一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

高频开关电路及包括该高频开关电路的前端电路的制作方法

2021-10-23 01:52:00 来源:中国专利 TAG:电路 开关 包括 公开


1.本公开涉及高频开关电路及包括该高频开关电路的前端电路。


背景技术:

2.近年来,作为微波波段(6~90ghz波段)等高频的无线通信用,使用了将天线与收发用的装置之间连接的前端电路。在该前端电路内置有高频开关电路,该高频开关电路将与天线连接的端子和两个输入输出端子之间选择性地连接。例如,在专利文献1:美国专利2004/0032706号公报及专利文献2:美国专利2007/0120619号公报中,公开了如下结构:一种将天线与发送电路及接收电路之间连接的高频开关电路,包括传输线和二极管。
3.在上述现有的高频开关电路中,在从发送电路侧输入的高频信号的振幅比较大的情况下,具有在向天线侧输出的高频信号中产生失真的倾向。因此,期望通过简单的电路结构来降低输出中的失真。


技术实现要素:

4.本公开的一个方面所涉及的高频开关电路具备:天线端子,与外部的天线连接;输出端子,输出作为高频信号的接收信号;输入端子,输入作为高频信号的发送信号;第一控制端子,输入第一控制信号;第二控制端子,输入第二控制信号;第一开关,根据第一控制信号将天线端子与输入端子之间的连接导通或切断;及第二开关,根据第二控制信号将天线端子与输出端子之间的连接导通或切断,第一开关具有:传输线,连接天线端子与输入端子;二极管,阳极连接于传输线与输入端之间的第一节点,阴极连接于第二节点;及电容元件,与第二节点和第一电源电压连接,第一控制端子经由串联连接的第一电阻元件和第一电感元件而与第一节点连接,第一开关还包括与第二电源电压和第一控制端子连接并根据第一控制信号从第二节点对电容元件进行充放电的充放电电路。
附图说明
5.图1是表示实施方式所涉及的前端电路1的概略结构的框图。
6.图2是表示图1的高频开关电路7的结构的框图。
7.图3是表示图1的高频开关电路7的详细结构的电路图。
8.图4a是表示图2的引入电流生成电路35的详细结构的电路图。
9.图4b是表示图2的引入电流生成电路35的详细结构的电路图。
10.图5是表示图2的引入电流生成电路35的输出特性的图表。
11.图6a是表示图1的高频开关电路7中的各部位的电压变化的图表。
12.图6b是表示图1的高频开关电路7中的各部位的电流变化的图表。
13.图7a是表示图1的高频开关电路7中的各部位的电压变化的图表。
14.图7b是表示图1的高频开关电路7中的各部位的电流变化的图表。
15.图8是表示图1的高频开关电路7中的各部位的电压变化的图表。
16.图9是表示图2的二极管291的阴极电位、阳极电位及正向电流的变化的图表。
17.图10是表示比较例所涉及的高频开关电路907的结构的电路图。
18.图11是表示构成开关电路部17、917的二极管291的直流特性的图表。
19.图12a是表示开关电路部917在导通动作时被输入了比较低的振幅的发送信号的情况下的高频开关电路907的二极管291中的电位的时间变化的图表。
20.图12b是表示高频开关电路907的二极管291中的直流特性和正向电压的时间变化的图表。
21.图13a是表示开关电路部917在导通动作时被输入了比较高的振幅的发送信号的情况下的高频开关电路907的二极管291中的电位的时间变化的图表。
22.图13b是表示高频开关电路907的二极管291中的直流特性和正向电压的时间变化的图表。
23.图14a是表示开关电路部917在导通动作时被输入了比较高的振幅的发送信号的情况下的高频开关电路907的二极管291中的电位的时间变化的图表。
24.图14b是表示高频开关电路907的二极管291中的直流特性和正向电压的时间变化的图表。
25.图15是表示高频开关电路907中的所输入的发送信号的信号功率与节点n1的电压振幅之间的关系的图表。
具体实施方式
26.以下,参照附图对本公开的实施方式进行说明。另外,在附图的说明中,对同一要素标注同一附图标记,并省略重复的说明。
27.图1是表示实施方式所涉及的前端电路1的结构的框图。前端电路1用于微波波段(6~90ghz波段)的无线通信,连接于天线元件与高频通信用的收发装置之间而使用。该前端电路1具备发送信号用放大器3、接收信号用放大器5和高频开关电路7。发送信号用放大器3与输入端子p
in
连接,从外部接受具有调制后的基波分量(例如30ghz的频率分量)的发送信号,对该发送信号进行放大,并将放大后的发送信号输入到高频开关电路7。高频开关电路7是单刀双掷开关(spdt:single

