一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

生产航空燃料的方法与流程

2021-06-04 13:00:00 来源:中国专利 TAG:

生产航空燃料的方法
1.迄今为止,加氢处理中可再生能源的转化一直集中在制造柴油上,因为链烷烃对应于生物材料的典型脂肪酸,如植物油和动物脂肪(c14、c16和c18),通常沸点为250℃至320℃,与沸点为150℃至380℃的典型柴油产品充分相对应。喷气燃料产品的沸程为120℃至300℃或310℃,这意味着需要将一定量的来自可再生原料的链烷烃的重质部分转化为较轻质的材料,以仅生产喷气燃料。由可再生能源生产喷气燃料的另一个挑战是在可再生原料加氢处理过程中发现了芳烃产量惊人的高。本公开涉及一种具有高收率的可再生喷气燃料的方法,该可再生喷气燃料通过将重质材料转化为较轻质的材料并通过限制产品中芳烃的量来满足典型的产品要求。
2.已知通过在设计用于制造柴油的单元中联合生产一些喷气燃料来从可再生原料生产喷气燃料。但是,人们希望将沸点主要在柴油范围内的可再生原料完全转化成喷气燃料产品,这需要大量转化。
3.控制源自诸如酯和脂肪酸的经加氢处理的含氧化合物的质量的标准是astm d7566,a2.1,其中特别规定了沸点曲线和组成。这些特性中的大多数都可以通过加氢处理和分馏而容易实现。但是,要特别注意满足最高

40℃的凝固点(fp)要求,以及最多0.5wtt%的总芳烃含量。此外,该标准通过要求t
10
(即在该温度下,10%发生蒸馏)低于205℃而要求一定量的低沸点产品。根据astm d86,最终沸点(fbp)规定为300℃,这意味着根据astm d86在300℃以上蒸馏的所有材料都必须转化为较轻质的组分,才能落入喷气燃料范围。
4.现在,根据本公开,提出以反向(reverse stage)两阶段构造进行喷气燃料的生产,其中在第一阶段对进料进行加氢脱氧和任选异构化,并且在除去酸性气体之后,将产物分馏并将煤油馏分加氢脱芳烃,然后任选在第二阶段进行异构化。将重质馏分引导至预阶段,以经由加氢裂化催化剂进行转化。通过该方法,由于仅比煤油重的料流才接触加氢裂化催化剂,因此减少了收率损失。可以在第一阶段、第二阶段或两个阶段中进行异构化以提高煤油馏分的凝固点。
5.在下文中,术语阶段用于该方法的一个工段,其中不执行分离。
6.在下文中,缩写ppm
molar
用于表示每百万份的原子份数。
7.在下文中,缩写ppm
v
用于表示每百万份的体积份数,例如摩尔气体浓度。
8.在下文中,缩写%wt用于表示重量百分比。
9.在下文中,缩写vol/vol%用于表示气体的体积百分比。
10.在下文中,术语可再生原料或烃用于表示源自生物来源或废物再循环的原料或烃。化石来源的再循环废物,例如塑料,也应解释为可再生的。
11.在下文中,术语加氢脱氧用于表示在氢存在下通过形成水从含氧化合物中除去氧,以及在氢存在下通过形成碳氧化物而从含氧化合物中除去氧。
12.在下文中,术语分子筛的拓扑结构以"atlas of zeolite framework types,"sixth revised edition,elsevier,2007中描述的含义使用,并且据此使用三字母的骨架类型编码。
13.本公开的一个广泛方面涉及一种由为含氧化合物原料的原料生产例如适合用作喷气燃料的烃的方法,该方法包括以下步骤:将原料与一定量的经加氢裂化的中间产物混合;引导其在加氢脱氧条件下与在加氢脱氧中具有催化活性的材料接触,以提供经加氢脱氧的中间产物;将所述经加氢脱氧的中间产物分馏为包括第一馏分和第二馏分的至少两个馏分,所述第一馏分的至少90%在低于限定沸点下沸腾,所述第二馏分的至少90%在高于所述限定沸点下沸腾;引导至少一定量的所述第二馏分在加氢裂化条件下与在加氢裂化中具有催化活性的材料接触,以提供经加氢裂化的中间产物,其具有的相关益处在于,这样的方法非常适合于有效地将诸如可再生原料的高沸点含氧化合物原料转化为低沸点产物,例如非化石煤油。
14.在另一个实施方案中,步骤b包括根据沸点分离所述经加氢裂化的中间产物(22,212),以提供经加氢裂化的根据astm d 86具有高于205℃的t10和低于310℃的最终沸点的中间喷气燃料产物(80,224),其具有的相关益处在于,所述方法的产物满足可再生喷气燃料规范astm d7566的沸点规范。
15.在另一个实施方案中,可能源自包含一种或多种硫化合物例如二甲基二硫化物或化石燃料的添加料流,使得相对于被引导以与在加氢脱氧中具有催化活性的材料接触的总料流的气相中分子氢的体积,硫化氢的总体积为至少50ppm
v
、100ppm
v
或200ppmv,其具有的相关益处在于,在原料包含不足量的硫的情况下,确保包括硫化贱金属的在加氢脱氧中具有催化活性的材料的稳定运行。
16.在另一个实施方案中,所述可再生原料包含至少50%wt的甘油三酯或脂肪酸,其具有的相关益处在于,这样的原料高度适合于提供具有优异性能的喷气燃料。
17.在另一个实施方案中,加氢脱氧条件包括温度区间为250

