一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种冷量分配单元及液冷系统的制作方法

2021-10-23 01:19:00 来源:中国专利 TAG:散热 单元 分配 系统 到冷量


1.本技术涉及到散热技术领域,尤其涉及到一种冷量分配单元及液冷系统。


背景技术:

2.随着人工智能、云计算、大数据等计算架构的创新发展,it基础设施所承担的计算量越来越大,对于计算效率的要求越来越高,为了应对这些挑战,数据中心的功率密度也不断提升,高密度的数据中心给制冷设备提出了更高的要求。传统的风冷空调面对高密度呈现不足,换热效率跟不上计算效率。基于高密度数据中心场景,液冷系统解决方案有更好的部署优势。
3.液冷系统在使用时,在服务器上平整的部分如cpu-gpu等可敷设液冷冷却板,通过工质液体循环换热带走此部分散热;并通过外部设置的冷却塔与液冷冷却板中的工质液体进行换热。
4.在现有技术中的液冷系统中,现有技术中的液冷系统的冷却塔产生的冷水通过冷量分配单元分配到冷却板。而现有技术中的冷量分配单元在使用时,柜内的液冷循环泵驱动器为变频器,变频器只是起到驱动作用,无备电功能,如需要备电功能需要额外单独增加备电系统独立,具体为增加不间断电源系统(uninterrupted power supply,ups)及电池,液冷循环泵的驱动变频器和备电系统独立,占用的空间较大,同时ups和变频器的中的部分模块功能重复,降低了系统效率,同时提高了系统成本。


技术实现要素:

5.本技术提供了一种冷量分配单元及液冷系统,用于简化冷量分配单元的结构,改善供水效果。
6.第一方面,本技术提供了一种冷量分配单元,该冷量分配单元用于液冷系统中的冷量分配,该冷量分配单元包括一个柜体,该柜体作为承载结构,用于承载其他器件。冷量分配单元还包括设置在所述柜体内的液冷循环泵,以及给所述液冷循环泵供电的变频器,其中,所述变频器包括:ac-dc模块以及dc-ac模块,其中,所述ac-dc模块用于与市电连接,所述dc-ac模块与所述液冷循环泵连接;所述冷量分配单元还包括供电单元,所述供电单元包括设置在所述柜体内的备用电池,以及与所述备用电池连接的dc-dc模块,其中,所述dc-dc模块与所述dc-ac模块连接并用于给所述液冷循环泵供电。通过设置的dc-dc模块,以及设置在柜体内的备用电池,使得冷量分配单元可以自备供电,自备电功能,省去冷量分配单外部ups及其备电,节省成本、减少占用空间。自备电在驱动器的基础上增加接口,避免多级变换效率低。
7.在一个可选的实施方案中,所述变频器包括壳体,所述dc-dc模块设置在所述变频器内;所述壳体设置有电池桥臂接口,dc-dc模块通过所述电池桥臂接口与所述备用电池连接。提高了dc-dc模块的安全性。
8.在一个可选的实施方案中,还包括控制器,所述控制器与所述变频器连接,并用于
控制所述液冷循环泵工作。通过控制器可控制液冷循环泵工作。
9.在一个可选的实施方案中,所述控制器还用于检测所述液冷循环泵的流量以及流速。方便对水量分配。
10.在一个可选的实施方案中,所述供电单元、所述变频器及所述控制器沿所述柜体的高度方向由下向上排列。方便设备维修以及更换器件。
11.在一个可选的实施方案中,所述冷量分配单元还包括管路层,所述管路层与所述液冷循环泵连接,且所述管路层设置在所述备用电池与所述液冷循环泵之间。合理利用柜体内的空间。
12.在一个可选的实施方案中,还包括减震器,所述液冷循环泵通过所述减震器与所述柜体连接。降低液冷循环泵在工作时对柜体造成的影响。
13.在一个可选的实施方案中,所述液冷循环泵为立式泵或者卧式泵。通过不同的液冷循环泵实现供水。
14.第二方面,提供了一种液冷系统,该液冷系统用于给主机房制冷,该液冷系统包括:制冷系统,以及与所述制冷系统连接的上述所述的冷量分配单元。通过设置的dc-dc模块,以及设置在柜体内的备用电池,使得冷量分配单元可以自备供电,自备电功能,省去冷量分配单外部ups及其备电,节省成本、减少占用空间。自备电在驱动器的基础上增加接口,避免多级变换效率低。
