一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

光学成像镜头的制作方法

2021-09-29 02:53:00 来源:中国专利 TAG:成像 光学 镜头 设备


1.本发明涉及光学成像设备技术领域,具体而言,涉及一种光学成像镜头。


背景技术:

2.由于智能手机等电子设备迭代速度快,市场需求稳步提升,而单部手机通常会搭载2

8颗摄像镜头,通常会包含大光圈、超广角、长焦、光学防抖和大像面等不同功能的光学成像镜头,极大丰富了人们的选择。其中,前置摄影模块中引入广角镜头,相较常规镜头可以捕获更大视场角的物体信息,因此自拍时可以容纳更多的人物细节,但是手机上容置前置镜头的空间有限,需要将光学成像镜头制作的更轻薄,但是这样会牺牲光学成像镜头的成像质量。
3.也就是说,现有技术中光学成像镜头存在大视场角与小型化不能兼顾的问题。


技术实现要素:

4.本发明的主要目的在于提供一种光学成像镜头,以解决现有技术中光学成像镜头存在大视场角与小型化不能兼顾的问题。
5.为了实现上述目的,根据本发明的一个方面,提供了一种光学成像镜头,沿光学成像镜头的物侧至光学成像镜头的像侧依次包括:第一透镜,第一透镜具有正光焦度,第一透镜的像侧面为凸面;第二透镜,第二透镜具有正光焦度;第三透镜;第四透镜;第五透镜;其中,第一透镜的物侧面至光学成像镜头的成像面的轴上距离ttl与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.9<ttl/imgh<1.4;光学成像镜头的最大半视场角semi

fov满足:50
°
<semi

fov<60
°

6.进一步地,光学成像镜头的光阑到第五透镜的像侧面的距离sd与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.6<sd/imgh<1.1。
7.进一步地,光学成像镜头的有效焦距f、第一透镜的物侧面至第五透镜的像侧面的轴上距离td与光学成像镜头的最大半视场角semi

fov之间满足:1<f*tan(semi

fov)/td<1.4。
8.进一步地,光学成像镜头的有效焦距f与第一透镜的有效焦距f1之间满足:1.9<f1/f<2.3。
9.进一步地,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足:

3.5<f/(f3 f4)<

2。
10.进一步地,第一透镜、第二透镜、第三透镜和第四透镜的组合焦距f1234与第二透镜、第三透镜、第四透镜和第五透镜的组合焦距f2345之间满足:0.4<f1234/f2345<1。
11.进一步地,第五透镜的物侧面的曲率半径r9与第五透镜的像侧面的曲率半径r10之间满足:0<(r9

r10)/(r9 r10)<0.4。
12.进一步地,第四透镜的有效焦距f4、第四透镜的物侧面的曲率半径r7与第四透镜的像侧面的曲率半径r8之间满足:1<f4/(r7 r8)<3.5。
13.进一步地,第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl与第一透镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.4<∑at/bfl<0.8。
14.进一步地,第一透镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat、第一透镜至第五透镜分别在光学成像镜头的光轴上的厚度总和∑ct与第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl之间满足:0.8<(∑at bfl)/∑ct<1。
15.进一步地,第一透镜在光学成像镜头的光轴上的厚度ct1、第二透镜在光学成像镜头的光轴上的厚度ct2与第一透镜和第二透镜在光轴上的空气间隔t12之间满足:0.5<|ct1

ct2|/t12<0.8。
16.进一步地,第三透镜在光学成像镜头的光轴上的厚度ct3、第四透镜在光轴上的厚度ct4与第五透镜在光轴上的厚度ct5之间满足:0.9<(ct3 ct4)/(ct4 ct5)<1.1。
17.进一步地,第二透镜和第三透镜在光学成像镜头的光轴上的空气间隔t23与第一透镜至第五透镜中任意相邻两个透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.35<t23/∑at<0.45。
18.进一步地,第三透镜的像侧面的最大有效半径dt32与第五透镜的像侧面的最大有效半径dt52之间满足:0.4<dt32/dt52<0.5。
19.进一步地,第一透镜的物侧面的最大有效半径dt11、第三透镜的像侧面的最大有效半径dt32与光学成像镜头的光阑的最大有效半径sr之间满足:0.9<(dt32

