4)和至少一个充电枪32。
121.该计量模块31的输入端作为交流充电桩30的输入端、连接功率变换单元20以接收功率变换单元20输出的功率。
122.充电枪32的输出端口作为交流充电桩30的输出端、用于连接电动汽车40,以为电动汽车40充电。
123.充电枪32与计量模块31之间通过三相线缆和中性线缆连接;在三相线缆和中性线缆上均设置有至少一个继电器。三相线缆包括:a相线缆、b相线缆和c相线缆。
124.各个继电器均受控于控制器33;控制器33与计量模块31通信连接。
125.该计量模块可以用于对交流充电桩接收到的功率进行计算,并将计算结果传输至控制器。
126.需要说明的是,如图2所示,计量模块31可以省去。上述中性线缆也可以省去,也即该充电枪32与计量模块31之间仅通过三相线缆相连;或者,充电枪32与交流充电桩30的输入端之间仅通过三相线缆相连;该交流充电桩30的其具体结构,此处不再一一赘述,均在本技术的保护范围内。
127.该控制器33用于执行上述任一实施例提供的充电方法,该充电方法的具体过程和原理,详情参见上述实施例,此处不再一一赘述,均在本技术的保护范围内。
128.依据上述说明可知,可以通过控制相应线缆上的继电器闭合来控制输出相数变化。值得说明的是,充电标准规定,在交流充电桩30进行充电的过程中,中性线缆需闭合,因此,在交流充电桩30进行充电过程中,中性线缆上的所有继电器常闭。而控制输出相数变化通过控制三相线缆中的线缆通断来实现。如中性线缆上的所有继电器均闭合和a相线缆上的所有继电器均闭合,则交流充电桩30只有一相输出;而中性线缆上的所有继电器均闭合,a相线缆上的所有继电器均闭合、b相线缆上的所有继电器均闭合,以及,c相线缆上的所有继电器均闭合;则交流充电桩30有三相输出。
129.具体的,如在计量结果表示输入可用功率小于单相阈值时,控制交流充电桩30休眠、不进行充电。在计量结果表示输入可用功率大于等于单相阈值且小于三相阈值时,控制交流充电桩30进行单相充电,并实时调整输出电流、以调整自身的输出功率。在计量结果表示输入可用功率大于等于三相阈值时,交流充电桩30进行三相充电,并实时调整输出电流、以调整自身的输出功率。
130.也就是说,交流充电桩30进行单相充电的具体过程为:闭合三相线缆中的a相线缆和中性线缆上所有继电器(如图3所示的rl1和rl2);此时,交流充电桩30的输出功率为p=va*ia。
131.交流充电桩30进行三相充电的具体过程为:闭合三相线缆和中性线缆上所有继电器(如图3所示的rl1、rl2、rl3、rl4);此时交流充电桩30的输出功率为p=va*ia vb*ib vc*ic。
132.其中,va为a相线缆电压,ia为a相线缆电流;vb为b相线缆电压,ib为b相线缆电流;vc为c相线缆电压,ic为c相线缆电流;p为输出功率;l1’和l1均为a相线缆,l2’和l2均为a相线缆,l3’和l3均为c相线缆,n’和n均为中性线缆。
133.控制器33,还用于与功率变换单元20和充电枪32中的至少一个进行通信。
134.控制器33获取功率变换单元20实际输出的总功率;还可以获取功率变换单元20的运行状态等,此处不再一一赘述,均在本技术的保护范围内。
135.该控制器33还可以下发pwm信号至充电枪32,以使调整充电电流,进而实现交流充电桩30的输出功率调整。此处不再一一赘述,均在本技术的保护范围内。
136.可选的,参见图4,交流充电桩30还可以包括:与控制器33通信的人机交互模块34。使用者通过该人机交互模块34输入相应的控制指令,如控制充电时长、开始充电等。同时也可以是通过该人机交互模块34了解到交流充电桩30的状态,如充电剩余时间等。人机交互模块34的具体工作过程和原理,此处不做具体限定,视实际情况而定即可,均在本技术的保护范围内。
137.本发明另一实施例提供了一种新能源充电系统,参见图5,该新能源充电系统包括:功率变换单元20、新能源模块10和交流充电桩30;其中:
138.新能源模块10通过功率变换单元20与交流充电桩30相连。
139.功率变换单元20或交流充电桩30用于执行上述任一实施例提供的充电方法,该充电方法的具体过程和原理,详情参见上述实施例,此处不再一一赘述,均在本技术的保护范围内。