15.在一个可选的实施方案中,所述制冷系统包括冷却塔,与所述冷却塔连接的板式换热器,所述板式换热器与所述冷量分配单元连接。通过板式换热器进行换热,实现了一级换热,并且无需在冷量分配单元中再次设置板式换热器,简化了冷量分配单元的结构。
16.在一个可选的实施方案中,所述制冷系统还包括定压补水设备,所述定压补水设备用于给所述冷量分配单元补水以及补压。保证制冷系统的可靠性。
17.在一个可选的实施方案中,所述定压补水设备包括补水箱,以及与所述补水箱连接的稳压罐,所述补水箱与所述液冷分配单元连接。通过补水箱一级稳压罐实现对液冷系统的补水以及稳压。
18.在一个可选的实施方案中,所述定压补水设备设置在主机房侧的设备间。将定压补水设备单独设置在设备间,方便维修,降低占用主机房内的空间。
附图说明
19.图1为现有技术中的液冷循环泵的供电示意图;
20.图2为本技术实施例的提供的冷量分配单元的结构示意图;
21.图3为本技术实施例的提供的液冷循环泵的供电示意图;
22.图4为本技术实施例的提供的冷量分配单元的结构示意图;
23.图5为本技术实施例的提供的液冷系统的结构示意图;
24.图6为本技术实施例的提供的定压补水设备示意图。
具体实施方式
25.为了使本技术的目的、技术方案和优点更加清楚,下面将结合附图对本技术作进一步地详细描述。
26.首先说明一下本技术实施例提供的冷量分配单元的应用场景,本技术实施例体用的冷量分配单元应用于液冷系统中,该液冷系统用于给主机房进行供冷。液冷系统包括用于给高温液体制冷的冷却塔,以及用于给主机房内服务器中的芯片换热的冷却板,以及用于连通冷却塔以及冷却板的冷量分配单元,冷却塔产生的冷水通过冷量分配单元分配到冷却板。而现有技术中的冷量分配单元在使用时,柜内的液冷循环泵驱动器为变频器50,变频器50只是起到驱动作用,无备电功能,如图1中所示,如需要备电功能需要额外单独增加备电系统3独立,具体为增加不间断电源系统(uninterrupted power supply,ups)及电池,液冷循环泵1的驱动变频器2和备电系统3独立,占用的空间较大,同时ups含ac-dc模块(ac:alternating current,交流;dc:direct current,直流;ac-dc变换是将交流变换为直流)及dc-ac模块(dc:direct current,直流;ac:alternating current,交流;dc-ac变换是将直流变换为交流),这和变频器2的中的ac-dc模块和dc-ac模块功能重复,降低了系统效率,同时提高了系统成本。为此本技术实施例提供了一种新的冷量分配单元,下面结合具体的附图以及实施例进行详细的说明。
27.图2示出了本技术实施例提供的冷量分配单元的结构示意图。冷量分配单元包括一个柜体10,该柜体10用于承载冷量分配单元的功能器件,示例性的,功能器件可包括变频器5050、供电单元40、控制器60以及动力模块。动力模块可包含液冷循环泵20,液冷循环泵20用于驱动水管组件30中的液体流动。作为可选的一种方案,动力模块还可包括与液冷循环泵20连接的水管组件30,水管组件30用于连接外部的冷却塔以及服务器中的冷却板。变频器5050及供电单元40用于给液冷循环泵20供电,控制器60与变频器5050连接并用于控制液冷循环泵20工作。应当理解的是,本技术实施例提供的冷量分配单元中的功能器件可以包含上述示例的所有的功能器件,也可仅包含其中的部分功能器件,柜体10内的功能器件可以根据实际情况而定。在一个可选的实施方案中,功能器件可仅包含变频器5050、供电单元40及动力模块(动力模块仅包含液冷循环泵20),管路层以及控制器60作为可选的配件设置在柜体10中,或者管路层及控制器60设置在柜体10外。
28.上述功能器件在固定在柜体10内时,可以通过在柜体10内设置承载支架,各个功能器件通过螺纹连接件(螺栓或螺钉)与承载支架固定连接,或者通过铆接、卡接的方式固定在柜体10内。作为一种可选的方案,上述的功能器件也可直接通过螺纹连接件与柜体10的侧壁、底壁或者顶壁固定连接。具体的固定方式在本技术不做具体的限定。