400℃,压力区间为30

150巴和液时空速(lhsv)区间为0.1

2;并且其中在加氢脱氧中具有催化活性的材料包括负载在载体上的任选地与镍和/或钴组合的钼或可能的钨,所述载体包括一种或多种耐热(refractory)氧化物,例如氧化铝、二氧化硅或二氧化钛,其具有的相关益处在于,所述工艺条件非常适合以成本有效的方式从可再生原料去除杂原子,尤其是氧。
18.在另一个实施方案中,加氢裂化条件包括温度区间为250

400℃,压力区间为30

150巴以及液时空速(lhsv)区间为0.5

4,任选地同时通过用冷的氢气、进料或产物进行骤冷来实行中间冷却,并且其中在加氢裂化中具有催化活性的材料包括:(a)选自铂、钯、镍、钴、钨和钼的一种或多种活性金属;(b)酸性载体,其选自表现出高裂化活性和具有例如mfi、bea和fau的拓扑结构的分子筛,和无定形酸性氧化物,例如二氧化硅

氧化铝;和(c)耐热载体,例如氧化铝、二氧化硅或二氧化钛,或其组合,其具有的相关益处在于,所述工艺条件高度适合于调节产物的沸点以匹配煤油的沸程。
19.在另一个实施方案中,选择工艺条件以使转化率大于20%、50%或80%,该转化率定义为相对于所述第二馏分中沸点高于310℃的材料量,所述经加氢裂化的中间产物中沸点高于310℃的材料量与所述第二馏分中沸点高于310℃的材料量之差,其具有的相关益处在于,提供一个完全或基本上完整的整体转化,同时避免过度的条件和过度的收率损失。
20.在另一个实施方案中,将至少一定量的所述第一馏分引导,以在加氢脱芳烃条件下与在加氢脱芳烃中具有催化活性的材料接触,以提供相对于料流中所有烃的芳烃分子总质量进行计算,包含少于1wt/wt%、0.5wt/wt%或0.1wt/wt%的经加氢脱芳烃的产物,具有
的相关益处在于,所述方法的产物满足喷气燃料规范astm d7566。
21.在另一个实施方案中,加氢脱芳烃条件包括温度区间为200

350℃,压力区间为20

100巴以及液时空速(lhsv)区间为0.5

8,其中所述在加氢脱芳烃中具有催化活性的材料包含活性金属,其选自铂、钯、镍、钴、钨和钼,优选一种或多种单质贵金属,例如铂或钯;以及耐热载体,优选无定形二氧化硅

氧化铝、氧化铝、二氧化硅或二氧化钛,或其组合,具有的相关益处在于,所述工艺条件适合用于芳烃的加氢。在加氢脱芳烃条件下所述在加氢脱芳烃中具有催化活性的材料可以是在加氢裂化中具有催化活性的材料或是在有利于加氢脱芳烃的中等温度下操作的在异构化中具有催化活性的材料。加氢脱芳烃条件优选包括至少50%或80%的芳烃转化率。
22.在另一个实施方案中,将包含至少90vol/vol%氢的富氢料流引导以与在加氢脱芳烃中具有催化活性的材料接触,具有的相关益处在于,将整个过程所需的高纯度氢引导至加氢脱芳烃步骤,从而有助于平衡向远离芳烃的方向移动。
23.在另一个实施方案中,将至少一定量的所述第一馏分或所述经加氢脱芳烃的产物引导,以在异构化条件下与在异构化中具有催化活性的材料接触,具有的相关益处在于,这样的方法可以提供符合喷气燃料冷流特性要求的产品。
24.在另一个实施方案中,异构化条件包括温度区间为250