pole double

throw),该单刀双掷开关排他性地切换将从发送信号用放大器3输出的发送信号传递到外部的天线元件9的功能和将从天线元件9输入的接收信号传递到接收信号用放大器5的功能。接收信号用放大器5与输出端子p
out
连接,对从高频开关电路7传递来的接收信号进行放大,并将放大后的接收信号输出到外部。而且,前端电路1具备向电路内部供给电源电压vcc的电源端口11、分别接受用于控制高频开关电路7中的切换的两个控制信号vc1、vc2的控制端口13、15。
28.接着,参照图2~图4来说明高频开关电路7的结构。
29.图2是表示图1的高频开关电路7的结构的框图。高频开关电路7包括:天线端口(天线端子)pa,与外部的天线元件9连接;输入端口(输入端子)p1,与发送信号用放大器3连接而用于输入发送信号;输出端口(输出端子)p2,与接收信号用放大器5连接而用于输出接收信号;控制端口(第一控制端子)p3,输入控制信号(第一控制信号)vc1;控制端口(第二控制端子)p4,输入控制信号(第二控制信号)vc2;开关电路部(第一开关)17,根据控制信号vc1将天线端口pa与输入端口p1之间在高频信号区域中的连接导通或切断;及开关电路部(第
二开关)19,根据控制信号vc2将天线端口pa与输出端口p2之间在高频信号区域中的连接导通或切断。
30.该高频开关电路7具有如下功能:通过接受彼此设定为互补电压的电压信号作为两个控制信号vc1、vc2,从而使开关电路部17、19排他性地导通/切断。这里所说的“设定为互补电压”意味着在一个电压被设定为比较低的电压的情况下另一个电压被设定为比较高的电压,在一个电压被设定为比较高的电压的情况下另一个电压被设定为比较低的电压。
31.开关电路部19包括:电容元件212、传输线232及电容元件252,在输出端口p2与天线端口pa之间串联连接;电感元件272,一端连接于控制端口p4,另一端连接于电容元件212与传输线232之间的连接点(节点)n2;及二极管292,阳极与连接点n2连接,阴极与接地电位(第一电源电压)连接。传输线232对应于接收信号的波长λ而具有1/4λ的传输路径长度。在设定了比较高的电压(例如1.2v)作为控制信号vc2的情况下,该开关电路部19使二极管292导通。并且,二极管292成为低阻抗状态,将连接点n2固定为接地电位或接近接地电位的电位,其结果为,开关电路19将输出端口p2与天线端口pa之间切断。另一方面,在设定了比较低的电压(例如0.0v)作为控制信号vc2的情况下,作为开关电路部19的动作,二极管292被施加反向偏压而成为截止状态。并且,二极管292成为高阻抗状态,连接点n2的电位根据来自天线端口的电位的变动而进行响应,其结果为,使输出端口p2与天线端口pa之间导通。
32.开关电路部17包括:电容元件211、传输线231及电容元件251,在输入端口p1与天线端口pa之间串联连接;电阻元件31a和电感元件31b,在传输线231和电容元件211之间的连接点(节点)n1与控制端口p3之间串联连接;二极管291,阳极与连接点n1连接,阴极与连接点n0连接;电容元件33a,连接于连接点n0与接地电位(第一电源电压)之间;及充放电电路40,被供给电源电压(第二电源电压)vcc和控制信号vc1,输入输出端子a1与连接点n0连接,并根据控制信号vc1的值,从连接点n0对电容元件33a进行充电,或者从连接点n0对电容元件33a进行放电。传输线231是对应于发送信号的波长λ而具有1/4λ的传输路径长度的线路。
33.在提供了比较高的电压即第一电压v1作为控制信号vc1的情况下,与此相应地,比较高的电压和电流被供给到节点n1,在提供了比较低的电压即第二电压v2(v2<v1)作为控制信号vc1的情况下,与此相应地,比较低的电压被供给到节点n1。例如,电阻元件31a被设定为电阻值20~200ω,电感元件31b被设定为0.5~5nh。
34.在提供了第一电压v1作为控制信号vc1的情况下,作为开关电路部17的动作,二极管291被施加正向偏压而成为导通状态。并且,二极管291成为低阻抗状态,将连接点n1固定为接地电位或接近接地电位的电位,其结果为,开关电路17将输入端口p1与天线端口pa之间切断。此时,充放电电路40为了将二极管291保持为正向偏置状态而进行工作,以进行电容元件33a的放电,将连接点n0的电位保持得比连接点n1的电位低。
35.导通后的二极管291还具有对电容元件33a进行充电的作用。但是,电容元件33a被充电有可能作用于提高连接点n1的电位并减弱对二极管291的正向偏压的施加的方向。为了防止这种情况,重要的是充放电电路40充分地引入二极管291的正向电流,并且进行电容元件33a的放电,将连接点n0的电位保持得比连接点n1的电位低而不升高。
36.在提供了第二电压v2作为控制信号vc1的情况下,作为开关电路部17的动作,二极管291被施加反向偏压而成为截止状态。并且,二极管291成为高阻抗状态,连接点n1的电位根据输入端口p1的电位而进行响应,其结果为,开关电路17使输入端口p1与天线端口pa之
