一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种生物酶的汽车燃料功能助剂的制作方法

2021-10-09 00:19:00 来源:中国专利 TAG:助剂 燃料 汽车 功能 生物酶


1.本发明属于汽车燃料助剂技术领域,具体涉及一种生物酶的汽车燃料功能助剂。


背景技术:

2.随着社会经济的快速发展以及人们生活水平的提高,汽车越来越普及,这意味着车用燃料的需求量也在不断地增加。车用燃料的品质不仅直接影响着汽车的动力性能,而且对尾气排放有着至关重要的作用。车用燃料主要包括车用汽油、车用柴油、车用替代燃料(如甲醇、乙醇、乳化燃料、天然气、石油气、氢气)等。车用燃料燃烧会产生co、no
x
、hc等尾气,近年来,co、no
x
、hc等在城市大气中的含量越来越高,已成为威胁人类生存的主要因素。此外,汽车燃料如甲醇汽油可能存在抗水性差的缺陷,其中的甲醇是强极性物质,吸水性强,水分会将汽油中的甲醇萃取出来,从而出现分层现象,严重影响甲醇汽油的使用性能,且甲醇汽油在低温环境中的分层现象更为严重。为了解决上述问题,目前主要是通过在燃料中添加助剂的方法来提高燃料的燃烧性能、减少汽车污染气体的排放。
3.现有技术中已有很多利用添加助剂还提升燃料的综合性能的研究。如专利cn106190362a公开了一种汽车燃料功能助剂,包括:助燃剂30

50份,辛烷值促进剂10

20份,消烟剂10

16份,分散剂10

20份,抗氧化剂5

12份,摩擦改进剂3

9份,具有助燃、提高辛烷值,清净,防腐,抗氧化,降低有害物质排放的作用,有效清除喷嘴积碳,确保良好的雾化性能,并保持发动机性能以及排放水平,使汽油燃烧更加完全,起到节能和环保的作用;专利cn106221820a公开了一种环保燃料,包括:汽油20

30份、生物柴油10

20份、植物油脂20

30份、微生物油脂10

20份、生物质压块燃料30

40份、遮味剂1

3份、互溶剂1

3份、抗氧剂0.1

0.3份、抗爆剂1

1.5份、生物酶助剂1

2份和助剂3

5份,其燃烧热值高,能够充分达到使用中的燃点温度要求。虽然现有技术中添加助剂可以获得一定的效果,对提升燃料性能具有一定的增益作用,但效果不明显,且并不能同时满足助燃、节油、降低有害物质排放、提高抗水性、耐低温性能等的作用。因此,继续探索与研究车用燃料助剂是非常必要的。


技术实现要素:

4.本发明的目的是针对现有技术存在的不足,提供一种具有助燃、节油、降低有害物质排放作用的生物酶的汽车燃料功能助剂,并具有增加汽车燃料的低温流动性,提高抗水性,减少对橡胶等材料的溶胀的作用。
5.为实现上述技术目的,本发明采取的技术方案如下。
6.一种聚合物接枝的纳米碳微球的制备方法,包括:以淀粉为前驱体制备多孔纳米碳,接着利用强酸进行表面活化处理,然后利用月桂酰氯进行表面酰化,最后利用3

(1

萘氧基)

1,2

环氧丙烷在表面接枝聚合,得到聚合物接枝改性的纳米碳微球。
7.本发明以淀粉为碳源,经预氧化、碳化制得多孔纳米碳,然后利用强酸对多孔纳米碳进行活化,使表面暴露较多的羟基、羧基等高活性基团,然后利用月桂酰氯进行表面酰化,使多孔纳米碳表面的羧基转化成酰氯,然后使3

(1

萘氧基)

1,2

环氧丙烷在多孔纳米
碳表面通过聚合反应形成聚合物层,获得的纳米碳微球具有较好的亲油性,将其添加于燃料中可充分分散,可促使燃料充分燃烧,具有助燃、节油,有效地减少有害气体的生成,并具有降低燃料冷滤点、提高燃料的低温流动性的作用。
8.进一步地,制备多孔纳米碳的具体步骤为:
9.1)制备纳米淀粉微球:淀粉乳液中加入环氧氯丙烷,搅拌逐滴加入到足量油相中,继续搅拌形成微乳液,滴加过硫酸钾继续搅拌2