29.图3示出了液冷循环泵20与变频器50及供电单元40连接的示意图。本技术实施例提供的变频器50用于给液冷循环泵20供电,变频器50主要包括两个电源模块:ac-dc模块52以及dc-ac模块53,其中,ac-dc模块52用于与市电连接,dc-ac模块53与液冷循环泵20连接。ac-dc模块52将市电(交流电)转换成直流电,再通过dc-ac模块53再次将直流电转换成适用于液冷循环泵20的交流电。变频器50还包括一个壳体51,ac-dc模块52及dc-ac模块53固定在该壳体51内,壳体51上设置有与上述两种模块匹配的端口,以便于外部线缆与壳体51内的ac-dc模块52及dc-ac模块53电连接。
30.本技术提供的冷量分配单元通过设置的供电单元40提供液冷循环泵20的备用电源。供电单元40具体可包括dc-dc模块41以及备用电池42。dc-dc模块41是直流电路中将一个电压值的电能变为另一个电压值的电能的装置,如图3中所示的dc-dc模块41与dc-ac模块53连接并用于给所述液冷循环泵20供电。备用电池42提供的直流电可通过dc-dc模块41
转换成与dc-ac模块53匹配的电能,之后再通过dc-ac模块53,将备用电池42提供的电能转换成匹配液冷循环泵20的交流电。如图3中所示的结构可以看出,在电路系统中,变频器50中的ac-dc模块52与供电单元40中的dc-dc模块41并联后与变频器50的dc-ac模块53连接,从而使得dc-ac模块53可以选择性的使用ac-dc模块52转换的市电的电能给液冷循环泵20供电,或者选择使用dc-dc模块41转换的备用电池42的电能给液冷循环泵20供电。实现了冷量分配单元给液冷循环泵20提供备用电源的效果。
31.由上述结构可看出,在本技术提供的冷量分配单元通过设置的供电单元40,自带备用电源,且备用电源仅为了dc-dc模块41以及备用电池42。与图1中所示的液冷循环泵20的供电结构相比,本技术的冷量分配单元省去了现有技术中冷量分配单元外部的ups及其备电,节省成本、减少占用空间。同时,本技术提供的供电单元40直接在变频器50的基础上增加接口(dc-ac模块53与dc-dc模块41之间连接的接口),避免多级变换造成的效率低,降低了电能的耗损。
32.在一个可选的方案中,在变频器50的ac-dc模块52及dc-ac模块53设置在壳体51内时,供电单元40的dc-dc模块41设置在变频器50内,即设置在变频器50的壳体51内。对应的,壳体51设置有电池桥臂接口,dc-dc模块41通过电池桥臂接口与备用电池42连接。上述结构中,将dc-dc模块41整合到变频器50的壳体51内,从而提高了dc-dc模块41的安全性。在将dc-dc模块41设置在变频器50的壳体51内时,ac-dc模块52、dc-ac模块53及dc-dc模块41组成液冷循环泵20的驱动器。通过该驱动器驱动液冷循环泵20工作。
33.在一个可选的方案中,备用电池42也可设置在变频器50的壳体51内,从而通过壳体51保护上述中的ac-dc模块52、dc-ac模块53、dc-dc模块41以及备用电池42。
34.本技术提供的备用电池42可选择不同类型的电池作为液冷循环泵20的备用电池42,备用电池42可以为酸性(铅酸)和碱性(镉镍)蓄电池,示例性的,本技术中的备用电池42采用锂电池。
35.如图4所示,图4示出了本技术一种具体的冷量分配单元的结构。在图4中所示的结构中,冷量分配单元由柜体10、变频器50、供电单元、控制器60及动力模块组成。沿柜体10的高度方向,动力模块、供电单元、变频器50及控制器60沿柜体10的高度方向由下向上排列。
36.在一个可选的方案中,动力模块包括液冷循环泵20及水管组件30外,还包括减震器70,液冷循环泵20通过减震器70与柜体10连接。如图4中所示,减震器70固定在柜体10的底板,液冷循环泵20固定在减震器70上。通过减震器70可降低液冷循环泵20在工作时的振动对柜体10的影响,进而降低由于共振造成其他功能器件与柜体10连接的可靠性问题。