间导通。此时,充放电电路40为了将二极管291保持为反向偏置状态而进行工作,以进行电容元件33a的充电,将连接点n0的电位保持为与连接点n1的电位相等或比连接点n1的电位高。
37.图3是表示高频开关电路7的详细结构的电路图。在图3中,描绘了充放电电路40的详细结构。充放电电路40还包括电容电压控制电路33和引入电流生成电路35。
38.电容电压控制电路33具有与引入电流生成电路35的输出端子连接的节点s1及与二极管291的阴极(连接点n0)连接的节点a1。电容电压控制电路33可以包括:电感元件33b,一个端子与节点a1连接,另一个端子与节点s1连接;及电阻元件33c,一个端子与电源端口b1连接,另一个端子与电感元件33b的另一个端子(节点s1)连接。电阻元件33c例如被设定为100~5000ω。电感元件33b是用于施加直流电压的元件,例如被设定为0.5~5nh。
39.引入电流生成电路35与控制端口p3连接,在二极管291根据控制信号vc1而导通时,产生引入电流(i
c1
),该引入电流(i
c1
)用于引入二极管291的正向电流和使电容元件33a放电的电流(i3)及从电源电压vcc经由电阻元件33c流通的偏置电流(i2)。即,在设定了第一电压v1作为控制信号vc1的情况下,引入电流生成电路35产生引入电流(i
c1
)。另一方面,在设定了第二电压v2作为控制信号vc1的情况下,引入电流生成电路35使引入电流(i
c1
)停止。
40.在电容电压控制电路33中,从电源电压vcc经由电阻元件33c流通的偏置电流(i2)与控制信号vc1无关地从电源端口b1向节点s1流通,但流过电感元件33b的电流(i3)根据控制信号vc1而改变流通的方向。在提供了第一电压v1作为控制信号vc1的情况下,引入电流生成电路35产生引入电流(i
c1
),流过电感元件33b的电流(i3)从节点a1向节点s1流通,进一步与偏置电流(i2)合流所得的电流作为引入电流(i
c1
)流入到引入电流生成电路35。流过电感元件33b的电流(i3)作为二极管291的正向电流与使电容元件33a放电的电流合流后的电流而工作。
41.另一方面,在提供了第二电压v2作为控制信号vc1的情况下,引入电流生成电路35使引入电流(i
c1
)停止,偏置电流(i2)保持原样地从节点s1向节点a1流过电感元件33b(i3)。流过电感元件33b的电流(i3)经由节点a1对电容元件33a进行充电,提高二极管291的阴极的电位(连接点n0的电位),使二极管291反向偏置而使其截止。
42.作为引入电流生成电路35的结构,例如采用漏极开路输出电路的结构。例如,如图4a所示,引入电流生成电路35具有包括fet35c的电路结构,该fet35c的栅极经由电阻元件35a与控制端口p3连接,漏极作为输出端子out,源极接地并且经由电阻元件35b与栅极连接。或者,如图4b所示,引入电流生成电路35也可以是包含两个fet35d、35e和电流源35f的电路结构。在该fet35d中,栅极经由电阻元件35g与控制端口p3连接并且经由电阻元件35h接地,漏极作为输出端子out,源极与电流源35f连接。另外,在fet35e中,对栅极施加基于电源电压vcc由电阻元件35i、35j分压后的电压,对漏极经由电阻元件35k施加电源电压vcc,源极与电流源35f连接。
43.在提供了第二电压v2作为控制信号vc1的情况下,电容元件33a将在节点a1处要设定的阴极电位设定为初始电源电压vcc之后,使其追随节点n1的峰值电压进行设定。即,也可以说电容元件33a同时具有用于使二极管291的阴极交流接地的功能和用于将二极管291的阴极电位保持为阳极的峰值电位的功能。电容元件33a的电容值例如被设定为0.2~10pf。
44.以下,一边与比较例进行比较一边说明本实施方式的高频开关电路7的动作。
45.图10表示比较例所涉及的高频开关电路907的结构。高频开关电路907的结构与本实施方式的结构之间的不同点在于,对输入端口p1与天线端口pa之间的连接进行开关的开关电路部917具有与开关电路部19相同的结构,包括电容元件211、251、传输线231、电感元件271及二极管291。例如在设定为控制信号vc1=0.0v、控制信号vc2=1.2v的情况下,该高频开关电路907使天线端口pa与输入端口p1之间导通,并使天线端口pa与输出端口p2之间切断。另一方面,例如在设定为控制信号vc1=1.2v、控制信号vc2=0.0v的情况下,高频开关电路907使天线端口pa与输出端口p2之间导通,并使天线端口pa与输入端口p1之间切断。这里,对高频开关电路要求将从输入端口p1输入的发送信号以低损耗且低失真传输到天线端口pa的特性。另外,高频开关电路通过控制信号vc1、vc2控制开关,但该控制信号优选为正电压。另外,如果在电源电压的范围内(例如0v~4.0v的范围内),则能够简化电路结构,因此更为优选。
46.图11示出了正向电压vf与正向电流i
f
之间的关系作为构成开关电路部17、917的二极管291的直流特性。这样,在vf=1.2v附近导通,产生大约9ma的正向电流i
f
。此时,二极管291的阳极