dt11)/sr<1.1。
20.根据本发明的另一方面,提供了一种光学成像镜头,沿光学成像镜头的物侧至光学成像镜头的像侧依次包括:第一透镜,第一透镜具有正光焦度,第一透镜的像侧面为凸面;第二透镜,第二透镜具有正光焦度;第三透镜;第四透镜;第五透镜;其中,光学成像镜头的有效焦距f、第一透镜的物侧面至第五透镜的像侧面的轴上距离td与光学成像镜头的最大半视场角semi

fov之间满足:1<f*tan(semi

fov)/td<1.4;光学成像镜头的最大半视场角semi

fov满足:50
°
<semi

fov<60
°

21.进一步地,光学成像镜头的光阑到第五透镜的像侧面的距离sd与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.6<sd/imgh<1.1。
22.进一步地,光学成像镜头的有效焦距f与第一透镜的有效焦距f1之间满足:1.9<f1/f<2.3。
23.进一步地,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足:

3.5<f/(f3 f4)<

2。
24.进一步地,第一透镜、第二透镜、第三透镜和第四透镜的组合焦距f1234与第二透镜、第三透镜、第四透镜和第五透镜的组合焦距f2345之间满足:0.4<f1234/f2345<1。
25.进一步地,第五透镜的物侧面的曲率半径r9与第五透镜的像侧面的曲率半径r10之间满足:0<(r9

r10)/(r9 r10)<0.4。
26.进一步地,第四透镜的有效焦距f4、第四透镜的物侧面的曲率半径r7与第四透镜的像侧面的曲率半径r8之间满足:1<f4/(r7 r8)<3.5。
27.进一步地,第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl与第一透
镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.4<∑at/bfl<0.8。
28.进一步地,第一透镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat、第一透镜至第五透镜分别在光学成像镜头的光轴上的厚度总和∑ct与第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl之间满足:0.8<(∑at bfl)/∑ct<1。
29.进一步地,第一透镜在光学成像镜头的光轴上的厚度ct1、第二透镜在光学成像镜头的光轴上的厚度ct2与第一透镜和第二透镜在光轴上的空气间隔t12之间满足:0.5<|ct1

ct2|/t12<0.8。
30.进一步地,第三透镜在光学成像镜头的光轴上的厚度ct3、第四透镜在光轴上的厚度ct4与第五透镜在光轴上的厚度ct5之间满足:0.9<(ct3 ct4)/(ct4 ct5)<1.1。
31.进一步地,第二透镜和第三透镜在光学成像镜头的光轴上的空气间隔t23与第一透镜至第五透镜中任意相邻两个透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.35<t23/∑at<0.45。
32.进一步地,第三透镜的像侧面的最大有效半径dt32与第五透镜的像侧面的最大有效半径dt52之间满足:0.4<dt32/dt52<0.5。
33.进一步地,第一透镜的物侧面的最大有效半径dt11、第三透镜的像侧面的最大有效半径dt32与光学成像镜头的光阑的最大有效半径sr之间满足:0.9<(dt32

dt11)/sr<1.1。
34.应用本发明的技术方案,沿光学成像镜头的物侧至光学成像镜头的像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜;第一透镜具有正光焦度,第一透镜的像侧面为凸面;第二透镜具有正光焦度;其中,第一透镜的物侧面至光学成像镜头的成像面的轴上距离ttl与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.9<ttl/imgh<1.4;光学成像镜头的最大半视场角semi

fov满足:50
°
<semi

fov<60
°

35.通过合理的分配各个透镜的光焦度,有利于平衡光学成像镜头产生的像差,大大增加光学成像镜头的成像质量。通过将ttl/imgh限制在合理的范围内,能够限制光学成像镜头的总长,保证光学成像镜头具有较大的像面范围,保证光学成像镜头的小型化和轻薄化,小巧轻薄的结构有利于在手机等电子产品上装配,同时增加了手机等电子产品的设计的自由度。通过将最大半视场角semi

