一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种玻璃包覆非晶丝的吸波材料的制作方法

2021-10-09 00:26:00 来源:中国专利 TAG:材料 电磁波 吸收 包覆 玻璃


1.本发明涉及一种玻璃包覆非晶丝的吸波材料,属于电磁波吸收材料领域。


背景技术:

2.吸波材料是实现各类武器装备、导弹发射车、坦克、战时指挥所、战斗机、舰艇等主战装备雷达隐身的关键。将各类吸波剂通过加工技术,制备成吸波涂料、结构吸波材料、吸波织物等,涂覆、贴装或披挂于武器、装备、阵地或作战人员表面,是实现雷达隐身的有效途径。现有吸波剂包括三类:一是电损耗性吸波剂,包括碳纤维、石墨烯、碳化硅等,质量轻,但介电常数大需要一定的厚度(如大于2~6mm)实现阻抗匹配才能够具有良好吸波效果;二是磁损耗性吸波剂,包括羰基铁、铁氧体类,低频下吸波效果好,但密度大,可高达2

3kg/m2;三是具有核壳结构的复合吸波剂,包括磁性金属包覆铁氧体类磁

磁复合、以及磁性材料包覆碳材料类电

磁复合型吸波剂,兼具电损耗和磁损耗吸波材料的优点,已经成为目前最有希望实现“轻、薄、宽、强”的雷达吸波材料。但是,该类吸波剂多为颗粒状,或包覆不均匀及不严密的短纤维状,材料依然存在需要继续降低密度或厚度的问题。
3.玻璃包覆非晶丝,一方面具有芯壳结构,芯壳内应力差异使得纤维具有自然铁磁共振效应;另一方面,金属芯同时具有电阻损耗效应。和核壳结构材料一样,玻璃包覆非晶丝具有电和磁损耗的协同损耗效应。采用玻璃包覆非晶丝作为吸波剂,可以突破传统吸波材料吸波效能低、面密度大的缺点。国内外对于铁磁性非晶丝作为电磁波吸波材料吸收剂鲜有报道。如,专利申请zl201711132144.2公开了一种电磁波吸收材料及其制备方法,采用铁磁性非晶丝长纤维间隔排列作为吸波层,期望利用网格间距和吸收体层间距进行结构调控实现高效吸波,但是根据该专利实施例,只能够在8~12ghz内实现窄带、较低的反射损耗。公开号为cn 101901660a的中国发明专利公开了一种含有非晶丝材的电磁波吸收材料及其制备方法,该专利采用的是连续玻璃包覆非晶丝,通过绕线的方式将非晶丝材单根等间距平行排列在基体材料上。公开号为cn106288961a的中国发明专利公开了一种可以利用外场对材料吸波性能进行调谐的智能吸波织物,该吸波织物中含有玻璃包非晶纤维,玻璃包非晶纤维直接混入基体材料。
4.以上现有技术存在以下问题:一是连续的长丝存在介电常数高导致反射强的问题,吸波效能相当有限,吸波带宽也相当窄;二是采用短纤维实现吸波的技术,只是简单的和基体介质混合,缺乏有效的吸波机制及结构设计,无法根据拟定指标对吸波材料的吸收峰、吸收频带等进行有效调控。
5.因此,迫切需要一种以非晶丝作为吸波剂、结构设计合理、频带和吸收峰可调节、可设计的吸波材料及其制备方法。


技术实现要素:

