一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

内部限域异质结蛋黄-壳电极材料及其制备方法与应用与流程

2021-10-20 01:06:00 来源:中国专利 TAG:电极 蛋黄 材料 锂离子电池 制备方法

内部限域异质结蛋黄

壳电极材料及其制备方法与应用
技术领域
1.本发明属于锂离子电池领域,涉及锂离子电池负极材料,具体涉及内部限域异质结蛋黄

壳电极材料及其制备方法与应用。


背景技术:

2.公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
3.室温锂离子电池因低成本、高安全和高能量密度成为下一代具有极大应用前景的新型二次电池。目前,可以作为锂离子电池负极的材料包括碳材料(硬碳、炭黑、碳纤维、石墨烯等)、氧化物/磷酸盐、锂合金/复合物等,在这些众多候选负极材料中,二硫化钼(mos2)具有类石墨烯二维片层结构,大的层间距有利于锂离子的传输和转移,使得理论比容量高达670mah/g,非常适合用作锂离子电池负极电极。但是,发明人研究发现,却因其片层结构易聚集堆叠不可控、导电性差等缺点导致实际比容量较低,电化学稳定性较差。


技术实现要素:

4.为了解决现有技术的不足,本发明的目的是提供内部限域异质结蛋黄

壳电极材料及其制备方法与应用,本发明提供的负极材料具有更好的电化学性能。
5.为了实现上述目的,本发明的技术方案为:
6.一方面,一种内部限域异质结蛋黄

壳电极材料,在透射电子显微镜中,所述电极材料为蛋黄

壳结构,蛋黄包括负载在碳核上的纳米co9s8和纳米mos2,纳米co9s8和纳米mos2形成的异质结,壳为负载在碳壳内壁上的纳米co9s8和纳米mos2共同形成的多面体结构。
7.为了解决二硫化钼作为锂离子电池负极材料电化学性能差的问题,本发明利用蛋黄

壳结构提高稳定性和空间利用率,解决片层电极结构易堆叠和粉化问题,同时利用co9s8‑
mos2异质结提高导电性,最终优化其储锂性能。
8.其次,本发明形成的壳为多面体结构(例如(正)十面体、(正)十二面体等),有利于提高比表面积,在作为锂离子电池负极材料时,有助于增加电化学反应活性位点,缩短离子传输路径,从而提高其电化学性能。
9.另一方面,一种内部限域异质结蛋黄

壳电极材料的制备方法,以含有钴的金属有机骨架化合物作为模板,利用聚合反应在模板表面进行凝胶包覆,再在惰性气氛下进行一次煅烧,添加硫源和钼源进行离子交换反应,然后在惰性气氛下进行二次煅烧获得内部限域异质结蛋黄

壳电极材料。
10.本发明的方法直接以金属有机骨架作为自牺牲模板,经过上述过程能够衍生出生长方向可控的co9s8‑
mos2异质结并使其负载在碳的蛋黄

壳结构上。同时,金属有机骨架能够保证形成的壳为多面体结构,从而有利于提高比表面积,在作为锂离子电池负极材料时,有助于增加电化学反应活性位点,缩短离子传输路径,从而提高其电化学性能。
11.第三方面,一种上述内部限域异质结蛋黄

壳电极材料在离子电池负极中的应用。
12.第四方面,一种锂离子电池负极,包括集流体、导电材料、粘结剂和活性材料,粘结剂将导电材料和活性材料粘结在集流体上,所述活性材料为上述内部限域异质结蛋黄

壳电极材料。
13.本发明通过增加导电材料增加电极的导电性,通过集流体将电池活性物质产生的电流汇集起来以便形成较大的电流对外输出。
14.第五方面,一种锂离子电池,包括正极、负极、电解液和隔膜,所述负极为上述锂离子电池负极。
15.本发明的有益效果为:
16.1.本发明采用含有钴的金属有机骨架化合物作为模板,具有丰富表界面效应,依次经过聚合反应形成的聚合物(例如酚醛树脂)进行凝胶包覆、离子交换和退火煅烧策略,得到co9s8‑
mos2异质结,并使其内嵌在碳的蛋黄