4h,静置、离心、除去油相,沉淀依次用环己烷、水冲洗,干燥得淀粉纳米微球;
10.2)预氧化:将纳米淀粉微球置于管式炉中,在空气气氛下,200

250℃预氧化20

50min;
11.3)碳化:将氧化淀粉纳米微球放入管式炉中,惰性气体下升温至600℃,保温3h,冷却至室温、干燥即得。
12.更进一步地,淀粉乳液的质量分数是1

5%,并在50

60℃下搅拌溶解后冷却至室温。
13.更进一步地,环氧氯丙烷的添加量是淀粉质量的3

5质量倍。
14.更进一步地,所述油相为质量比为3

8:100的吐温80和煤油的混合物。
15.进一步地,表面活化处理的具体步骤为:
16.将多孔纳米碳加入到20

50重量倍的硝酸/丙酮混合溶液中,硝酸/丙酮的混合质量比为0.2

0.4:1,60

80℃下超声处理,抽滤、洗涤至中性,真空干燥,得到纯化多孔纳米碳。
17.本发明以硝酸作为氧化剂进行处理,并配合超声处理,不仅去除了多孔纳米碳表面的杂质,并对其进行了活化,使使表面暴露羟基、羧基等高活性基团,有助于后续的表面接枝处理。
18.进一步地,酰化改性的具体步骤为:
19.将多孔纳米碳与10

20重量倍的月桂酰氯混合,加入催化剂,50

60℃下搅拌不少于10h,水洗、干燥得到酰化多孔纳米碳。
20.更进一步地,催化剂为1:0.1

0.3的无水氯化锌和吡啶,添加量为多孔纳米碳质量的0.1

2倍。利用月桂酰氯进行酰化,使多孔纳米碳表面的羧基转化成酰氯,反应速度快,无副反应的发生。
21.进一步地,聚合物接枝改性的具体步骤为:
22.将酰化多孔纳米碳与三氯化铁混合,然后加入3

(1

萘氧基)

1,2

环氧丙烷,鼓入氮气,室温下搅拌反应16

24h,在乙醇中沉淀,沉淀用水冲洗、干燥、粉碎得到聚合物接枝改性的多孔纳米碳。
23.酰化多孔纳米碳、三氯化铁、3

(1

萘氧基)

1,2

环氧丙烷的质量比为1:0.5

1:20

30。
24.利用3

(1

萘氧基)

1,2

环氧丙烷在多孔纳米碳表面进行聚合反应,使纳米碳微球表面获得较好的亲油性,加入到燃料中能更好的发挥功效,具有加速燃烧、改善雾化性能的作用,更节油,并有助于降低燃料的冷滤点,使燃料在低温下仍具有较好的流动性,不发生分层,从而保证在寒冷的天气中仍能使汽车正常发动,并能保证低温运输,这可能是因为添加表面聚合3

(1

萘氧基)

1,2

环氧丙烷的纳米碳微球,能防止燃料中分子质量较大的
正烷烃的析出,降低结晶的生成和聚集,避免流动性的降低,提高在低温下的流动性。
25.前述所述聚合物接枝的纳米碳微球在制备生物酶的汽车燃料功能助剂中的应用。
26.所述应用包括降低燃料的冷滤点。
27.一种生物酶的汽车燃料功能助剂,包括上述所述聚合物接枝的纳米碳微球。
28.所述生物酶的汽车燃料功能助剂具体包括下述组分:
29.生物酶8