fov限制在50
°
至60
°
的范围内,使得光学成像镜头能够在更大的角度范围内采集图像,使得光学成像镜头能够作为广角镜头使用。这样设置使得光学成像镜头实现小型化的同时还能够实现广角拍摄。
附图说明
36.构成本技术的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
37.图1示出了本发明的例子一的光学成像镜头的结构示意图;
38.图2至图5分别示出了图1中的光学成像镜头的轴上色差曲线、倍率色差曲线、象散曲线以及畸变曲线;
39.图6示出了本发明的例子二的光学成像镜头的结构示意图;
40.图7至图10分别示出了图6中的光学成像镜头的轴上色差曲线、倍率色差曲线、象散曲线以及畸变曲线;
41.图11示出了本发明的例子三的光学成像镜头的结构示意图;
42.图12至图15分别示出了图11中的光学成像镜头的轴上色差曲线、倍率色差曲线、象散曲线以及畸变曲线;
43.图16示出了本发明的例子四的光学成像镜头的结构示意图;
44.图17至图20分别示出了图16中的光学成像镜头的轴上色差曲线、倍率色差曲线、象散曲线以及畸变曲线;
45.图21示出了本发明的例子五的光学成像镜头的结构示意图;
46.图22至图25分别示出了图21中的光学成像镜头的轴上色差曲线、倍率色差曲线、象散曲线以及畸变曲线;
47.图26示出了本发明的例子六的光学成像镜头的结构示意图;
48.图27至图30分别示出了图26中的光学成像镜头的轴上色差曲线、倍率色差曲线、象散曲线以及畸变曲线。
49.其中,上述附图包括以下附图标记:
50.sto、光阑;e1、第一透镜;s1、第一透镜的物侧面;s2、第一透镜的像侧面;e2、第二透镜;s3、第二透镜的物侧面;s4、第二透镜的像侧面;e3、第三透镜;s5、第三透镜的物侧面;s6、第三透镜的像侧面;e4、第四透镜;s7、第四透镜的物侧面;s8、第四透镜的像侧面;e5、第五透镜;s9、第五透镜的物侧面;s10、第五透镜的像侧面;e6、滤波片;s11、滤波片的物侧面;s12、滤波片的像侧面;s13、成像面;s14、滤波片的像侧面;s15、成像面。
具体实施方式
51.需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
52.需要指出的是,除非另有指明,本技术使用的所有技术和科学术语具有与本技术所属技术领域的普通技术人员通常理解的相同含义。
53.在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
54.应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本技术的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
55.在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示出的球面或非球面的形状通过实例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
56.在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜靠近物侧的表面成为该透镜的物
侧面,每个透镜靠近像侧的表面称为该透镜的像侧面。在近轴区域的面形的判断可依据该领域中通常知识者的判断方式,以r值,(r指近轴区域的曲率半径,通常指光学软件中的透镜数据库(lens data)上的r值)正负判断凹凸。以物侧面来说,当r值为正时,判定为凸面,当r值为负时,判定为凹面;以像侧面来说,当r值为正时,判定为凹面,当r值为负时,判定为凸面。
57.为了解决现有技术中光学成像镜头存在大视场角与小型化不能兼顾的问题,本发明提供了一种光学成像镜头。
58.实施例一
59.如图1至图30所示,沿光学成像镜头的物侧至光学成像镜头的像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜;第一透镜具有正光焦度,第一透镜的像侧面为凸面;第二透镜具有正光焦度;其中,第一透镜的物侧面至光学成像镜头的成像面的轴上距离ttl与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.9<ttl/imgh<1.4;光学成像镜头的最大半视场角semi

fov满足:50
°
<semi

fov<60
°

60.通过合理的分配各个透镜的光焦度,有利于平衡光学成像镜头产生的像差,大大增加光学成像镜头的成像质量。通过将ttl/imgh限制在合理的范围内,能够限制光学成像镜头的总长,保证光学成像镜头具有较大的像面范围,保证光学成像镜头的小型化和轻薄化,小巧轻薄的结构有利于在手机等电子产品上装配,同时增加了手机等电子产品的设计的自由度。通过将最大半视场角semi