350℃,压力区间为30

150巴以及液时空速(lhsv)区间为0.5

8;其中在异构化中具有催化活性的材料包括活性金属,其选自铂、钯、镍、钴、钨和钼,优选一种或多种单质贵金属,例如铂或钯;酸性载体,优选分子筛,更优选具有选自mor、fer、mre、mww、ael、ton和mtt的拓扑结构;以及无定形耐热载体,所述无定形耐热载体包含选自氧化铝、二氧化硅和二氧化钛的一种或多种氧化物,具有的相关益处在于,这些条件和材料对于调节产物的冷流特性而言是成本有效和具有选择性的方法。
25.在另一个实施方案中,将经处理的产物引导至气/液分离器以提供第二阶段气态馏分和经处理的中间喷气燃料产物,该经处理的中间喷气燃料产物被引导至另一种分离装置,以提供适合用作喷气燃料的所述烃馏分和经处理的产物废气,具有的相关益处在于,这种稳定化步骤提供了符合喷气燃料的闪点要求的喷气燃料产品。
26.本公开的另一方面涉及一种用于由含氧化合物原料生产烃馏分的工艺设备,所述工艺设备包括加氢脱氧工段、加氢裂化工段和分馏工段,所述工艺设备被配置以用于将原料和一定量的经加氢裂化的中间产物引导至加氢脱氧工段,以提供经加氢脱氧的中间产物;在所述分馏工段中分离经加氢脱氧的中间产物,以提供至少两个馏分,包括低沸点产物馏分和高沸点产物馏分;将至少一定量的高沸点产物馏分引导至加氢裂化工段,以提供经加氢裂化的中间产物,引导至少一定量的所述经加氢裂化的中间产物作为所述另外的原料,具有的相关益处在于,这样的工艺设备适于执行所公开的方法,以成本有效且选择性地生产符合astm d7566,a2.1规范的喷气燃料。
27.本公开中描述的方法接收可再生原料和/或含氧化合物原料,其包含选自甘油三酯、脂肪酸、树脂酸、酮、醛、醇、酚和芳族羧酸的一种或多种含氧化合物,其中所述含氧化合物源自一种或多种生物来源、气化过程、热解过程、fischer

tropsch合成、基于甲醇的合成或其他合成工艺,特别是获自可再生来源的原材料,例如源自植物、藻类、动物、鱼类、植物油炼制、生活废物、用过的食用油、塑料废物、橡胶废物或工业有机废物,如妥尔油或黑液。
这些原料中的一些可能含有芳烃;特别是通过热解或其他工艺由例如木质素和木材得到的产物或来自例如煎炸油的废弃产物。根据来源,含氧化合物原料可以占1wt/wt%至40wt/wt%。生物来源通常将占约10wt/wt%,并且衍生产物为1wt/wt%至20wt/wt%或甚至40wt/wt%。
28.为了将可再生原料和/或含氧化合物原料转化为烃运输燃料,将原料与氢气一起引导以与在加氢处理(尤其是加氢脱氧)中具有催化活性的材料接触。尤其是在升高的温度下,催化加氢脱氧过程可能具有副反应,例如由原料中的烯烃分子形成重质产物。为了缓和热量的释放,可以添加液态烃,例如液体再循环料流或外部稀释剂进料。如果该工艺设计用于化石原料和可再生原料的联合处理,则使用化石原料作为稀释剂是方便的,因为在化石原料的加工期间释放较少的热量,因为较少的杂原子被释放并且较少的烯烃被饱和。除了调节温度外,再循环物或稀释剂也具有降低烯烃材料聚合的潜能的作用,这将在产物中形成不希望的重质馏分。得到的产物料流将是包含烃(通常为正链烷烃)和酸性气体(例如co、co2、h2o、h2s、nh3)以及轻质烃(尤其是c3和甲烷)的经加氢脱氧的中间产物料流。特别是在高温下,加氢脱氧催化过程可能导致副反应形成芳烃。如果原料包含氮,则可能形成氨,其具有使催化活性材料失活的作用,因此需要这样的升高的温度,并因此形成芳烃,其量高于定义喷气燃料规格的astm d7566的限定。
29.加氢脱氧中具有催化活性的材料通常包含活性金属(一种或多种硫化的贱金属,例如镍、钴、钨或钼,但也可能是单质贵金属,例如铂和/或钯)和耐热载体(例如氧化铝、二氧化硅或二氧化钛或其组合)。
30.加氢脱氧涉及将原料引导,以与负载在载体上的通常包含一种或多种硫化的贱金属(例如镍、钴、钨或钼),但也可能是单质贵金属(例如铂和/或钯)的催化活性材料接触,该载体包含一种或多种耐热氧化物(通常是氧化铝,但也可能是二氧化硅或二氧化钛)。载体通常是无定形的。催化活性材料可以包含其他组分,例如硼或磷。条件通常是温度区间为250

