一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用与流程

2021-10-09 14:13:00 来源:中国专利 TAG:石墨 负载 薄膜 氧化 还原


1.本发明涉及一种还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用。


背景技术:

2.现代社会对能源的依赖程度日益提高,能源对人类社会发展起着至关重要的作用。然而,传统的不可再生的化石能源(如:煤、石油和天然气等)在地球的储量有限,而且在使用过程中会排放出大量有毒有害气体和颗粒物,严重破坏人类和其它生物生存和生活的环境,空气污染、水污染、土壤污染等正严重影响到人们的健康,受到了全球的广泛关注。能源和环境问题是全球各个国家所面临的两大课题,因此,合理开发和利用无污染的可再生能源,改善能源的供给结构,减少温室气体和有毒有害气体排放,保护人类赖以生存的地球,已经成为世界能源可持续发展战略的重要组成部分;另一方面,传统的环境治理方法存在诸如对污染物降解不彻底、耗能高、投入大以及容易引起对环境的二次污染等不足,寻找降解效率高、能耗低、不产生二次污染的污染物降解方法成为当今学术界的研究热点,宽禁带半导体因其较好的光催化降解污染污染物的能力受到科研工作者的广泛关注。
3.二氧化钛(tio2)作为一种重要的宽禁带半导体材料,因其储量丰富、制备成本相对较低、无毒以及独特的光电特性,使得tio2在气敏传感器、光电探测、光电转换、燃料电池、太阳能电池、污水处理及空气净化等诸多领域具有广泛的应用前景,受到了大家的极大关注。然而,未掺杂的tio2材料仅能吸收太阳光谱中少量的紫外光线,而太阳光的能量绝大部分集中在可见光和红外部分,另外,该材料的光生电子空穴对容易复合,光生电子

空穴复合率高,使得该材料的光量子产率较低,不利于对太阳光利用,禁带宽度较宽和光量子效率较低限制了二氧化钛的在光电领域的推广和应用。因此,如何构筑tio2基复合材料,使其禁带延伸到可见光区域,同时降低光生电子

空穴对复合率成为科研工作者重点关注的问题。电催化全解水被认为是一种具有重要应用前景的能源转换和存储技术,它把电能转换成化学能,并以氢能的形式存储起来,然而,电催化裂解水反应高度依赖电催化剂在析氢反应和析氧反应中的活性,因此,提高电催化析氢的效率成为广大科研工作者努力的方向。研究表明,二氧化钛是一种潜在的电催化剂,然而纯的二氧化钛内在导电性能较差,限制了其整体的电催化性能,电催化效率不高。研究结果显示,通过元素掺杂或者与一些二维材料复合可以有效调控二氧化钛的电子结构,提高其电导率、降低吸附自由能,以提高催化剂的催化效率。


技术实现要素:

4.本发明所要解决的技术问题是克服现有技术的缺陷,提供一种还原氧化石墨烯负载二氧化钛薄膜的制备方法,它可以调控二氧化钛薄膜表面还原氧化石墨烯的负载量,进而调节复合薄膜晶体结构、表面形貌、光电转换及其电催化性能。
5.为了解决上述技术问题,本发明的技术方案是:一种还原氧化石墨烯负载二氧化钛薄膜的制备方法,方法步骤中包含:
将盐酸、去离子水和钛酸丁酯混合均匀,得到混合液;高压釜底部放置fto玻璃,作为反应容器;将装有混合液的反应容器置于烘箱中,混合液反应后得到生成物,将生成物清洗干净、并烘干,得到二氧化钛薄膜;以二氧化钛薄膜为工作电极,铂片为对电极,ag/agcl为参比电极,采用三电极法在0.5g/l的氧化石墨烯磷酸溶液中进行电沉积,得到样品,将样品清洗干净、并烘干,得到rgo

tio2薄膜。
6.进一步,混合液中,盐酸、去离子水和钛酸丁酯的体积比为30:30:1。
7.进一步,所述高压釜的内衬为聚四氟乙烯。
8.进一步,电沉积电压为

0.1v。
9.进一步,混合液的反应时间为12h,烘箱中的温度为150℃。
10.进一步,在清洗生成物及样品的过程中,均是利用去离子水清洗。
11.进一步,烘干条件为:大气氛围下60℃。
12.进一步,制备混合液的过程中,将盐酸、去离子水和钛酸丁酯在室温条件下搅拌30min。
13.本发明还提供了rgo