阴极间阻抗在直流分量中降低到例如5ω左右,其阳极

阴极间的电容值变大到例如3pf左右,因此二极管291相对于高频区域(例如30ghz)的信号成为低阻抗。与此相对,在vf为0v以下的电压时,正向电流i
f
大致为0ma,二极管291的阳极

阴极间成为高阻抗(开路)。根据这样的二极管291的特性,在开关电路部917中,通过向二极管291正向施加1.2v,从而二极管291的阳极

阴极间短路,从输入端口p1输入的发送信号被切断。另外,在开关电路部917中,通过向二极管291正向施加0v以下的电压,从而二极管291的阳极

阴极间成为开路,从输入端口p1输入的发送信号被导通。
47.图12a及图12b表示开关电路部917在导通动作时(vc1=0.0v)被输入了比较低的振幅(例如2.0vpp)的发送信号的情况下的高频开关电路907的二极管291中的电位的时间变化。图12a表示二极管291的电位的时间变化,图12b表示二极管291的直流特性及二极管291的正向电压vf的时间变化。n
ano
表示二极管291的阳极电位,n
cath
表示二极管291的阴极电位。如图12a所示,阳极电位n
ano
的平均值为0.0v,输入了2.0vpp的振幅的电压的情况下的阳极电位n
ano
的峰值电压为1.0v。在该情况下,如图12b所示,相对于二极管291导通时的正向电压1.2v,二极管291的正向电压vf始终较低,因此二极管291始终保持开路特性。其结果为,在传输到天线端口pa的发送信号中不会产生失真。
48.另外,图13a及图13b表示开关电路部917在导通动作时(vc1=0.0v)被输入了比较高的振幅(例如超过2.4vpp的振幅)的发送信号的情况下的高频开关电路907的二极管291中的电位的时间变化。图13a表示二极管291的电位的时间变化,图13b表示二极管291的直流特性及二极管291的正向电压vf的时间变化。如图13a所示,阳极电位n
ano
的平均值为0.0v,输入了2.4vpp以上的振幅的电压的情况下的阳极电位n
ano
的峰值电压达到1.2v。在该情况下,如图13b所示,通过正向电流i
f
流过二极管291,由此二极管291的阻抗降低,二极管291的阳极的峰值电压降低。其结果为,在传输到天线端口pa的发送信号中产生失真。
49.作为避免如上述那样的高频开关电路907中的失真的产生的方式,考虑到对控制信号vc1设定负电压的方式。图14a及图14b表示开关电路部917在导通动作时(vc1=