壳菱形多面体中。该方法有效的将co9s8‑
mos2异质结的生长方向控制在碳壳的内部空间和蛋黄核上,实现了结构的可调控性,提高了空间利用率,减少了团聚和结块现象。其中,聚合物凝胶包覆大大提高了前驱体在后续离子交换和退火煅烧过程中的结构稳定性,并且为后续co9s8‑
mos2异质结的生成限定了生长方向。离子交换和退火煅烧则促进纳米co9s8和纳米mos2形成异质结。
17.2.本发明提供的内部限域异质结蛋黄

壳电极材料,壳具有多孔结构,可提高电极结构稳定性,提供丰富活性位点和传输孔道,解决了充放电时的体积膨胀效应及传输孔道堵塞问题,促使电化学和赝电容反应高效率进行;同时,壳内异质结的构建,不仅诱导内建电场,加速多相界面处电子和离子转移速度,提高导电性,而且影响不同充放电阶段产物的可逆生长和分解过程,调控电化学和赝电容反应进程。多面体壳的形成有利于进一步比表面积提高,在作为锂离子电池负极材料时,有助于增加电化学反应活性位点,缩短离子传输路径,从而提高其电化学性能。
18.3.本发明提供的内部限域异质结蛋黄

壳电极材料在结构工程和电子结构工程的协同作用下,增强了锂离子电池负极材料的循环稳定性和可逆比容量。
附图说明
19.构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
20.图1为本发明实施例1制备的co9s8‑
mos2@c异质结蛋黄

壳多面体的场发射扫描电镜图片;
21.图2为本发明实施例1制备的co9s8‑
mos2@c异质结蛋黄

壳多面体的低倍透射扫描电镜图;
22.图3为本发明实施例1制备的co9s8‑
mos2@c异质结蛋黄

壳多面体的xrd图谱;
23.图4为实施例1制备的co9s8‑
mos2@c异质结蛋黄

壳多面体的循环伏安曲线;
24.图5为实施例1制备的co9s8‑
mos2@c异质结蛋黄

壳多面体的电化学循环性能。
具体实施方式
25.应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另
有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
26.需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
27.鉴于二硫化钼作为锂离子电池负极材料存在电化学性能差的问题,本发明提出了内部限域异质结蛋黄

壳电极材料及其制备方法与应用。
28.本发明的一种典型实施方式,提供了一种内部限域异质结蛋黄

壳电极材料,在透射电子显微镜中,所述电极材料为蛋黄

壳结构,蛋黄包括负载在碳核上的纳米co9s8和纳米mos2,纳米co9s8和纳米mos2形成的异质结,壳为负载在碳壳内壁上的纳米co9s8和纳米mos2共同形成的多面体结构。
29.首先,本发明利用蛋黄

壳结构提高稳定性和空间利用率,解决片层电极结构易堆叠和粉化问题,同时利用co9s8‑
mos2异质结提高导电性,最终优化其储锂性能。
30.其次,本发明形成的壳为多面体结构(例如(正)十面体、(正)十二面体等),有利于提高比表面积,在作为锂离子电池负极材料时,有助于增加电化学反应活性位点,缩短离子传输路径,从而提高其电化学性能。
31.本发明壳为多孔结构。
32.该实施方式的一些实施例中,蛋黄包括多孔碳结构、co9s8纳米颗粒和mos2纳米片。
33.该实施方式的一些实施例中,壳的厚度为纳米级。
34.本发明的另一种实施方式,提供了一种内部限域异质结蛋黄

壳电极材料的制备方法,以含有钴的金属有机骨架化合物作为模板,利用聚合反应在模板表面进行凝胶包覆,再在惰性气氛下进行一次煅烧,添加硫源和钼源进行离子交换反应,然后在惰性气氛下进行二次煅烧获得内部限域异质结蛋黄

壳电极材料。
35.本发明的方法直接金属有机骨架作为自牺牲模板,经过上述过程能够衍生出生长方向可控的co9s8‑
mos2异质结并使其负载在碳的蛋黄

壳结构上。同时,金属有机骨架能够保证形成的壳为多面体结构,从而有利于提高比表面积,在作为锂离子电池负极材料时,有助于增加电化学反应活性位点,缩短离子传输路径,从而提高其电化学性能。
36.该实施方式的一些实施例中,含有钴的金属有机骨架化合物为zif