tio2薄膜的两种应用,rgo

tio2薄膜可应用于光电探测及催化反应。
14.采用了上述技术方案后,本发明可以调控二氧化钛薄膜表面还原氧化石墨烯的负载量,进而调节复合薄膜晶体结构、表面形貌、光电转换及其电催化性能,找出最佳还原氧化石墨烯的负载量,获得具有优异光电转换性能和电催化性能的rgo/tio2薄膜复合材料,可应用于光电检测及催化反应,本制备方法还具有工艺简单、制备成本不高等优点。
附图说明
15.图1为本发明的实施例一所制备的rgo

tio2薄膜的xrd图谱;图2为本发明的实施例一所制备的rgo

tio2薄膜的raman光谱;图3为本发明的实施例一所制备的rgo

tio2薄膜的可见光响应曲线;图4为本发明的实施例一所制备的rgo

tio2薄膜的oer极化曲线;图5为本发明的实施例一所制备的rgo

tio2薄膜的阻抗谱;图6为本发明的实施例一所制备的rgo

tio2薄膜的her极化曲线。
具体实施方式
16.为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。
17.实施例一分别量取30毫升盐酸、30毫升去离子和1毫升钛酸丁酯,在烧杯中将其混合,并在室温条件下磁力搅拌30分钟,然后将混合溶液转移到100毫升内衬聚四氟乙烯的高压釜中,并将清洗干净的氟掺杂二氧化锡透明导电玻璃置于高压釜的底部,将高压釜置于150
ꢀº
c的烘箱中反应12小时,反应结束后,高压釜自然冷却至室温,取出生成物,用去离子水清洗干净,随后将其放置到60
ꢀº
c的烘箱中,在大气氛围中烘干,得到二氧化钛薄膜。
18.称取一定量的氧化石墨烯,配置0.5 g/l氧化石墨烯的磷酸溶液,并将其置于超声清洗机中超声中处理2小时,然后以制备的二氧化钛薄膜作为工作电极,铂片作为对电极,ag/agcl作为参比电极,采用三电极法在二氧化钛薄膜表面沉积还原氧化石墨烯,沉积电压为

0.1v,电沉积时间为15分钟,将制备好的样品用去离子水清洗数次,并在60
ꢀº
c的大气氛围中烘干,得到rgo

tio2薄膜。
19.图1为实施例一制备的rgo

tio2薄膜的xrd图谱,可以看出,衍射谱在2θ=33.89
°
, 37.95
°
, 51.78
°
, 54.75
°
和61.89
°
处出现衍射峰,该衍射峰分别对应于氟掺杂二氧化锡薄膜透明导电玻璃的(101),(200),(211),(220)和(310)晶面,还有一个衍射峰位于2θ=36.08
°
处,该衍射峰与金红石相tio2的(101)晶面相对应。未观察到与还原氧化石墨烯相对应的衍射峰,可能与薄膜中还原氧化石墨烯的含量或者仪器探测精度有关。
20.图2为实施例一制备的rgo

tio2薄膜的拉曼光谱图,可以看出,样品在445cm
‑1和607cm
‑1处出现了两个相对较强的拉曼散射峰,分别对应于金红石相二氧化钛的b1g 和eg振动模式。在拉曼光谱中还有两个较弱的中心位于1418 和1615 cm
‑1的拉曼散射峰,这两个衍射峰分别对应于还原氧化石墨烯的d带和g带,说明有少量的还原氧化石墨烯沉积在二氧化钛薄膜表面。
21.图3为实施例一制备的rgo

tio2薄膜的可见光响应曲线,样品的光电响应性能测试采用标准的三电极系统,以rgo

tio2薄膜作为工作电极(浸入溶液的面积为1
×
1 cm2),铂片为对电极,ag/agcl (3.5 mol/l kcl)作为参比电极,0.5 mol/l的na2so4溶液作为薄膜光电响应测试的电解液,光源为am 1.5标准模拟太阳光。rgo