15%、聚合物接枝的纳米碳微球15

20%、抗氧化剂8

15%、摩擦改进剂6

10%、助溶剂30

40%,助剂5

10%。
30.本发明以聚合物接枝的纳米碳微球作为助燃剂,聚合物接枝的纳米碳微球以超声分散的方式与其他燃料功能助剂组分混合,可以更好的与燃料助剂中的其他物质混合,充分发挥多孔纳米碳微球的助燃功效。
31.进一步地,生物酶为过氧化氢酶和生物脂肪酶的混合物,混合质量比为1:1

1.2。
32.进一步地,抗氧化剂为2,6

二叔丁基
‑4‑
甲基苯酚或叔丁基羟基茴香醚。抗氧化剂能够防止汽油在贮存过程中氧化生成胶质沉渣,显著改善汽油的贮存稳定性。
33.进一步地,助溶剂为质量比为0.8

1:1的三乙醇胺、疏丁醇。助溶剂可提高助剂各种成分在燃料中的溶解速度,各成分之间充分互溶,提高燃烧性能。
34.进一步地,摩擦改进剂为质量比为1:1

1.5的甲基硅油和硬脂酸单甘油酯的混合物。所述的摩擦改进剂可避免发动机出现磨损和损坏,延长发动机的寿命,且能够较为有效的降低硫含量。
35.进一步地,助剂为质量比为1:0.4

0.6的椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯的混合物。
36.上述生物酶的汽车燃料功能助剂通过共混制备得到,为增加燃料功能助剂与汽车燃料的互溶,充分发挥助燃等功效,需要在燃料中添加助溶剂,助溶剂一般为亲水性的醇类物质,然而助溶剂会降低汽车燃料的抗水性,使燃料蒸发速度减缓,燃烧性能下降;为克服上述缺陷,本发明在功能助剂中添加椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯作为助剂,既与燃料具有良好的相溶性,且能提升抗水性,这可能是因为水杨酸四氢糠酯的存在能促进椰油基单乙醇酰胺聚氧乙烯醚与燃料中多余的水分进行反应,从而减少在储存或使用过程中由于燃料中的醇类物质的强吸水性而导致出现油水分离的现象,提升燃料的抗水性能;此外,还具有降低对橡胶制品的溶胀性作用,减少甲醇燃料渗入橡胶等材料中引起溶胀的现象。
37.本发明还提供了上述所述生物酶的汽车燃料功能助剂在汽车燃料配置中的应用,所述应用包括,将本发明生物酶的汽车燃料功能助剂以0.05

2wt%的比例添加到汽车燃料中。
38.相比现有技术,本发明的有益效果在于:
39.1)本发明通过原料的科学配伍,获得稳定性高的生物酶的汽车燃料功能助剂,可促进燃料充分燃烧,具有助燃、节油、降低有害物质排放的作用,并具有增加生物燃料的低温流动性,提高抗水性,减少对橡胶等材料的溶胀的作用;
40.2)燃料功能助剂中添加聚合物接枝的纳米碳微球作为助燃剂,不仅能提高燃烧性能,且能有效降低燃料的冷滤点,在较低温度下仍能保持较好的流动性,发挥助燃功效;
41.3)功能助剂中添加椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯,可以提高燃
料的抗水性,提升燃烧性能,并具有减少对橡胶等材料的溶胀的作用。
附图说明
42.图1是本发明实施例1中聚合物接枝的纳米碳微球的红外光谱图;图中a代表多孔纳米碳,b代表聚合物接枝的纳米碳微球;
43.图2是本发明生物酶的汽车燃料功能助剂对燃料的耐低温性能的影响;
44.图3是本发明生物酶的汽车燃料功能助剂对燃料的抗水性的影响;
45.图4是本发明生物酶的汽车燃料功能助剂对燃料的橡胶溶胀性的影响。
具体实施方式
46.本发明提供了一种生物酶的汽车燃料功能助剂,其具体包括:
47.生物酶8