fov限制在50
°
至60
°
的范围内,使得光学成像镜头能够在更大的角度范围内采集图像,使得光学成像镜头能够作为广角镜头使用。这样设置使得光学成像镜头实现小型化的同时还能够实现广角拍摄。
61.优选地,第一透镜的物侧面至光学成像镜头的成像面的轴上距离ttl与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.3<ttl/imgh<1.38。
62.在本实施例中,光学成像镜头的光阑到第五透镜的像侧面的距离sd与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.6<sd/imgh<1.1。通过限制光阑到第五透镜的像侧面的距离能够保证光学成像镜头的小型化和便携化,紧凑的结构也有利于对抗扭力、高空跌落、滚筒的测试以及实现更广泛的应用。将sd/imgh控制在合理的范围内,能够使光学成像镜头处于超薄状态,有利于将光学成像镜头安装到手机等电子设备的前置摄影模块中,有利于前置摄影模块的安装调试。优选地,0.64<sd/imgh<1.1。
63.在本实施例中,光学成像镜头的有效焦距f、第一透镜的物侧面至第五透镜的像侧面的轴上距离td与光学成像镜头的最大半视场角semi

fov之间满足:1<f*tan(semi

fov)/td<1.4。通过将f*tan(semi

fov)/td限制在合理的范围内,可以保证光学成像镜头有较小的焦距和较大的视场角,满足广角镜头的基本关系。同时也限制了第一透镜的物侧面到第五透镜的像侧面的轴上距离,即控制光学成像镜头的长度,使光学成像镜头小型轻便、易于安装。优选地,1.05<f*tan(semi

fov)/td<1.38。
64.在本实施例中,光学成像镜头的有效焦距f与第一透镜的有效焦距f1之间满足:1.9<f1/f<2.3。通过将f1/f限制在合理的范围内,合理分配了第一透镜的光焦度在光学成像镜头的总光焦度中的比例,既能减缓光线在第一透镜中的偏折,避免第一透镜过大的光焦度,从而减小第一透镜的敏感性,避免过严的公差要求,还能减小第一透镜产生的球差和像散等,增加了光学成像镜头的成像质量。优选地,1.9<f1/f<2.25。
65.在本实施例中,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足:

3.5<f/(f3 f4)<

2。通过将第三透镜和第四透镜的焦距进行配合,并与光学成像镜头的有效焦距保持以上关系,能互补消除第三透镜和第四透镜带来的正负球差、慧差和像散等,同时能有效消除不同波长造成的色散和色差,有利于光线的汇聚,从而提升整个光学成像镜头的成像质量,获得较好的解像力。优选地,

3.3<f/(f3 f4)<

2.02。
66.在本实施例中,第一透镜、第二透镜、第三透镜和第四透镜的组合焦距f1234与第二透镜、第三透镜、第四透镜和第五透镜的组合焦距f2345之间满足:0.4<f1234/f2345<1。通过限制f1234/f2345在合理的范围内,可以有效分配各个透镜的光焦度,进而平衡光学成像镜头的有效焦距和焦点的位置,减小五个透镜的敏感性,避免过严的公差要求,使各视场光线在透镜表面的偏折更加平缓、光路走向更加顺滑,能有效减小光线的全反射和透镜表面的鬼像风险。还能通过彼此分布与整个光学成像镜头配合,更好的互补消除不同视场下的正负球差和倍率色差等。优选地,0.45<f1234/f2345<0.9。
67.在本实施例中,第五透镜的物侧面的曲率半径r9与第五透镜的像侧面的曲率半径r10之间满足:0<(r9

r10)/(r9 r10)<0.4。合理控制第五透镜的物侧面与第五透镜的像侧面的曲率半径的关系,可以避免由于张角过大带来的加工难度,也可以控制透镜边缘矢高过大,提高了可加工性,避免了严格的公差限制和工艺水平,使光学成像镜头的慧差和场曲等得到有效缓冲,有效地平衡第五透镜的球差和场曲。优选地,0.05<(r9