6.本发明的目的是提供一种玻璃包覆非晶丝的吸波材料,具有轻薄、宽频、吸收强的优点。
7.本发明提供的玻璃包覆非晶丝的吸波材料,由若干层单层吸波材料复合而成;
8.所述单层吸波材料由玻璃包覆非晶丝和介质层构成;
9.所述玻璃包覆非晶丝为芯壳结构,其中,芯层为磁性金属纤维,壳层为玻璃;
10.所述单层吸波材料中,所述玻璃包覆非晶丝具有不同的长度及分布,并无序取向分布于所述介质层;
11.所述无序取向是指一定数量的所述玻璃包覆非晶丝在所述介质层无序分布排列。
12.所述单层吸波材料的厚度不大于10mm,优选不大于5mm;
13.所述磁性金属纤维的直径为1~50μm;
14.所述玻璃的厚度为1~50μm。
15.所述吸波材料由1~20层所述单层吸波材料复合而成。
16.所述磁性金属纤维的材质为下述1)和2);
17.1)co、fe、mn、sn、cu、zr、pb、al和ni中的一种或多种元素;
18.2)si、b和c中的一种或多种元素。
19.所述磁性金属纤维的材质还包括稀土和/或过渡族金属;
20.所述磁性金属纤维的材质由3~5种化学元素组成,化学式为a
a
b
b
d
d
e
e
f
f
、a
a
b
b
e
e
f
f
、a
a
b
b
e
e
或a
a
e
e
f
f
,其中,a、b、d均为co、fe、mn、sn、cu、zr、pb、al和ni中的一种元素,e、f均为si、b和c中的一种元素,a为50~90之间的自然数,b为10~30之间的自然数,d为1~20之间的自然数,e为1~20之间的自然数,f为1~30之间的自然数。
21.上述的吸波材料中,所述不同的长度及分布指的是下述1)或2):
22.1)以特定长度l
n
无序分布于所述介质层;
23.所述特定长度l
n
为0.5~45mm;
24.2)以中心长度及长度分布无序分布于所述介质层;
25.所述中心长度及长度分布指的是具有不同长度短纤维,但具有特定的中心长度l0,其他长度为l0‑
30%~~l0 30%;
26.所述中心长度l0为0.5~45mm。
27.上述的吸波材料中,所述单层吸波材料的面密度不大于30g/m2,优选不大于20g/m2,进一步优选不大于10g/m2;
28.所述介质层壳为低介电损耗的织物、树脂、薄膜或纸张。
29.所述玻璃包覆非晶丝分布于所述介质层的表面和内部。
30.本发明还提供了所述吸波材料的制备方法,包括如下s1或s1

s2:
31.s1、将所述玻璃包覆非晶丝以无序取向的方式分布于所述介质层的表面或内部,得到所述单层吸波材料;
32.s2、根据需要达到的反射率、带宽及质量和厚度要求,将含有不同长度或长度分布的玻璃包覆金属短纤维的n层所述单层吸波材料,根据各单层吸波规律,按照电磁仿真模拟结构,复合而成,获得吸波材料。
33.本发明提供了一种全新的轻薄、宽频、吸收强的吸波材料,具有优于现有报道的所有吸波材料的性能。通过合理的结构设计和制备方法,在2

18ghz范围内,实现的吸波性能可达到:克重不大于100g/m2,厚度不大于2mm,在2

18ghz内反射率不大于

10db的带宽不低于10ghz,不大于

5db的带宽不低于14ghz。如果增加质量和厚度,将进一步提高吸波效能。
附图说明
34.图1为弓形法测试示意图。
35.图2为实施例1中单层吸波材料反射率曲线图。
36.图3为实施例2中双层吸波材料叠合反射率曲线图。
37.图4为实施例3中复合吸波层合板反射率曲线图。
38.图5为实施例4中多层吸波材料叠层反射率曲线图。
39.图6为实施例5中多层梯度吸波材料反射率曲线图。
具体实施方式
40.下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
41.下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
42.根据gjb2.38

2011《雷达吸波材料反射率测试方法》,采用弓形法测试单层和多层吸波材料的反射率,测试频段为2

18ghz。测试设备及环境如图1所示,发射天线、接收天线与样品台中心处于同一平面且指向圆心,样品尺寸为18cm
×
18cm。测试前矢量网络分析仪要预热20min左右,先测试同样品尺寸大小的金属铝板的接收功率,再测试将样品放置在铝板上的接收功率,依据公式计算材料反射率。
43.实施例1、
44.将细度为18.06dtex的玻璃包覆非晶丝(芯层的直径为16.2μm,壳层厚度为6.1μm,非晶丝的化学式为co
68
fe
13
si
10
b9),短切成5.8mm长度,取定量短切丝均匀、无序地分布在具有粘性的纸张介质上,得到的吸波材料的厚度为5.5mm,吸波材料的面密度为8g/m2。
45.通过实测和电磁仿真软件优化介质厚度,获得最后实际采用的纸张介质厚度为4mm。
46.在2