37.在一个可选的方案中,液冷循环泵20可以选配不同型号的泵体,示例性的,液冷循环泵20为立式泵或者卧式泵。即可以通过不同型号的液冷循环泵20提供液体流动的动力。对于液冷循环泵20的尺寸,在本技术不做具体限定,只需可以设置在柜体10内即可。
38.继续参考图4,液冷循环泵20上方留一定空间的管路层,该管路层用于设置动力模块中的水管组件30,水管组件30可包括水管及阀门附件,上述水管与阀门附件的具体结构在本技术不做具体限定,只需能够保证液冷循环泵20与冷却塔及冷却板连通即可。
39.在具体设置上述功能器件时,如图4中所示的柜体10为长方体形的柜体10,示例性的,柜体10高度为2000mm、宽度为600mm的长方体形的柜体10。柜体10内的空间沿高度划分为多个空间,每个空间用于承载不同的功能器件。如沿高度方向,柜体10空间被划分为第一
容纳空间、第二容纳空间、第三容纳空间及第四容纳空间。第一容纳空间用于容纳动力模块中的液冷循环泵20及减震器70,高度为985mm,其中,减震器70占用高度为250mm的空间,液冷循环泵20占据735mm的空间。第二容纳空间为管路层,用于容纳动力模块中的水管组件30,高度为259mm。第三容纳空间用于容纳供电单元及变频器50,高度为622mm。在供电单元中的dc-dc模块设置在变频器50内时,第三容纳空间被划分为两部分:用于容纳备用电池42的空间部分(高度为534mm),以及用于容纳变频器50(包含供电单元的dc-dc模块)的空间部分(高度为88mm)。第四容纳空间用于容纳控制器60,高度为134mm。
40.在一个可选的实施方案中,本技术实施例提供的控制器60还用于检测液冷循环泵20的流量以及流速,控制器60可以通过流量计、流速计等与液冷循环泵20配套的器件检测液冷循环泵20的工作状态。
41.在一个可选的实施方案中,控制器60可以为单片机、plc、工控电脑等常见的控制器60。且控制器60控制液冷循环泵工作的原理为控制器60具备的简单工作原理,在此不再详细赘述。
42.由上述描述可以看出,本技术实施例提供的冷量分配单元内包含的功能器件仅包含:减震器70、液冷循环泵20、水管组件30、备用电池42、变频器50(包含dc-dc模块)、控制器60等几个部件。柜内功能器件比较少,因此可有更大的空间来容纳功率更大的液冷循环泵20。为方便理解本技术图4所示的冷量分配单元与现有技术中的冷量分配单元之间的差距。下面对两者进行对比进行详细的说明。
43.首先说明现有技术中的冷量分配单元,现有技术中的冷量分配单元中,设置有定压补水设备、板式换热器、液冷循环泵及配套的阀门附件,其中,板式换热器一侧连接冷却塔,另一侧连接冷却板,用于实现冷却板中的热水与冷却塔中的冷水的换热,定压补水设备用于给整个液冷系统进行补水以及保持系统的压力。由上述描述可以看出,现有技术中的冷量分配单元的内部部件多,且现有技术中的冷量分配单元包含有换热、保持系统水压稳定性以及驱动液体流动等不同的功能。但是由于柜内空间有限,导致部件选型受限,如上述中的板式换热器以及液冷循环泵均会受到柜内空间的影响。另外,柜内设置的板式换热器需要设置对应的过滤器,但是过滤器在前期冲洗过程中,需要部分手动阀门打开或者关闭,由于柜内空间有限,操作困难。再次,现有技术中的冷量分配单元的一次侧为冷却水,长期运行柜内板式换热器会结垢,板式换热器需要定期维护。同时,冷量分配单元中的板式换热器由于为小板换热器,内部的翅片间距小,易脏堵。
44.而在本技术实施例提供的冷量分配单元可看出,本技术实施例提供的冷量分配单元仅包含减震器70、液冷循环泵20、水管组件30、备用电池42、变频器50(包含dc-dc模块)、控制器60等几个功能器件。上述功能器件均为服务于驱动冷却板内液体流动的功能部件。可以理解为本技术实施例提供的冷量分配单元仅为用于驱动制冷系统中服务器侧(驱动冷却板内的液体流动)的液体流动的设备。因此本技术提供的冷量分配单元的柜体10内具有较大的空间来容纳液冷循环泵20,从而可以选择功率更大的液冷循环泵,以改善冷量分配单元的效率。