2.0v)被输入了比较高的振幅的发送信号的情况下的高频开关电路907的二极管291中的电位的
的正向电流i
f
。其结果为,如图6a所示,基于向电容元件33a的充电的电位即二极管291的阴极电位n
cath
的电位上升被抑制,在作为二极管291的正向偏压的阴极电位n
cath
与阳极电位n
ano
之间的电位差中,得到了使二极管291导通所需的1.2v。
55.另外,在高频开关电路7中,在控制信号vc1例如被设定为0.0v的情况下,高频开关电路7将输入端口p1与天线端口pa之间导通。此时,由引入电流生成电路35停止引入电流i
c1
。此时,节点n1的电位n
ano
大致为0v,另一方面,通过充放电电路40的动作对电容元件33a进行充电,节点n0的电位n
cath
变得与电源电压vcc大致相等。其结果为,施加深的负电压(反向偏压)作为二极管291的偏置电压vf,从而二极管291截止。
56.图7a及图7b表示此时的高频开关电路7中的各部位的电压变化及电流变化。图7a表示各部位的电压变化,图7b表示各部位的电流变化。在该情况下,引入电流i
c1
被设定为0ma,电位n
cath
=电源电压vcc。另外,对节点n1的电位n
ano
设定0v作为直流分量,但由于对节点n1施加高频信号,因此在电位n
ano
叠加与之对应的高频分量(例如,具有峰值电压4.0v的高频分量)。另外,在二极管291的电流i
f
中,对0ma的直流分量附加透过伴随高频信号的附加而产生的二极管291具有的电容分量的微小的高频分量。这样,由于对二极管291的正向电压vf设定负电压,所以维持二极管291的截止状态,从输入端口p1向天线端口pa传输高频信号。
57.另外,在高频开关电路7中,在控制信号vc1例如被设定为0.0v的情况下,并且输入了电压振幅大的发送信号的情况下,电容电压控制电路33以如下方式动作。即,例如在输入了13vpp左右的电压振幅大的发送信号的情况下,在发送信号的峰值时,电容电压控制电路33基于流过二极管291的正向电流i
f
使电容元件33a充电而使节点a1的电位与电源电压vcc相比上升。此时,由于高电阻的电阻元件33c的存在,节点a1的高电位的状态被维持到发送信号的下一个峰值时。即,二极管291、电容元件33a及电阻元件33c具有作为包络线检测电路进行动作而使电位n
cath
追随节点n1的峰值电压的功能。由此,二极管291的正向电压vf的直流分量被设定为足够深的负电压(例如,

5.5v)。向天线端口pa传输的发送信号中的失真被抑制。
58.图8表示此时的高频开关电路7中的各部位的电压变化,并表示二极管291的阴极电位及阳极电位的变化。在此,示出了控制信号vc1被设定为0.0v且发送信号的电压振幅从8.0vpp上升到13.0vpp的情况。
59.如图8所示,随着电压振幅的上升,二极管291的阳极电位n
ano
的峰值电位超过电源电压vcc(=4.0v)而达到6v附近。与此相对,由于二极管291的阴极电位n
cath
被设定在电源电压vcc附近,因此正向电压vf超过1.2v,二极管291导通。由此,电容元件33a基于正向电流i
f
被充电,阴极电位n
cath
超过电源电压vcc而上升。若阴极电位n
cath
超过电源电压vcc而上升,则流过电流i2而使电容元件33a放电,但由于电阻元件33c的电阻值r1被设定为大的值(例如1kω),因此在正向电流i
f
大到一定程度的状态下,阴极电位n
cath
维持高电压不变。上述电流i2为通过下式计算出的值。
60.i2=

