一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种纳米金刚石氟化液流体的制备方法与流程

2021-08-17 13:50:00 来源:中国专利 TAG:冷却液 氟化 金刚石 流体 纳米

本发明属于冷却液技术领域,具体涉及一种纳米金刚石氟化液流体的制备方法。



背景技术:

当前全球数字经济已经逐渐发展成为重要的支柱产业之一,成为稳定全球经济增长的主要因素。云计算和云数据中心是数字经济时代的基础设施。随着数据中心服务器设备的持续增长,数据中心的能耗与日剧增,能源消耗成为制约数据中心发展的阻碍。预计2030年我国数据中心的能耗将达到4115亿千瓦时。

近年来,研究者和工业界投入了大量精力致力于探索节省数据中心能耗的方法。其中,浸没式液冷是一种主要的节能方法。浸没式液冷是把服务器核心发热部分完全浸没在冷却液中,通过冷却液把服务器的热量用冷却液相变的方式消耗掉和用热量传递转移的方式交换到外界中。应用浸没式液冷技术的计算机服务器机柜具有高能效、高密度、高可用和高可靠等特性,其中的it部件故障率相比传统风冷方式大幅降低。

对应用于服务器机柜浸没式冷却液,需要有绝缘性、较高的比热、较高的汽化潜热、低凝固点、低黏度、与金属橡胶等材料良好的兼容性、高闪点、良好的化学稳定性、无毒性、无污染和价格便宜。目前工业界应用的冷却液主要有以25r为代表的硅酸盐酯冷却液、以合成烃基类冷却液(poly—alpha—olefinfluids,pao)为代表的脂类化合物冷却液和以3mnovec氟化液全氟己烷为代表的氟碳化合物冷却液。然而25r存在氢化倾向并且能够形成硅酸盐凝胶等副产品。pao脂类化合物冷却液的比热容和热导率较低。氟化液是目前工业界应用部署最为广泛的服务器机柜冷却液,但热导率和比热容还不够高,应用时还需要配置大型水冷冷却液回流系统。



技术实现要素:

本发明的目的在于提供一种纳米金刚石氟化液流体的制备方法,以解决上述背景技术中提出的问题。

为实现上述目的,本发明提供如下技术方案:一种纳米金刚石氟化液流体的制备方法,按照先后顺序包括以下步骤:

s1:原料准备:将石墨烯超声分散在氟化液中形成前驱体溶液,使得按照重量份计,石墨烯为2%-5%,在这一配比条件下制备的纳米金刚石氟化液流体浓缩液中的纳米金刚石粒径分布在4-8纳米之间,而且金刚石与氟化液在激光辐照后,吸附性更好,长时间静置也没有沉降产生;

s2:在上述前驱体溶液外布置水流冷凝循环系统,确保一直处于室温状态,并对前驱体溶液进行进行超声震荡,通过持续超声震荡,前驱体溶液中的石墨烯粉体能够均匀分散在氟化液溶液中,确保反应体系受到的激光辐照均匀,使得最后得到的产物粒径分布均匀;

s3:对上述超声震荡后的前驱体溶液用脉冲激光连续辐照,每隔2小时对溶液取样,测试溶液的电阻率,当电阻率大于1×108欧姆·米,停止辐照,得到纳米金刚石氟化液流体浓缩液;

s4:将上述制备得到的纳米金刚石氟化液流体浓缩液按体积比为1:100添加到氟化液溶液中,得到纳米金刚石氟化液流体。

优选的是,所述步骤s1中石墨烯采用单层石墨烯或多层石墨烯。

上述任一方案中优选的是,所述步骤s1、s4中的氟化液为氟碳化合物。

纳米金刚石氟化液流体在电子设备液冷系统中的应用,尤其是应用于计算机服务器和服务器机柜的液冷系统的冷却液。

本发明的技术效果和优点:该纳米金刚石氟化液流体的制备方法,其原料来源广泛,价格便宜;本发明的生产步骤简单,非常方便大量的工业生产,且纳米金刚石氟化液流体能够作为计算机服务器和服务器机柜的浸没式冷却液体,除了具有氟化液的优点外,还具有更高比热容、更高热导率和更高相变能的优点,相同条件下,相同的部署和应用环境,应用纳米金刚石氟化液流体的服务器比应用氟化液的服务器温度低3-8摄氏度。

具体实施方式

下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。

实施例1:

一种纳米金刚石氟化液流体的制备方法,按照先后顺序包括以下步骤:

s1:将2g石墨烯超声分散在100g全氟己烷溶液中,形成前驱体溶液;

s2:在上述前驱体溶液外布置水流冷凝循环系统,确保一直处于室温状态,并对前驱体溶液进行进行超声震荡;

s3:对上述超声震荡后的前驱体溶液用脉冲激光连续辐照,每隔2小时对溶液取样,测试溶液的电阻率,当电阻率大于1×108欧姆·米,停止辐照,得到纳米金刚石氟化液流体浓缩液;

s4:将上述制备得到的纳米金刚石氟化液流体浓缩液按体积比为1:100添加到氟化液溶液中,得到纳米金刚石氟化液流体。

具体的,步骤s1中石墨烯采用单层石墨烯或多层石墨烯。

具体的,步骤s1、s4中的氟化液为氟碳化合物。

实施例2:

一种纳米金刚石氟化液流体的制备方法,按照先后顺序包括以下步骤:

s1:将3.5g石墨烯超声分散在100g全氟己烷溶液中,形成前驱体溶液;

s2:在上述前驱体溶液外布置水流冷凝循环系统,确保一直处于室温状态,并对前驱体溶液进行进行超声震荡;

s3:对上述超声震荡后的前驱体溶液用脉冲激光连续辐照,每隔2小时对溶液取样,测试溶液的电阻率,当电阻率大于1×108欧姆·米,停止辐照,得到纳米金刚石氟化液流体浓缩液;

s4:将上述制备得到的纳米金刚石氟化液流体浓缩液按体积比为1:100添加到氟化液溶液中,得到纳米金刚石氟化液流体。

具体的,步骤s1中石墨烯采用单层石墨烯或多层石墨烯。

具体的,步骤s1、s4中的氟化液为氟碳化合物。

实施例3:

一种纳米金刚石氟化液流体的制备方法,按照先后顺序包括以下步骤:

s1:将5g石墨烯超声分散在100g全氟己烷溶液中,形成前驱体溶液;

s2:在上述前驱体溶液外布置水流冷凝循环系统,确保一直处于室温状态,并对前驱体溶液进行进行超声震荡;

s3:对上述超声震荡后的前驱体溶液用脉冲激光连续辐照,每隔2小时对溶液取样,测试溶液的电阻率,当电阻率大于1×108欧姆·米,停止辐照,得到纳米金刚石氟化液流体浓缩液;

s4:将上述制备得到的纳米金刚石氟化液流体浓缩液按体积比为1:100添加到氟化液溶液中,得到纳米金刚石氟化液流体。

具体的,步骤s1中石墨烯采用单层石墨烯或多层石墨烯。

具体的,步骤s1、s4中的氟化液为氟碳化合物。

实施例4:

一种纳米金刚石全氟丁基甲醚纳米流体的制备方法,包括以下步骤:

s1:将2g石墨烯超声分散在100g全氟丁基甲醚溶液中,形成前驱体溶液;

s2:对前驱体溶液持续进行超声震荡,并在前驱体溶液外布置水流冷凝循环系统,确保前驱体溶液一直处于室温状态;

s3:用脉冲激光持续照射前驱体溶液;

s4:每隔2小时对溶液取样,测试溶液的电阻率,直到溶液的电阻率大于1×108欧姆·米,则纳米金刚石/全氟丁基甲醚纳米流体浓缩液制成。

s5:将制备得到的纳米金刚石/全氟丁基甲醚纳米流体浓缩液按1:100的比例添加到全氟丁基甲醚溶液中,则得到纳米金刚石含量为0.02%的纳米金刚石/全氟丁基甲醚纳米流体。

本发明中的纳米金刚石/全氟丁基甲醚纳米流体,生产方法比较简单,只需要石墨烯,超声分散在全氟丁基甲醚溶液中,进行激光照射即可生产出纳米金刚石/全氟丁基甲醚纳米流体,对生产环境要求不高。

本发明生产的纳米金刚石/全氟丁基甲醚纳米流体能够作为浸没式液冷服务器的液冷介质。

实施例5:

一种纳米金刚石全氟丁基甲醚纳米流体的制备方法,包括以下步骤:

s1:将3.5g石墨烯超声分散在100g全氟丁基甲醚溶液中,形成前驱体溶液;

s2:对前驱体溶液持续进行超声震荡,并在前驱体溶液外布置水流冷凝循环系统,确保前驱体溶液一直处于室温状态;

s3:用脉冲激光持续照射前驱体溶液;

s4:每隔2小时对溶液取样,测试溶液的电阻率,直到溶液的电阻率大于1×108欧姆·米,则纳米金刚石/全氟丁基甲醚纳米流体浓缩液制成。

s5:将制备得到的纳米金刚石/全氟丁基甲醚纳米流体浓缩液按1:100的比例添加到全氟丁基甲醚溶液中,则得到纳米金刚石含量为0.02%的纳米金刚石/全氟丁基甲醚纳米流体。

实施例6:

一种纳米金刚石全氟丁基甲醚纳米流体的制备方法,包括以下步骤:

s1:将5g石墨烯超声分散在100g全氟丁基甲醚溶液中,形成前驱体溶液;

s2:对前驱体溶液持续进行超声震荡,并在前驱体溶液外布置水流冷凝循环系统,确保前驱体溶液一直处于室温状态;

s3:用脉冲激光持续照射前驱体溶液;

s4:每隔2小时对溶液取样,测试溶液的电阻率,直到溶液的电阻率大于1×108欧姆·米,则纳米金刚石/全氟丁基甲醚纳米流体浓缩液制成。

s5:将制备得到的纳米金刚石/全氟丁基甲醚纳米流体浓缩液按1:100的比例添加到全氟丁基甲醚溶液中,则得到纳米金刚石含量为0.02%的纳米金刚石/全氟丁基甲醚纳米流体。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