400℃,压力区间为30

150巴以及液时空速(lhsv)区间为0.1

2。加氢脱氧通常是放热的,并且在存在大量氧气的情况下,该过程可能涉及中间冷却,例如用冷的氢气、原料或产物进行骤冷。原料可以优选含有一定量的硫以确保金属的硫化,从而保持其活性。如果气相包含少于10、50或100ppm
v
的硫,可以向进料添加硫化物供体,例如二甲基二硫化物(dmds)。
31.经加氢脱氧的中间产物将主要与原料含氧化合物的碳骨架具有相同的结构,或者如果原料包含甘油三酯,n

链烷烃,但长度可能比脂肪酸短。通常,经加氢脱氧的中间产物将以具有以下沸程(250℃至320℃)和凝固点(0℃至30℃)且不适合用作喷气燃料的直链烷烃为主。如果不饱和脂肪酸聚合并形成芳烃结构,即使对于包含少于1%芳烃的含氧化合物原料,也可能在加氢脱氧步骤中形成一些重质组分和芳烃。
32.为了在实践中将经加氢脱氧的中间产物用作燃料,必须调节凝固点。通过引导经加氢脱氧的中间产物与在异构化中具有催化活性的材料接触,可通过使n

链烷烃异构化成i

链烷烃来调节凝固点。
33.在异构化中具有催化活性的材料包含活性金属(单质贵金属,例如铂和/或钯或硫化的贱金属,例如镍、钴、钨或钼)、酸性载体(通常是分子筛,显示出较高的形状选择性,并具有诸如mor,fer,mre,mww,ael,ton和mtt等的拓扑结构);以及典型的无定形耐热载体(例如氧化铝、二氧化硅和二氧化钛,或其组合)。具有催化活性的材料可包含其他组分,例如硼
或磷。优选的异构化催化剂包括分子筛,例如eu

2、zsm

48、β沸石以及β沸石和沸石y的组合。
34.异构化包括引导中间加氢脱氧原料与在异构化中具有催化活性的材料接触。条件通常是温度区间为250

350℃,压力区间为30

150巴,液时空速(lhsv)区间为0.5

8。异构化基本上是热中性的,在加氢裂化副反应中仅消耗氢,因此在异构化工段中仅添加适量的氢。当在异构化中具有催化活性的材料上的活性金属是贵金属时,加氢脱氧的原料通常通过气/液分离来纯化,以将潜在的催化剂毒物含量降低至低水平,例如硫、氮和碳氧化物的水平至低于1

10ppm
molar
。当活性金属是贱金属时,经加氢脱氧的中间原料的气相优选包含至少50ppm
v
的硫。
35.为了将经加氢脱氧的中间产物料流用作煤油馏分,必须调节沸程。通过引导经加氢脱氧的中间产物与在加氢裂化中具有催化活性的材料接触,可通过将长链烷烃加氢裂化成较短的链烷烃来调节沸点。
36.在加氢裂化中具有催化活性的材料的性质类似于在异构化中具有催化活性的材料,它通常包含活性金属(单质贵金属,例如铂和/或钯或硫化的贱金属,例如镍、钴、钨或钼)、酸性载体(通常是分子筛,显示高的形状选择性,并具有诸如mfi、bea和fau等的拓扑结构,但也可以使用无定形酸性氧化物,例如二氧化硅

氧化铝);以及耐热载体(例如氧化铝、二氧化硅和二氧化钛,或其组合)。与异构化中具有催化活性的材料的区别通常是酸性载体的性质,该酸性载体可以具有不同的结构(甚至无定形二氧化硅