tio2薄膜对太阳光的响应时间很快,约为2s,光电流密度约为7
×
10

7a/cm2。
22.图4为实施例一制备的rgo

tio2薄膜在碱性条件下的oer测试结果,可以看出,该样品在10ma cm
‑2时的过电位为281 mv (vs. rhe)。
23.图5为实施例一制备的rgo

tio2薄膜的阻抗谱,根据等效电路模型对该曲线进行拟合,得到该催化剂的电荷转移电阻(rct)约为11.04ω。
24.图6为本实施例制备的rgo/tio2复合薄膜的在碱性条件下的her极化曲线,结果显示,该样品在10ma cm
‑2时的过电位为334 mv (vs. rhe)。
25.实施例二将30毫升盐酸、30毫升去离子和1毫升钛酸丁酯混合并在室温条件下磁力搅拌30分钟,然后将混合溶液倒入100毫升的高压釜中,并将清洗干净的fto透明导电玻璃置于高压釜的底部,将高压釜置于150
ꢀº
c的烘箱中反应12小时,反应结束后,高压釜自然冷却至室温,取出生成物,用去离子水清洗干净,随后将其放置到60
ꢀº
c的烘箱中,在大气氛围中烘干,得到二氧化钛薄膜。
26.称取一定量的氧化石墨烯,配置0.5 g/l氧化石墨烯的磷酸溶液,并将其置于超声清洗机中超声中处理2小时,然后以制备的二氧化钛薄膜作为工作电极,铂片作为对电极,ag/agcl作为参比电极,采用三电极法在二氧化钛薄膜表面沉积还原氧化石墨烯,采用电沉积法在二氧化钛薄膜表面沉积还原氧化石墨烯,沉积电压为

0.1v,电沉积时间为20分钟,将制备好的样品用去离子水清洗数次,并在60
ꢀº
c的大气氛围中烘干,得到rgo

tio2薄膜。
27.与实施例一对比,本实施例得到的x射线衍射谱中衍射峰的数目和峰位未发生明显变化,衍射峰的相对强度略有减小,可能与还原氧化石墨烯沉积厚度增加有关。本实施例
的拉曼光谱显示,依然在445cm
‑1和607cm
‑1处出现了两个相对较强的拉曼散射峰,分别对应于金红石相二氧化钛的b1g 和eg振动模式。在1418 和1615 cm
‑1处出现两个相对较弱的拉曼散射峰,分别对应于还原氧化石墨烯的d带和g带。本实施例得到的复合薄膜的可见光响应速度也很快,与实施例一基本相同,光电流密度约为1
×
10

6a/cm2。本实施例制备的样品的oer测试结果显示,样品在10ma cm
‑2时的过电位为280 mv (vs. rhe)。本实施例制备样品的的电荷转移电阻(rct)约为4.57ω。本实施例制备的样品的her测试结果表明,样品在10ma cm
‑2时的过电位为347mv (vs. rhe)。
28.实施例三本实施例采用与实施例一相同的工艺条件制备二氧化钛薄膜,采用电沉积法制备还原氧化石墨烯过程中,沉积电压为

0.1v,电沉积时间为5分钟。
29.与实施例一对比,本实施例得到的x射线衍射谱中衍射峰的数目和峰位也未发生明显改变,也未观测到还原氧化石墨烯的衍射峰。本实施例的拉曼光谱在445cm
‑1和607cm
‑1处出现了两个相对较强的拉曼散射峰,分别对应于金红石相二氧化钛的b1g 和eg振动模式。由于还原氧化石墨烯的含量相对较少,在1418 和1615 cm
‑1处出现两个非常弱的拉曼散射峰,分别对应于还原氧化石墨烯的d带和g带。本实施例得到的复合薄膜的也具有较快的可见光响应速度,光电流密度约为5.5
×
10

7a/cm2。本实施例制备的样品的oer测试结果显示,样品在10ma cm
‑2时的过电位为290 mv (vs. rhe)。本实施例制备的样品的的电荷转移电阻(rct)约为7.45ω。本实施例制备的样品的her测试结果表明,样品在10ma cm
‑2时的过电位为326mv (vs. rhe)。
30.以上所述的具体实施例,对本发明解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