67。该金属有机骨架化合物的制备方法更为简单,有利于降低成本。
37.该实施方式的一些实施例中,利用聚合反应为制备酚醛树脂的反应。采用酚醛树脂更有利于在离子交换机煅烧过程中的结构稳定性,从而能够更好的限制co9s8‑
mos2异质结的生长方向。
38.在一种或多种实施例中,酚醛树脂的原料为间苯二酚和甲醛。具体的,将十二烷基三甲基溴化铵(ctab)、间苯二酚和氨水溶解,混合均匀,然后添加甲醛溶液获得。进行凝胶包覆的过程为,将含有钴的金属有机骨架化合物溶解,再添加ctab、间苯二酚和氨水混合均匀,然后添加甲醛溶液获得。ctab和间苯二酚的物质的量比为1500~2000:1~5,氨水和甲醛体积比为1~2:6。氨水的浓度为25.0~28.0wt.%。
39.一次煅烧的目的在于将聚合物碳化,形成多孔碳结构,有利于离子交换。该实施方
式的一些实施例中,一次煅烧的温度为300~800℃。一次煅烧的升温速率为2~5℃/min。
40.该实施方式的一些实施例中,将四硫代钼酸铵作为硫源和钼源。
41.该实施方式的一些实施例中,二次煅烧的温度为400~800℃。二次煅烧的升温速率为4~8℃/min。二次煅烧的时间为2~3h。
42.本发明的第三种实施方式,提供了一种上述内部限域异质结蛋黄

壳电极材料在离子电池负极中的应用。
43.本发明的第四种实施方式,提供了一种锂离子电池负极,包括集流体、导电材料、粘结剂和活性材料,粘结剂将导电材料和活性材料粘结在集流体上,所述活性材料为上述内部限域异质结蛋黄

壳电极材料。
44.本发明通过增加导电材料增加电极的导电性,通过集流体将电池活性物质产生的电流汇集起来以便形成较大的电流对外输出。
45.本发明的第五种实施方式,提供了一种锂离子电池,包括正极、负极、电解液和隔膜,所述负极为上述锂离子电池负极。
46.为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
47.实施例1
48.内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳电极材料的制备方法:
49.(1)将物质的量比为5:1的六水和硝酸钴和2

甲基咪唑有机配体溶解在甲醇中,老化处理24小时,抽滤洗涤,真空干燥,收集固体zif

67。
50.(2)50mg的zif

67溶解在水和乙醇的混合溶液中,依次加入十二烷基三甲基溴化铵(ctab)和间苯二酚和氨水(浓度为26.0wt.%),搅拌30分钟,然后再加入甲醛溶液,继续搅拌4小时得到沉淀物,其中ctab和间苯二酚的物质的量比为1500:1,氨水和甲醛体积比为1:6。将沉淀物用乙醇和去离子水洗涤干净,真空干燥后,退火煅烧,控制升温速度为2℃/min,退火煅烧温度为450℃,退火时间2小时,退火煅烧氛围为氩气氛围。得到凝胶包覆的zif

67,记为zif

67

pu。
51.(3)将质量比为1:3的zif

67

pu和四硫代钼酸铵分别溶在乙醇和水溶液中,随后将两种溶液混合搅拌12小时得到沉淀物。用乙醇和去离子水将其洗涤干净后,退火煅烧,退火煅烧气氛氛围为氩气,温度为600℃,时间为2小时,升温速率为5℃/min,得到内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳多面体,如图1~3所示。
52.由图2可以看出,本发明严格的将co9s8‑
mos2的生长限制在了多面体的内部,实现了限域生长可控性。
53.图3表明,该实施例制备的结构为核壳结构,尺寸平均1.0μm,在壳的内壁和内核上,生长有毛刺状的mos2,其层间距扩大到0.65nm。本发明特殊结构可以提高电极材料的空间利用率,同时增加材料的结构稳定性。
54.将70wt%mos2‑
co9s8@c、20wt%炭黑和10wt%聚偏氟氯乙烯(pvdf)混合在n

甲基吡咯烷酮(nmp)溶液中形成均匀的浆料并涂覆在铜箔上,作为负极电极。将锂金属箔作为对电极。以含有1.0m lipf6的ec:dmc:emc=1:1:1vol%的溶液为电解质。在ar手套箱中组装成2025型号半电池。
55.半电池的充电/放电测试在landct2001a电池测试系统(中国武汉)上进行。其循环
伏安特性在电化学工作站(parstat2273)上执行。赝电容贡献量占比依据i(v)=k1v k2v
1/2
计算得到。
56.检测结果如图4、5所示,由图4可以看出,0.5ma/s扫速下co9s8‑
mos2@c电极材料的赝电容贡献量占比61%。由图5可以看出,co9s8‑
mos2@c电极材料的在1ag
‑1电流密度下循环600圈的比容量为1054mah g
‑1。
57.实施例2
58.内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳电极材料的制备方法:
59.(1)将物质的量比为4:1的六水和硝酸钴和2