氧化铝)或具有不同的酸度,例如归因于二氧化硅:氧化铝的比例。具有催化活性的材料可包含其他组分,例如硼或磷。优选的加氢裂化催化剂包括分子筛,例如zsm

5、沸石y或β沸石。
37.加氢裂化包括引导烃,以与在加氢裂化中具有催化活性的材料接触。条件通常是温度区间为250

400℃,压力区间为30

150巴,液时空速(lhsv)区间为0.5

4。由于加氢裂化是放热的,因此该过程可能涉及中间冷却,例如用冷的氢气、进料或产品进行骤冷。当在异构化中具有催化活性的材料上的活性金属是贵金属时,经加氢脱氧的原料通常通过气/液分离来纯化,以将潜在的催化剂毒物含量降低至低水平,例如硫、氮和碳氧化物的水平至低于1

10ppm
molar
。当活性金属是贱金属时,烃的气相优选包含至少50ppm
v
的硫。
38.不饱和脂肪酸的加氢脱氧和加氢裂化也可能产生芳烃作为副反应,尤其是在温度和/或转化率较高的情况下。因此,通常在加氢裂化过程中期望低转化率,这阻碍了向煤油馏分的完全转化。增加转化率的一个考虑因素是将经加氢裂化的中间产物再循环以使其与在加氢裂化中具有催化活性的材料进行额外的接触,但是即使这样也会产生大量的芳烃。
39.因此,可能进一步需要引导经加氢裂化的中间产物,以与在加氢脱芳烃中具有催化活性的材料接触,这是令人惊讶的,因为可再生原料不含或仅有很少的芳烃。
40.在某些情况下,加氢脱芳烃可以在加氢异构化中具有催化活性的材料存在下令人满意地进行,但是也可能需要单独的具有在加氢脱芳烃中具有催化活性的材料的反应器或反应器床。
41.在加氢脱芳烃中具有催化活性的材料通常包含活性金属(通常是单质贵金属,例如铂和/或钯,但也可能是硫化的贱金属,例如镍、钴、钨或钼)以及耐热载体(例如无定形二氧化硅

氧化铝、氧化铝、二氧化硅和二氧化钛,或其组合)。加氢脱芳烃是平衡控制的,在高温下有利于芳烃,因此贵金属优选作为活性金属,因为与贱金属相比,它们在较低的温度下
具有活性。
42.加氢脱芳烃包括引导中间产物,以与在加氢脱芳烃中具有催化活性的材料接触。随着芳烃和饱和分子之间的平衡在升高的温度下向芳烃转移,优选中等温度。条件通常是温度区间为200