r10)/(r9 r10)<0.35。
68.在本实施例中,第四透镜的有效焦距f4、第四透镜的物侧面的曲率半径r7与第四透镜的像侧面的曲率半径r8之间满足:1<f4/(r7 r8)<3.5。合理分配第四透镜的物侧面和第四透镜的像侧面的曲率半径,使第四透镜的两个光学表面的曲率半径处于合理范围,有益于光线的汇聚,并能减缓光线在第四透镜中的偏折,使第四透镜的光焦度分配更加合理,有效减小第四透镜的敏感性,避免表面全反射以及鬼像的产生。优选地,1.3<f4/(r7 r8)<3.4。
69.在本实施例中,第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl与第一透镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.4<∑at/bfl<0.8。通过限制相邻两透镜之间在光轴上的空气间隔的总和,保证了各个透镜间有足够的间隙,避免两个透镜太近导致的干涉问题,便于隔片、隔圈的安装,可以减弱相邻透镜间的光线偏折和能量分布,也有利于光学参数的调整。约束光学后焦的大小,可以保证后焦尺寸维持在合理水平,能有效提高像面照度和降低最后一片透镜尺寸,利于音圈马达的安装和驱动。优选地,0.45<∑at/bfl<0.75。
70.在本实施例中,第一透镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat、第一透镜至第五透镜分别在光学成像镜头的光轴上的厚度总和∑ct与第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl之间满足:0.8<(∑at bfl)/∑ct<1。通过将(∑at bfl)/∑ct限制在合理的范围内,可以合理分配五片透镜之间的空气间隙,确保加工组装工艺性,同时可以避免单个透镜太薄,有益于透镜厚度的合理分配,使各透镜的厚度满足组立稳定性要求的最小厚度,可以降低透镜的组立变形和鬼像反射能量;保证了光学成像镜头有足够的光学后焦,便于音圈马达的安装和调试。这样设置能
够保持光学成像镜头的小型超薄的特点,调整镜头的场曲,降低各个透镜的厚度和空气间隔的敏感程度,避免第三透镜和第四透镜因外观问题而导致鬼影和杂光的风险。优选地,0.81<(∑at bfl)/∑ct<0.98。
71.在本实施例中,第一透镜在光学成像镜头的光轴上的厚度ct1、第二透镜在光学成像镜头的光轴上的厚度ct2与第一透镜和第二透镜在光轴上的空气间隔t12之间满足:0.5<|ct1

ct2|/t12<0.8。合理分配第一透镜、第二透镜的中心厚度,有利于透镜的加工和组立,并能有效降低透镜的鬼像风险、厚度敏感度和面型敏感度,通过平衡第一透镜和第二透镜之间的空气间隙,可以减弱两片透镜间的光线偏折和能量分布,避免光焦度过于集中带来的光线偏折陡峭。透镜的中心厚度和空气间隔的配合可以有效地降低光学成像镜头的慧差和像散,对于场曲的稳定和mtf峰值有较大的帮助。优选地,0.51<|ct1

ct2|/t12<0.75。
72.在本实施例中,第三透镜在光学成像镜头的光轴上的厚度ct3、第四透镜在光轴上的厚度ct4与第五透镜在光轴上的厚度ct5之间满足:0.9<(ct3 ct4)/(ct4 ct5)<1.1。通过将(ct3 ct4)/(ct4 ct5)限制在合理的范围内,光学成像镜头的中间部分呈厚度对称状态,使得光学成像镜头更加稳定、加工性强。合理控制第三透镜、第四透镜和第五透镜的中心厚度,使各自透镜的中心厚度满足组立稳定性要求的最小厚度,可以降低透镜的组立变形和鬼像反射能量,而且可以更好的平衡光学成像镜头的畸变和色散,有利于光学成像镜头的小型化。优选地,0.9<(ct3 ct4)/(ct4 ct5)<1.08。
73.在本实施例中,第二透镜和第三透镜在光学成像镜头的光轴上的空气间隔t23与第一透镜至第五透镜中任意相邻两个透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.35<t23/∑at<0.45。通过将t23/∑at限制在合理的范围内,使第二透镜和第三透镜在光轴上的空气间隔较大,可以有效减弱第二透镜、第三透镜之间的光线偏折,减弱第二透镜与第三透镜之间的能量密度,还可以合理分配其他透镜之间的空气间隙,既可以确保加工组装工艺性,避免两个透镜太近导致的干涉问题,又有利于调整光学成像镜头的场曲,降低透镜敏感程度。优选地,0.36≤t23/∑at<0.44。
74.在本实施例中,第三透镜的像侧面的最大有效半径dt32与第五透镜的像侧面的最大有效半径dt52之间满足:0.4<dt32/dt52<0.5。合理控制第三透镜和第五透镜的最大有效半径之比,可以保证透镜的小型化,并且避免第三透镜和第五透镜的半径差距较大,从而保证光学成像镜头的尺寸的均匀性。通过限制口径比值,也可以有效滤除宽光束杂光,减少了光学成像镜头的杂光和鬼像。优选地,0.42≤dt32/dt52<0.47。
75.在本实施例中,第一透镜的物侧面的最大有效半径dt11、第三透镜的像侧面的最大有效半径dt32与光学成像镜头的光阑的最大有效半径sr之间满足:0.9<(dt32