(n
cath

vcc)/r1
61.即,在节点n1的峰值电压时的向电容元件33a的供电量与基于电流i2的放电量平衡的电位(例如4.8v)下,阴极电位n
cath
稳定。
62.参照图9对此时的电容元件33a的电压保持的动作进行详细说明。在阳极电位n
ano
由于发送信号的振幅的增加而超过电源电压vcc=4.0v进而超过5.2v的情况下,由于二极管291的正向电压vf超过1.2v,因此产生正向电流i
f
。该正向电流i
f
对电容元件33a进行充电,使阴极电位n
cath
上升。当阴极电位n
cath
上升时,产生电流i2,电容元件33a放电,阴极电位n
cath
稍微降低直至产生发送信号的下一个峰值电压为止。之后,由于下一个峰值电压的产生,电容元件33a再次被充电,阴极电位n
cath
再次上升。通过反复进行这样的动作,阴极电位n
cath
稳定在高电位。详细而言,如上述式所示,由于电流i2的大小与阴极电位n
cath
成比例,因此在基于正向电流i
f
的充电电流和基于电流i2的放电电流在时间上均等化的状态下,阴极电位n
cath
稳定。通过这样的一系列动作,阴极电位n
cath
超过电源电压vcc而上升,其结果是,施加于二极管291的反向电压的直流分量上升。其结果是,对于大振幅的发送信号,由二极管291的正向电压削波引起的波形失真降低。
63.如图9所示,由于阴极电位n
cath
的充电电位由电源电压vcc决定,所以为了进一步降低上述的由正向电压削波引起的波形失真,能够通过使电源电压vcc的值比预想的发送信号的振幅的最大峰值大来解决。
64.根据以上所说明的本实施方式所涉及的高频开关电路7,通过开关电路部17的动作,根据控制信号vc1将天线端口pa与输入端口p1之间导通或切断,并通过开关电路部19的动作,根据控制信号vc2将天线端口pa与输出端口p2之间导通或切断。此时,在开关电路部17中,通过电容电压控制电路33和引入电流生成电路35,根据控制信号vc1使二极管291的正向电流导通/截止,由此使天线端口pa与输入端口p1之间切断/导通。同时,通过电容电压控制电路33,设定为在二极管291的正向电流被切断时二极管291的阴极的电位追随阳极的峰值电位,因此即使输入的发送信号的振幅变大,也能够防止二极管291导通的情况。其结果是,能够通过简单的电路结构来降低向天线端口pa输出的发送信号中的电压失真。
65.另外,引入电流生成电路35根据设定为第一电压的控制信号vc1产生引入电流,并根据设定为第二电压的控制信号vc1停止引入电流。除此以外,电容电压控制电路33在产生引入电流时,基于从电源端口b1供给的电源电压vcc将阴极的电位设定为第一设定电位而使二极管291导通,在停止引入电流时,基于电源电压vcc将阴极的电位设定为比第一设定电位高的第二设定电位而使二极管291截止。根据该结构,能够稳定地实现与控制信号vc1相应的二极管291的导通/截止控制。由此,开关电路部17对天线端口pa与输入端口p1之间的导通或切断的控制稳定化。
66.另外,电容电压控制电路33具有:电感元件33b,一个端子与二极管291的阴极连接,另一个端子与引入电流生成电路35的输出端子连接;电阻元件33c,一个端子与电源端口b1连接,另一个端子与电感元件33b的另一个端子连接;及电容元件33a,连接在二极管291的阴极与接地之间。通过这种简单的电路结构,能够实现与引入电流的产生相应的阴极电位的切换功能和追随阳极电位的阴极电位的设定功能。其结果是,能够通过简单的结构来降低向天线端口pa输出的发送信号中的电压失真。
67.虽然以上在优选的实施方式中图示并说明了本公开的原理,但是本领域技术人员应当理解,本公开可以在不脱离这种原理的前提下在配置和细节上进行变更。本公开并不限定于本实施方式所公开的特定的结构。因此,对来自权利要求书和其精神范围的所有修改和变更均要求保护权利。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