15%、聚合物接枝的纳米碳微球15

20%、抗氧化剂8

15%、摩擦改进剂6

10%、助溶剂30

40%,助剂5

10%,总量是100%。
48.生物酶为质量比为1:1

1.2的过氧化氢酶和酵母脂肪酶的混合物;
49.抗氧化剂为2,6

二叔丁基
‑4‑
甲基苯酚或叔丁基羟基茴香醚;
50.助溶剂为质量比为0.8

1:1的三乙醇胺、疏丁醇;
51.摩擦改进剂为1:1

1.5的甲基硅油、硬脂酸单甘油酯;
52.助剂为1:0.4

0.6的椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯。
53.聚合物接枝的纳米碳微球的制备步骤具体包括:
54.1)制备纳米淀粉微球:淀粉乳液中加入环氧氯丙烷,搅拌逐滴加入到足量油相中,继续搅拌形成微乳液,滴加过硫酸钾继续搅拌2

4h,静置、离心、除去油相,沉淀依次用环己烷、水冲洗,干燥得淀粉纳米微球;
55.2)预氧化:将纳米淀粉微球置于管式炉中,在空气气氛下,200

250℃预氧化20

50min;
56.3)碳化:将氧化淀粉纳米微球放入管式炉中,惰性气体下升温至600℃,保温3h,冷却至室温、干燥即得多孔纳米碳;
57.4)表面活化处理:将多孔纳米碳加入到20

50重量倍的硝酸/丙酮混合溶液中,硝酸/丙酮的混合质量比为0.2

0.4:1,60

80℃下超声处理,抽滤、洗涤至中性,真空干燥,得到纯化多孔纳米碳;
58.5)酰化改性:将多孔纳米碳与10

20重量倍的月桂酰氯混合,加入催化剂,50

60℃下搅拌不少于10h,水洗、干燥得到酰化多孔纳米碳;
59.6)聚合物接枝改性的具体步骤为:将酰化多孔纳米碳与三氯化铁混合,然后加入3

(1

萘氧基)

1,2

环氧丙烷,鼓入氮气,室温下搅拌反应16

24h,在乙醇中沉淀,沉淀用水冲洗、干燥、粉碎得到聚合物接枝改性的多孔纳米碳。
60.以下结合实施例和附图对本发明作进一步说明,但本发明并不局限于这些实施例。
61.实施例1:一种生物酶的汽车燃料功能助剂:
62.本实施例提供了一种生物酶的汽车燃料功能助剂,包括:
63.生物酶12.6%、聚合物接枝的纳米碳微球18%、抗氧化剂12.8%、摩擦改进剂
10%、助剂7.6%、助溶剂39%;各组分物理混合均匀即得;
64.生物酶为质量比为1:1.1的过氧化氢酶和酵母脂肪酶的混合物;
65.抗氧化剂为叔丁基羟基茴香醚;
66.助溶剂为质量比为1:1的三乙醇胺与丁醇、疏丁醇;
67.摩擦改进剂为1:1.4的甲基硅油、硬脂酸单甘油酯;
68.助剂为1:0.5的椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯。
69.聚合物接枝的纳米碳微球经由下述方法制备得到:
70.1)3g淀粉与97g去离子水混合,55℃下搅拌溶解,降至室温,加入12g环氧氯丙烷,搅拌4min后,逐滴加入到足量油相中,油相包括6g吐温80、100g煤油,滴加完后,继续搅拌形成微乳液,滴加过0.5g过硫酸钾继续搅拌3h,静置、离心、除去油相,沉淀依次用环己烷、水冲洗,50℃干燥得淀粉纳米微球;
71.2)纳米淀粉微球置于管式炉中,在空气气氛下240℃预氧化40min得氧化纳米淀粉微球;
72.3)将氧化纳米淀粉微球放入管式炉中,氮气气体下,以5℃/min的速率升温至600℃,保温3h,冷却至室温、水洗、60℃下干燥,得到多孔纳米碳;
73.4)按照料液比1:25强多孔纳米碳加入到硝酸/丙酮混合溶液(混合溶液中硝酸/丙酮的混合质量比为0.3:1)中,加热至70℃,20khz、0.35w/cm3下超声处理2h,抽滤、洗涤至中性,60℃下真空干燥,得到纯化多孔纳米碳;
74.5)2g纯化多孔纳米碳与30g的月桂酰氯混合,加入1g无水氯化锌、0.2g吡啶,55℃下搅拌12h,水洗、干燥得到酰化多孔纳米碳;
75.6)2g酰化多孔纳米碳与1.6g三氯化铁混合,然后加入50g3