350℃,压力区间为30

150巴之间,液时空速(lhsv)区间为0.5

8。由于在加氢脱芳烃中具有催化活性的材料上的优选活性金属是贵金属,因此经加氢裂化的中间产物通常通过气/液分离纯化以将硫含量降至低于1

10ppm。
43.为了将可再生原料转化为喷气燃料,需要将3或4种具有催化活性的材料组合起来,这自然使工艺布局复杂化,并且必须仔细考虑材料的顺序。另外,再循环可用于三个不同的目的;气体再循坏用于高效利用氢气,在加氢裂化中具有催化活性的材料周围的液体再循环用于使煤油馏分的收率最大化;在加氢脱氧中具有催化活性的材料周围的液体再循环用于限制由于放热的加氢脱氧反应而引起的温度升高。
44.根据本公开,通过加氢裂化以所谓的反向阶段布局来调节产物的沸点。在这里,原料与经加氢裂化的烃混合并被引导至加氢脱氧反应器。根据沸点将经加氢脱氧的产物料流分流,并且将至少一定量的沸点高于喷气燃料范围的产物再循环到加氢脱氧反应器上游的加氢裂化反应器中。再循环比可以最大化,以确保完全转化为在喷气范围内沸腾的产物,或者可以选择较低的再循环比,同时吹扫一定量的在喷气燃料范围以上沸腾的产物,以例如用作柴油。
45.加氢脱芳烃通常将需要较甜的条件,因为催化剂通常包含在较低温度下操作的贵金属,因此利用加氢脱芳烃反应的平衡在低温下远离芳烃这一事实。因此,可以在加氢脱芳烃之前进行气体的分离,并且任选根据沸点进行中间加氢裂化产物的分离,使得只有在煤油范围内沸腾的经加氢裂化的中间产物与在加氢脱芳烃中具有催化活性的材料接触。可以与加氢裂化结合或与加氢脱芳烃结合进行异构化。在两种情况下,在异构化中具有催化活性的材料可分别位于在加氢裂化或加氢脱芳烃中具有催化活性的材料的上游或下游。
46.通过对在加氢裂化中具有催化活性的材料进行再循环操作,允许在中等温度下实现完全转化,从而保持较高的煤油收率,并最大程度地减少了向石脑油和轻质油的过度裂化。使用异构化催化剂来改善喷气燃料的凝固点,允许增加喷气燃料的蒸馏终点,同时仍满足凝固点的要求。最后,由于第二阶段将使芳烃饱和,因此第一阶段不需要满足任何芳烃要求,因为这些芳烃化合物将在第二阶段达到饱和,这使得第一阶段可以处理较重质和/或更多的芳烃、环烷(naphthenic)或不饱和原料以及例如已知在典型的加氢处理条件下会少量产生芳烃的废弃食用油、热解产物或妥尔油沥青等原料。
47.根据本公开的一个实施方案对应于一种方法,其中包含一定量的硫的包含含氧化合物和经加氢裂化的再循环烃的料流被引导至含有具有催化活性的材料的加氢脱氧反应器,所述具有催化活性的材料包含一种或多种贱金属和具有低酸性的耐热载体。这样的材料在加氢脱氧和其他加氢处理反应中具有活性,用于除去杂原子和双键。在加氢脱氧反应器的进料流中必须存在一定量的硫化物,其既可以作为加氢裂化再循环烃的一部分,也可作为额外的硫化物添加到加氢脱氧反应器的进料流中。加氢裂化再循环烃作为热槽起作用,吸收从加氢脱氧反应释放出的反应热,因此在加氢脱氧反应器中保持适度的温度。该步骤提供了包含大量饱和直链烷烃以及一定量的水、硫化氢和氨的料流。
48.将经加氢处理的料流引导至分馏器(在分离器机构中适当除去气相之后),并抽出
经加氢处理的料流的至少气体馏分、中间馏分和塔底馏分。分馏器中流出的所有料流中的水、硫化氢和氨的含量都非常低。塔底馏分的重量太重,无法用作喷气燃料产物,因此被再循环。
49.将经加氢处理的料流的塔底馏分引导至含有具有催化活性的材料的加氢裂化反应器,该具有催化活性的材料包括一种或多种贱金属或一种或多种贵金属以及具有高酸性的耐热载体。这样的材料在加氢裂化中是活性的,并且该步骤提供了其中较高沸点的烃被转化为较低沸点的烃的料流。
50.出于成本的原因,可能优选贱金属材料,并且在这种情况下,例如,由于在加氢裂化反应器的入口处需要dmds,因此需要添加一定量的硫。可替代地,可能优选使用更昂贵且更具选择性的贵金属材料进行操作;在这种情况下,不需要添加硫。加氢裂化过程的严苛性将决定产品的沸点特征,它通常会在沸点高于柴油范围的馏分的完全转化下运行。如果选择加氢裂化的严苛性,以使沸点高于喷气燃料范围的馏分完全转化,则气体和石脑油的收率损失通常会更高。
51.如果在加氢裂化中具有催化活性的材料包含贵金属,则必须在加氢脱氧反应器之前以硫化氢或二甲基二硫化物(dmds)的形式添加硫化物。