140.也就是说,可以是功率变换单元20执行上述充电方法,也可以是交流充电桩执行上述充电方法;下面分别对这两种情况进行说明。
141.(1)功率变换单元20用于执行上述充电方法时:交流充电桩30包括:计量模块21、多个继电器(如图3所示的rl1、rl2、rl3和rl4)和至少一个充电枪32。
142.计量模块31的输入端作为交流充电桩30的输入端;充电枪32的输出端口作为交流充电桩30的输出端;充电枪32与计量模块31之间通过三相线缆和中性线缆连接;在三相线缆和中性线缆上均设置有至少一个继电器。
143.各个继电器均受控于功率变换单元20的内部控制器。
144.其中,计量模块31可以省去,此处不做具体限定,视实际情况而定即可,均在本技术的保护范围内。上述中性线缆也可以省去,也即该充电枪32与计量模块31之间仅通过三相线缆相连,或者,充电枪32与交流充电桩30的输入端之间仅通过三相线缆相连;该交流充电桩30的其具体结构,此处不再一一赘述,均在本技术的保护范围内。
145.在实际应用中,交流充电桩30与功率变换单元40集成在一起。
146.(2)交流充电桩30用于执行上述充电方法时:参见图3,该交流充电桩30包括:计量模块31、控制器33、多个继电器(如图3所示的rl1、rl2、rl3和rl4)和至少一个充电枪32。
147.该计量模块31的输入端作为交流充电桩30的输入端、连接功率变换单元20以接收功率变换单元20输出的功率。
148.充电枪32的输出端口作为交流充电桩30的输出端、用于连接电动汽车40,以为电动汽车40充电。
149.充电枪32与计量模块31之间通过三相线缆和中性线缆连接;在三相线缆和中性线
缆上均设置有至少一个继电器。三相线缆包括:a相线缆、b相线缆和c相线缆。
150.各个继电器均受控于控制器33;控制器33与计量模块31通信连接。
151.该计量模块31可以用于对交流充电桩30接收到的功率进行计算,并将计算结果传输至控制器33。
152.其中,计量模块31可以省去,此处不做具体限定,视实际情况而定即可,均在本技术的保护范围内。上述中性线缆也可以省去,也即该充电枪32与计量模块31之间仅通过三相线缆相连,或者,充电枪32与交流充电桩30的输入端之间仅通过三相线缆相连;该交流充电桩30的其具体结构,此处不再一一赘述,均在本技术的保护范围内。
153.在实际应用中,交流充电桩30独立设置于充电系统中。
154.该交流充电桩30与功率变换单元20实时通信。
155.该交流充电桩30与功率变换单元20之间的通信可以是获取功率变换单元20输出总功率,也可以是获取功率变换单元20的运行状态,此处不再一一赘述,均在本技术的保护范围内。
156.交流充电桩30与功率变换单元20之间的通信方式采用rs485通信方式;当然也不排除采用其他通信方式,此处不再一一赘述,均在本技术的保护范围内。
157.在上述任一实施例中,新能源模块10包括光伏发电单元11、风力发电单元12、储能装置(未进行图示)和氢能(未进行图示)中的至少一种。
158.如图6所示新能源模块10为光伏发电系统,如图7所示新能源模块10为风力发电系统,如图8所示,新能源模块10为混合发电系统。
159.具体的,在新能源模块10包括光伏发电单元11,则功率变换单元20包括与光伏发电单元11相连的ac/dc逆变器21。
160.在新能源模块10包括风力发电单元12,则功率变换单元20包括与风力发电单元12相连的ac/ac变换器22。
161.本说明书中的各个实施例中记载的特征可以相互替换或者组合,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
162.专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
163.对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的
一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