18ghz频率范围内,在9.5ghz处反射率峰值为

16.9db;不大于

5db的带宽为10ghz,反不大于

10db的带宽为3.2ghz,如图2所示。
47.实施例2、
48.将细度为22.2dtex的玻璃包覆非晶丝(芯层的直径为18.2μm,壳层厚度为4.9μm,非晶丝的化学式为al
55
cu
20
sn7si7b
11
),短切为5.8mm和13.2mm长度。将一定量的5.8mm短切丝均匀、无序地分布在厚度为3.5mm的单层纸张介质上,吸波材料的厚度为3.6mm,吸波材料面密度为8g/m2,以纸张为介质的吸波层作为第一层;将13.2mm短切丝均匀、无序地分布在棉织物上,吸波材料的厚度为3.9mm,吸波材料面密度为10g/m2,棉织物的密度为128
×
68根/10cm,以棉织物为介质的吸波层作为第二层。将两层吸波层进行叠层,叠层顺序为第一层在前,第二层在后,第二层为靠近测试铝板一侧,经复合后获得双层吸波材料。
49.如图3所示,在2

18ghz测试范围内,反射率出现双峰,分别为

13.1db和

14db;不大于

5db的带宽为13ghz左右,不大于

10db的带宽为12ghz左右。双层复合吸波材料的总厚度不大于4mm。
50.实施例3、
51.将细度为19.03dtex的玻璃包覆非晶丝(芯层的直径为15.2μm,壳层厚度为3.5μm,非晶丝的化学式为co
73
si
15
b
12
),切断为4.6mm长度。将质量分数为18%的短切丝与树脂超声搅拌均匀,导入自制模具中,并加入固化剂进行固化,得到厚度为0.8mm的复合吸波层合板。
52.同样方法制备10块样品,将10块样品叠层复合,总厚度为8mm。
53.在2

18ghz测试范围内,在9ghz达到反射率峰值

18.5db;不大于

5db的带宽为8ghz左右,不大于

10db的带宽为2ghz左右,如图4所示。
54.实施例4、
55.将细度为15.4dtex的玻璃包覆非晶丝(芯层的直径为11.2μm,壳层厚度为3.5μm,非晶丝的化学式为pb
79
cu
13
si8),短切成以6.2mm为中心长度分布的短切丝。将一定量的短切丝与5.8mm长的聚酯纤维混合均匀,使用圆网成型器采取一次成型的方法制备直径为30cm的圆形吸波材料,裁剪成测试尺寸大小。样品基体纤维平方米克重为200g/m2,吸波材料含有玻璃包覆铁钴丝密度为4.5g/m2,总厚度不大于3mm。
56.制备相同面密度及厚度的吸波材料,经五层叠层后获得较好的吸波性能,在2

18ghz测试范围内,反射率峰值为

22.9db;不大于

5db的带宽为8.5ghz左右,不大于

10db的带宽为5ghz左右,测试结果如图5所示。
57.实施例5、
58.将细度为24.6dtex的玻璃包覆非晶丝(芯层的直径为18.2μm,壳层厚度为5.5μm,非晶丝的化学式为zr
66
ni
11
c8si
15
),分别短切成2mm、3mm、4mm、5mm和6mm的短丝,以4mm为中心长度,其它长度呈正态分布,根据电磁仿真软件优化各长度下匹配的介质层厚度,各长度下相匹配的介质厚度均不大于6mm。分别制备不同长度和介质厚度的吸波层,共四层。每层分别取定量短切丝均匀、无序地分布在纸张介质上,各吸波材料的面密度均为8.2g/m2。叠层顺序为长度短的置前,往后叠层长度依次增长,即8mm长度的吸波层靠近测试铝板。
59.在2

18ghz频率范围内,在6.8ghz处反射率峰值达

20db;不大于

5db的带宽为12.5ghz,不大于

10db的带宽为2ghz左右,如图6所示。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