45.如下表1示例出了在采用不同的循环液冷循环泵时的效率。其中,表1中示例出了本技术提供的冷量分配单元与现有技术中的冷量分配单元在选择立式泵及卧式泵时的不同情况。
46.表1
[0047][0048]
由上述表1可以看出,液冷循环泵20的功率提升后,冷量分配单元可支撑功率密度为44kw的液冷机柜26柜。相比现有技术中冷量分配单元仅可支撑功率密度为28~31kw的液冷机柜26柜。极大的改善了冷量分配单元的效率。
[0049]
由上述描述可看出,本技术实施例提供的冷量分配单元,由于没有设置板式换热器,可减少设备的维护检修,减少主机房漏水风险。同时,冷量分配单元的功率提升,在同等柜位占比情况下,可支撑更大功率液冷机柜,随着未来液冷机柜高功率密度的持续演进,本技术实施例听的冷量分配单元占用主机房柜位少,提高主机房出柜率。另外,本技术公开的冷量分配单元有自备电功能(供电单元),省去外部ups及其备电,节省成本、减少占用空间。供电单元在变频器50的基础上增加接口,避免多级变换效率低。
[0050]
如图5所示,图5示出了本技术实施例提供的一种液冷系统,该液冷系统用于给主机房500制冷,液冷系统包括:制冷系统,以及与制冷系统连接的上述的冷量分配单元100。其中,制冷系统用于产生与冷却板换热的冷水。该制冷系统冷却塔200,与冷却塔200连接的板式换热器300。冷却塔200与板式换热器300可以通过管道连接,上述管道可采用已有的管道,在此不再详细赘述。另外,管道上设置有用于驱动水流动的泵,其设置位置在本技术不做具体限定。如图5中所示,板式换热器300通过管道与冷量分配单元100连接。主机房500中的冷却板中的液体直接在板式换热器300中换热,实现了一级换热,并且无需在冷量分配单元100中再次设置板式换热器300,简化了冷量分配单元100的结构。
[0051]
在一个可选的方案中,制冷系统还包括定压补水设备400,定压补水设备400用于给冷量分配单元100补水以及补压。如图6中所示的一个具体的实施方案中,定压补水设备400包括补水箱401,以及与补水箱401连接的稳压罐402,补水箱401与液冷分配单元连接。在设置定压补水设备400时,可设置在主机房500侧的设备间。将定压补水设备400单独设置在设备间,方便维修,降低占用主机房500内的空间。
[0052]
通过上述描述可以看出,本发明对液冷系统整体解决方案进行优化,将与系统冷量分配无关的部件如板式换热器300、定压补水设备400等移出柜内,移出主机房500,置于主机房500附进的设备间。板式换热器300、定压补水设备400以主机房500为单位选型配置,设置主机房500级的备份。随着选型的加大及设置位置改变(设备间),板换前端可配置开式冷却塔200,系统设置一套定压补水设备即可。
[0053]
本技术实施例中的冷量分配单元100从整体解决方案上整合优化,减少了设备的冗余浪费及系统故障率,降低液冷系统解决方案成本;
[0054]
将现有冷量分配单元100的小板换配置成设备间的大板换,提高了系统的兼容性,一次侧冷却塔200的冷却水可直接进大板换热器,避免多级换热,提高系统整体换热效率。同时板换设置于设备间有利于设备的维护检修,减少主机房500漏水风险;
[0055]
冷量分配单元100功率提升,在同等柜位占比情况下,可支撑更大功率液冷机柜,随着未来液冷机柜高功率密度的持续演进,新的冷量分配单元100占用主机房500柜位少,
提高主机房500出柜率;
[0056]
本技术实施例提供的冷量分配单元有自备电功能,省去冷量分配单元外部ups及其备电,节省成本、减少占用空间。自备电在驱动器的基础上增加接口,避免多级变换效率低。
[0057]
以上,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以权利要求的保护范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