甲基咪唑有机配体溶解在甲醇中,老化处理24小时,抽滤洗涤,真空干燥,收集固体zif

67。
60.(2)100mg的zif

67溶解在水和乙醇的混合溶液中,依次加入十二烷基三甲基溴化铵(ctab)和间苯二酚和氨水(浓度为26.0wt.%),搅拌40分钟,然后再加入甲醛溶液,继续搅拌8小时得到沉淀物,其中ctab和间苯二酚的物质的量比为1500:5,氨水和甲醛体积比为1:6。将沉淀物用乙醇和去离子水洗涤干净,真空干燥后,退火煅烧,控制升温速度为2℃/min,退火煅烧温度为300℃,退火时间2小时,退火煅烧氛围为氩气氛围。得到凝胶包覆的zif

67,记为zif

67

pu。
61.(3)将质量比为1:2的zif

67

pu和四硫代钼酸铵分别溶在乙醇和水溶液中,随后将两种溶液混合搅拌6小时得到沉淀物。用乙醇和去离子水将其洗涤干净后,退火煅烧,退火煅烧气氛氛围为氩气,温度为400℃,时间为2小时,升温速率为5℃/min,得到内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳多面体。
62.实施例3
63.内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳电极材料的制备方法:
64.(1)将物质的量比为5:1的六水和硝酸钴和2

甲基咪唑有机配体溶解在甲醇中,老化处理24小时,抽滤洗涤,真空干燥,收集固体zif

67。
65.(2)150mg的zif

67溶解在水和乙醇的混合溶液中,依次加入十二烷基三甲基溴化铵(ctab)和间苯二酚和氨水(浓度为26.0wt.%),搅拌50分钟,然后再加入甲醛溶液,继续搅拌12小时得到沉淀物,其中ctab和间苯二酚的物质的量比为2000:1,氨水和甲醛体积比为2:6。将沉淀物用乙醇和去离子水洗涤干净,真空干燥后,退火煅烧,控制升温速度为5℃/min,退火煅烧温度为650℃,退火时间2小时,退火煅烧氛围为氩气氛围。得到凝胶包覆的zif

67,记为zif

67

pu。
66.(3)将质量比为1:4的zif

67

pu和四硫代钼酸铵分别溶在乙醇和水溶液中,随后将两种溶液混合搅拌8小时得到沉淀物。用乙醇和去离子水将其洗涤干净后,退火煅烧,退火煅烧气氛氛围为氩气,温度为500℃,时间为2小时,升温速率为5℃/min,得到内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳多面体。
67.实施例4
68.内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳电极材料的制备方法:
69.(1)将物质的量比为6:1的六水和硝酸钴和2

甲基咪唑有机配体溶解在甲醇中,老化处理24小时,抽滤洗涤,真空干燥,收集固体zif

67。
70.(2)200mg的zif

67溶解在水和乙醇的混合溶液中,依次加入十二烷基三甲基溴化铵(ctab)和间苯二酚和氨水(浓度为26.0wt.%),搅拌60分钟,然后再加入甲醛溶液,继续
搅拌16小时得到沉淀物,其中ctab和间苯二酚的物质的量比为2000:5,氨水和甲醛体积比为2:6。将沉淀物用乙醇和去离子水洗涤干净,真空干燥后,退火煅烧,控制升温速度为5℃/min,退火煅烧温度为800℃,退火时间2小时,退火煅烧氛围为氩气氛围。得到凝胶包覆的zif

67,记为zif

67

pu。
71.(3)将质量比为1:6的zif

67

pu和四硫代钼酸铵分别溶在乙醇和水溶液中,随后将两种溶液混合搅拌18小时得到沉淀物。用乙醇和去离子水将其洗涤干净后,退火煅烧,退火煅烧气氛氛围为氩气,温度为800℃,时间为2小时,升温速率为5℃/min,得到内部限域mofs衍生co9s8‑
mos2@c异质结蛋黄

壳多面体。
72.以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