52.经加氢处理的中间馏分的沸程适合用作喷气燃料,但芳烃的含量和凝固点不在规格范围内。因此,将馏分引导至包含在异构化中具有催化活性的材料和在加氢脱芳烃中具有催化活性的材料的异构化反应器中。两种材料均基于贵金属催化剂,例如铂,钯或它们的组合,并结合有酸性载体。对于异构化,所述酸性载体优选是形状选择性的,例如,沸石,以提供选择性异构化,将直链烷烃重排为支链烷烃,同时减少了轻质烃的生产。对于加氢脱芳烃,酸性载体也有助于反应,此外,当贵金属的活性高于贱金属的活性时,该反应将在较低的温度下进行。当芳烃和非芳烃化合物之间的平衡在低温下远离芳烃时,贵金属提供了在较低的温度下匹配平衡的好处。加氢脱芳烃甚至可能经由在异构化中具有催化活性的材料发生,这种材料通常具有一定的加氢脱芳烃活性。异构化反应器中可能会发生一定量的加氢裂化,因此加氢裂化料流比喷气燃料规格稍重可能是优选的。
53.因此,由于所有重质产品都被再循环和加氢裂化,因此该布局提供了原料至喷气燃料范围或轻质产品的完全转化。由于经加氢脱氧的料流的喷气燃料范围的馏分不再循环至加氢裂化器,而是仅分馏器的底部馏分被再循环,因此,喷气燃料范围收率高于所有烃均进行加氢裂化的布局。
54.此外,凝固点的调节是通过在贵金属催化剂上进行异构化而选择性地进行,而与加氢裂化条件无关,且最后,加氢脱芳烃可以在中等温度下以与在异构化反应中相同的反应器甚至相同的催化活性材料有效地进行。
55.如果希望仅生产柴油而不生产喷气燃料,则不需要加氢裂化。在这种情况下,可以优选绕过加氢裂化反应器或者可替代地,在该反应器之前冷却产物,以使其不具有活性。可以将工艺设备配置为允许这样的具有临时通知的配置,例如通过设置适当的设备和在控制室中进行控制。
56.附图简要说明
57.图1示出了根据本公开的方法。
58.图2示出了根据本公开的方法的简化图。
59.图3示出了根据现有技术的方法的简化图。
60.图1示出了由可再生原料(2)生产适合用作喷气燃料的烃(98)的工艺布局,其中可再生原料(2)与经加氢裂化的中间产物(14)混合,作为经加氢脱氧的进料料流(6)与一定量的富氢料流(12)一起引导至加氢脱氧工段(hdo),以在加氢脱氧条件下与在加氢脱氧中具有催化活性的材料接触。这提供了经加氢脱氧的中间产物(22)。经加氢脱氧的中间产物(22)被引导至气/液分离器(sep1),在其中它被分离成气态馏分(26)和经加氢裂化的液体中间产物(34)。气态馏分(26)被分流为任选的吹扫(28)和再循环气体(30),再循环气体(30)在压缩机(cm1)中加压,并作为氢气供应(12)引导至加氢脱氧工段(hdo)和加氢裂化工段(hdc)。经加氢裂化的液体中间产物(34)被引导至汽提塔(str),该汽提塔还接收汽提介质(38)和任选的汽提塔塔顶再循环物(40)。气态的汽提产物(42)从汽提塔被引导至气/液分离器(sep2),从汽提塔中抽出气相产物(46)和轻质石脑油馏分(48)。一定量的轻质石脑油作为产物(50)被抽出,一定量的轻质石脑油(52)可任选作为进料(90)引导至煤油稳定剂(stab),而一定量的轻质石脑油则作为塔顶再循环物(40)引导至汽提塔(str)。液体汽提塔产品(54)被引导至分馏器(frac),轻质塔顶料流(58)从该分馏器被引导至塔顶容器(ov),重质石脑油(62)从塔顶容器(ov)被抽出。一定量的重质石脑油(64)作为产品被抽出,另外一部分(66)作为分馏器再循环物(66)被引导。高沸点产物馏分(68)被分流成再循环料流(72)和再沸料流(74)。再循环料流(72)与气态馏分(78)合并,并作为加氢裂化器进料料流(4)被引导至在加氢裂化条件下操作的加氢裂化化工段(hdc)。从侧塔(sc)中抽出经加氢脱氧的中间喷气燃料产物(80),与富氢料流(84)合并,并作为进料(82)引导至后处理工段(pt),在此处其在异构化条件下与在异构化(isom)中具有催化活性的材料和在加氢脱芳烃条件下与在加氢脱芳烃(hda)中具有催化活性的材料接触,任选地进一步接收氢,以提供经处理的产物(86),该产物(86)被引导至产物气/液分离器(sep4),从中抽出第二气态馏分(78)并与再循环流(72)合并,并作为进料流中的补给氢提供给加氢裂化工段(hdc)。从产物气/液分离器(sep4)中抽出中间喷气燃料产物(88),并引导至另外的分离装置(stab),例如煤油稳定器,从中分离出液体产物(94)并分流成适合用作喷气燃料的烃馏分(98)和再沸器液体(96)。将来自煤油稳定器的气态塔顶物(92)与气态汽提塔产物(42)合并,并引导至气/液分离器(sep2)。