(1

萘氧基)

1,2

环氧丙烷,鼓入氮气,室温下120r/min搅拌反应24h,在乙醇中沉淀,水洗3次、60℃下干燥、粉碎得到聚合物接枝改性的多孔纳米碳,粒径约为60nm。
76.实施例2:另一种生物酶的汽车燃料功能助剂:
77.本实施例提供了另一种生物酶的汽车燃料功能助剂,其组分、制备方法与实施例1基本相同,不同之处在于,利用步骤3)所得多孔纳米碳代替聚合物接枝的多孔纳米碳微球作为助燃剂。
78.实施例3:另一种生物酶的汽车燃料功能助剂:
79.本实施例提供了另一种生物酶的汽车燃料功能助剂,其组分与制备方法与实施例1基本相同,不同之处在于,利用步骤5)所得酰化多孔纳米碳代替聚合物接枝的纳米碳微球作为助燃剂。
80.实施例4:另一种生物酶的汽车燃料功能助剂:
81.本实施例提供了另一种生物酶的汽车燃料功能助剂,其组分、制备方法与实施例1基本相同,不同之处在于,未添加聚合物接枝的纳米碳微球,缺失量以助溶剂补足。
82.实施例5:另一种生物酶的汽车燃料功能助剂:
83.本实施例提供了另一种生物酶的汽车燃料功能助剂,其组分、制备方法与实施例1基本相同,不同之处在于,所述助剂仅为椰油基单乙醇酰胺聚氧乙烯醚。
84.实施例6:另一种生物酶的汽车燃料功能助剂:
85.本实施例提供了另一种生物酶的汽车燃料功能助剂,其组分、制备方法与实施例1
基本相同,不同之处在于,所述助剂仅为水杨酸四氢糠酯。
86.实施例7:另一种生物酶的汽车燃料功能助剂:
87.本实施例提供了另一种生物酶的汽车燃料功能助剂,其组分、制备方法与实施例1基本相同,不同之处在于,未添加助剂,并用助溶剂补足。
88.实验例1:多孔纳米碳微球的红外光谱表征:
89.以实施例1中的步骤3)所得多孔纳米碳与步骤6)所得聚合物接枝的纳米碳微球为实验对象,分别利用kbr研磨压片制样后,用美国nicolet公司的magna

ir750型傅立叶变换红外扫描仪对样品进行红外分析。
90.图1为多孔纳米碳经聚合物接枝改性前的红外光谱图,观察图1可知,a是未经聚合物接枝的多孔纳米碳,在1735cm
‑1附近出现酯基中c=o的伸缩振动峰,在1634cm
‑1附近有一个明显的峰,这属于多孔纳米碳上c=c的伸缩振动吸收峰;b表示经聚合物接枝改性的多孔纳米碳微球,1620cm
‑1是苯环的伸缩振动吸收峰,755cm
‑1、695cm
‑1是苯环的弯曲振动吸收峰,在1058cm
‑1、1110cm
‑1附近出现了醚键的吸收峰,这些吸收峰在a曲线中未出现,说明3

(1

萘氧基)

1,2

环氧丙烷成功在多孔纳米碳表面接枝聚合。
91.实验例2:燃烧性能测试:
92.将实施例1

7所得生物酶的汽车燃料功能助剂添加到车用燃料中(以93号汽油为例),添加量为0.1%,进行燃烧性能测试,得到结果如表1所示。
93.表1燃烧性能
[0094][0095]
注:油耗增加率是指外在因素不变的情况下,车辆行驶50km,汽油相对配制汽油的国标汽油重量的百分比增加率,经测试,93号汽油的油耗增加率为7.2%。
[0096]
如表1所示,实施例1所得功能助剂添加到燃料中,油耗增加率为