61.在进一步的实施方案(未示出)中,第二气态馏分(78)不作为加氢脱氧工段的补给气被引导,而是被引导至后处理工段(pt),这需要额外的压缩机,但也导致增加了简便性。在这种情况下,然后将补给氢单独添加到加氢脱氧工段。
62.在进一步的实施方案中,来自煤油稳定器的气态塔顶物(92)可以在单独的塔顶回路中进行处理,这具有简单性和独立性的优点,但以用于冷却、分离和回流泵的额外设备项目为代价。
63.在进一步的实施方案中,分离器、分馏和轻质馏分回收工段可以以本领域技术人员已知的多种方式配置。如果像lpg或丙烷这样的轻质材料很有价值,则可以通过使用海绵吸油系统(例如,使用来自分馏器塔顶的重质石脑油作为稀油,并将浓油送返汽提塔)来改善这些材料的回收。
64.图2是示出了类似于图1的布局的简化图,出于简化省略了气态料流的供应和分离的细节。可再生原料(202)与经加氢裂化的中间产物(206)混合,并作为加氢脱氧进料料流
(204)与一定量的富氢料流(未示出)一起被引导至加氢脱氧工段(hdo),其在该处在加氢脱氧条件下与在加氢脱氧中具有催化活性的材料接触。这提供了经加氢脱氧的中间产物(212)。经加氢脱氧的中间产物(212)被引导至分馏工段(frac)(出于简化仅示出为单个单元);将经加氢脱氧的中间产物分离为轻质塔顶料流(220)、石脑油料流(222)、经加氢脱氧的中间喷气燃料产物(224)和高沸点产物馏分(226)。所述高沸点馏分(226)作为再循环料流被引导至在加氢裂化条件下操作的加氢裂化工段(hdc),提供经加氢裂化的中间产物(206),其如上所述与可再生原料(202)混合。经加氢脱氧的中间喷气燃料产物(224)作为进料被引导至后处理工段(pt),其在该处与在异构化(isom)中具有催化活性的材料和在加氢脱芳烃条件下与在加氢脱芳烃(hda)中具有催化活性的材料接触,以提供经处理的喷气燃料产品(218)。
65.图3以类似于图2的详细程度示出了现有技术的示例,出于简化省略了气态料流的供应和分离的细节。将可再生原料(302)与再循环稀释剂料流(310)混合,并作为加氢脱氧进料料流(304)与一定量的富氢料流(未显示)一起被引导至加氢脱氧工段(hdo),其在该处在加氢脱氧条件下与在加氢脱氧中具有催化活性的材料接触。这提供了经加氢脱氧的中间产物(306),例如在汽提塔(sep)中从中分离出气体,提供一种甜的经加氢脱氧的中间产物(308),其被分流成所述再循环稀释剂料流(310)和异构化进料(312),所述异构化进料(312)被引导至加氢异构化工段(isom),其在该处在异构化条件下与在异构化中具有催化活性的材料接触,提供脱蜡的中间产物(314)。脱蜡的中间产物(314)被引导至加氢裂化工段(hdc),其在该处在加氢裂化条件下与在加氢裂化中具有催化活性的材料接触,提供经加氢裂化的产物(316)。经加氢裂化的产物(316)被引导至分馏工段(frac)(出于简化仅示出为单个单元),将经加氢裂化的产物分离成轻质塔顶料流(320),石脑油料流(322),喷气燃料产物(324)和塔底柴油馏分(326)。
实施例
66.基于两种相似的原料,对图2和图3所示工艺布局的性能进行了比较,并对工艺条件进行了优化,以实现最大的喷气燃料收率。
67.表1示出了可再生原料的特性,该可再生原料是50%的用过的食用油和50%的动物脂肪的混合物。原料包含6%的芳烃且其中80%在高于500℃沸腾;主要归因于高沸点的甘油三酯的存在。原料a用图2和图3所示的方法处理,该处理的结果示于表2中。
68.在加氢处理中,由于甘油三酯被转化为烷烃,因此沸点转变明显。另外,在加氢裂化反应器和异构化反应器中观察到一定量的转化。但是,归因于高的再循环量,因此每次通过的实际转化率非常低。
69.这两个实施例的结果均显示,生产出具有优良性能(低凝固点(

40℃)和低芳烃含量(<0.5wt%))的喷气燃料。根据本公开的实施例(图2)的喷气燃料收率为67wt/wt%,而根据现有技术的实施例(图3)的喷气燃料收率为58wt/wt%,而生产了11wt/wt%的柴油。此外,在两种情况下均会产生石脑油。在设计用于生产喷气燃料的方法中,9%的收率差异当然很有价值。
70.图2的配置(其中加氢脱氧产物被分流成轻质和重质馏分,重质馏分被再循环至加氢脱氧上游的加氢裂化反应器)导致重质原料完全转化为喷气燃料产物,同时避免将轻质
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