13.1%,燃烧热值高达56682kj/kg,燃烧热值高,燃烧后排放的气体中co、no
x
hc的含量低,实施例2

7所得功能助剂添加到燃料中,测得油耗增加率、co、no
x
hc的含量均比实施例1低,这表明当汽车燃料功能助剂中添加聚合物接枝的纳米碳微球作为助燃成分、添加椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯作为助剂,有助于提高燃烧性能,节省油耗,有效地减少有害气体的生成。
[0097]
实验例3:耐低温性测试:
[0098]
将实施例1

7所得生物酶的汽车燃料功能助剂添加到

35号车用柴油中,添加量为
0.1%,参考标准sh/t0248

2019《石油产品凝点测定法》测试柴油的冷滤点,并以纯

35号车用柴油作为对比,测得结果如图2所示。
[0099]
如图2所示,

35号车用柴油冷滤点为

24℃,相比纯

35号车用柴油,添加实施例1的功能助剂后冷滤点下降到

40℃,变化幅度为16℃,添加实施例2、3的功能助剂后冷滤点下降到

30℃、

32℃,变化幅度为6℃、8℃,冷滤点比实施例1高,而添加实施例4的功能助剂后冷滤点下降到仅下降了1℃,冷滤点几乎无变化,这说明汽车燃料功能助剂中添加一定的多孔纳米碳,有助于降低柴油的冷滤点,提高低温流动性,使其在较低温度下仍具有良好的流动性,而经表面接枝聚合物的多孔纳米碳对耐低温性能的增益幅度更大,冷滤点更低,保证了冷启动的可能。
[0100]
实验例4:抗水性测试:
[0101]
将实施例1

7所得生物酶的汽车燃料功能助剂添加到m30甲醇汽油中,然后加入水,搅拌均匀后静置24h,以出现分层时添加的水的体积代表汽油的溶水量,用于表征m30甲醇汽油的抗水性能,并与纯m30甲醇汽油进行对比,测试结果如图3所示。
[0102]
经测试,m30甲醇汽油中未添加功能助剂时,测得每100mlm30甲醇汽油中的溶水量为0.42ml,而从图3可以看出,添加实施例1

4的功能助剂后,m30甲醇汽油的溶水量增大到2ml以上,抗水性能优异,而添加实施例5或6的功能助剂后,m30甲醇汽油的溶水量分别为1.23ml、1.47ml,而添加实施例7的功能助剂后,m30甲醇汽油的溶水量增加到0.86ml,仅增大了0.44ml,这说明汽车燃料功能助剂中添加椰油基单乙醇酰胺聚氧乙烯醚或水杨酸四氢糠酯有助于提升抗水性,而同时添加一定量的椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯,对材料的抗水性增益效果更好。
[0103]
实验例5:橡胶溶胀性测试:
[0104]
将实施例1

7所得生物酶的汽车燃料功能助剂添加到m30甲醇汽油中,参考gb/t1690

2010《硫化橡胶或热塑性橡胶耐液体试验方法》,测试viton氟橡胶在m30甲醇汽油中浸泡4周后的质量变化率,来评定其对橡胶溶胀性的影响,测得结果如图4所示。
[0105]
经测试,m30甲醇汽油未添加功能助剂时,橡胶在其中浸泡4周后质量变化率为31.57%,而从图3可以看出,添加实施例1

4的功能助剂后,橡胶的质量变化率下降到6%以下,而实施例5

7的质量变化率明显高于实施例1

4,实施例7的质量变化率高于实施例5和6,这说明相比仅添加椰油基单乙醇酰胺聚氧乙烯醚或水杨酸四氢糠酯,同时添加一定量的椰油基单乙醇酰胺聚氧乙烯醚、水杨酸四氢糠酯,更有利于降低对橡胶的溶胀。
[0106]
本发明的操作步骤中的常规操作为本领域技术人员所熟知,在此不进行赘述。
[0107]
以上实施方式仅用于说明本发明,而并非对本发明的限制,本领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此,所有等同的技术方案、也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