dt11)/sr<1.1。合理控制第一透镜、第三透镜和光阑的半口径的关系,一方面可以有效控制光学成像镜头的渐晕系数,拦截成像质量较差的部分光线,从而可以提升整个光学成像镜头的解像力和像面照度;另一方面可以避免第一透镜和第三透镜之间的半径差异过大导致大段差的问题,确保组装的稳定性,同时保证镜头cra(chief ray angle)可以更好的和感光芯片匹配。优选地,0.93<(dt32

dt11)/sr<1.07。
76.实施例二
77.如图1至图30所示,沿光学成像镜头的物侧至光学成像镜头的像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜;第一透镜具有正光焦度,第一透镜的像侧
面为凸面;第二透镜具有正光焦度;其中,光学成像镜头的有效焦距f、第一透镜的物侧面至第五透镜的像侧面的轴上距离td与光学成像镜头的最大半视场角semi

fov之间满足:1<f*tan(semi

fov)/td<1.4;光学成像镜头的最大半视场角semi

fov满足:50
°
<semi

fov<60
°

78.通过合理的分配各个透镜的光焦度,有利于平衡光学成像镜头产生的像差,大大增加光学成像镜头的成像质量。通过将f*tan(semi

fov)/td限制在合理的范围内,可以保证光学成像镜头有较小的焦距和较大的视场角,满足广角镜头的基本关系。同时也限制了第一透镜的物侧面到第五透镜的像侧面的轴上距离,即控制光学成像镜头的长度,使光学成像镜头小型轻便、易于安装。通过将最大半视场角semi

fov限制在50
°
至60
°
的范围内,使得光学成像镜头能够在更大的角度范围内采集图像,使得光学成像镜头能够作为广角镜头使用。这样设置使得光学成像镜头实现小型化的同时还能够实现广角拍摄。
79.优选地,光学成像镜头的有效焦距f、第一透镜的物侧面至第五透镜的像侧面的轴上距离td与光学成像镜头的最大半视场角semi

fov之间满足:1.05<f*tan(semi

fov)/td<1.38。
80.在本实施例中,光学成像镜头的光阑到第五透镜的像侧面的距离sd与光学成像镜头的成像面上有效像素区域对角线长的一半imgh之间满足:0.6<sd/imgh<1.1。通过限制光阑到第五透镜的像侧面的距离能够保证光学成像镜头的小型化和便携化,紧凑的结构也有利于对抗扭力、高空跌落、滚筒的测试以及实现更广泛的应用。将sd/imgh控制在合理的范围内,能够使光学成像镜头处于超薄状态,有利于将光学成像镜头安装到手机等电子设备的前置摄影模块中,有利于前置摄影模块的安装调试。优选地,0.64<sd/imgh<1.1。
81.在本实施例中,光学成像镜头的有效焦距f与第一透镜的有效焦距f1之间满足:1.9<f1/f<2.3。通过将f1/f限制在合理的范围内,合理分配了第一透镜的光焦度在光学成像镜头的总光焦度中的比例,既能减缓光线在第一透镜中的偏折,避免第一透镜过大的光焦度,从而减小第一透镜的敏感性,避免过严的公差要求,还能减小第一透镜产生的球差和像散等,增加了光学成像镜头的成像质量。优选地,1.9<f1/f<2.25。
82.在本实施例中,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足:

3.5<f/(f3 f4)<

2。通过将第三透镜和第四透镜的焦距进行配合,并与光学成像镜头的有效焦距保持以上关系,能互补消除第三透镜和第四透镜带来的正负球差、慧差和像散等,同时能有效消除不同波长造成的色散和色差,有利于光线的汇聚,从而提升整个光学成像镜头的成像质量,获得较好的解像力。优选地,

3.3<f/(f3 f4)<

2.02。
83.在本实施例中,第一透镜、第二透镜、第三透镜和第四透镜的组合焦距f1234与第二透镜、第三透镜、第四透镜和第五透镜的组合焦距f2345之间满足:0.4<f1234/f2345<1。通过限制f1234/f2345在合理的范围内,可以有效分配各个透镜的光焦度,进而平衡光学成像镜头的有效焦距和焦点的位置,减小五个透镜的敏感性,避免过严的公差要求,使各视场光线在透镜表面的偏折更加平缓、光路走向更加顺滑,能有效减小光线的全反射和透镜表面的鬼像风险。还能通过彼此分布与整个光学成像镜头配合,更好的互补消除不同视场下的正负球差和倍率色差等。优选地,0.45<f1234/f2345<0.9。
84.在本实施例中,第五透镜的物侧面的曲率半径r9与第五透镜的像侧面的曲率半径r10之间满足:0<(r9

r10)/(r9 r10)<0.4。合理控制第五透镜的物侧面与第五透镜的像侧
面的曲率半径的关系,可以避免由于张角过大带来的加工难度,也可以控制透镜边缘矢高过大,提高了可加工性,避免了严格的公差限制和工艺水平,使光学成像镜头的慧差和场曲等得到有效缓冲,有效地平衡第五透镜的球差和场曲。优选地,0.05<(r9

r10)/(r9 r10)<0.35。
85.在本实施例中,第四透镜的有效焦距f4、第四透镜的物侧面的曲率半径r7与第四透镜的像侧面的曲率半径r8之间满足:1<f4/(r7 r8)<3.5。合理分配第四透镜的物侧面和第四透镜的像侧面的曲率半径,使第四透镜的两个光学表面的曲率半径处于合理范围,有益于光线的汇聚,并能减缓光线在第四透镜中的偏折,使第四透镜的光焦度分配更加合理,有效减小第四透镜的敏感性,避免表面全反射以及鬼像的产生。优选地,1.3<f4/(r7 r8)<3.4。
86.在本实施例中,第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl与第一透镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.4<∑at/bfl<0.8。通过限制相邻两透镜之间在光轴上的空气间隔的总和,保证了各个透镜间有足够的间隙,避免两个透镜太近导致的干涉问题,便于隔片、隔圈的安装,可以减弱相邻透镜间的光线偏折和能量分布,也有利于光学参数的调整。约束光学后焦的大小,可以保证后焦尺寸维持在合理水平,能有效提高像面照度和降低最后一片透镜尺寸,利于音圈马达的安装和驱动。优选地,0.45<∑at/bfl<0.75。
87.在本实施例中,第一透镜至第五透镜中任意相邻两透镜之间在光学成像镜头的光轴上的空气间隔的总和σat、第一透镜至第五透镜分别在光学成像镜头的光轴上的厚度总和∑ct与第五透镜的像侧面至光学成像镜头的成像面的轴上距离bfl之间满足:0.8<(∑at bfl)/∑ct<1。通过将(∑at bfl)/∑ct限制在合理的范围内,可以合理分配五片透镜之间的空气间隙,确保加工组装工艺性,同时可以避免单个透镜太薄,有益于透镜厚度的合理分配,使各透镜的厚度满足组立稳定性要求的最小厚度,可以降低透镜的组立变形和鬼像反射能量;保证了光学成像镜头有足够的光学后焦,便于音圈马达的安装和调试。这样设置能够保持光学成像镜头的小型超薄的特点,调整镜头的场曲,降低各个透镜的厚度和空气间隔的敏感程度,避免第三透镜和第四透镜因外观问题而导致鬼影和杂光的风险。优选地,0.81<(∑at bfl)/∑ct<0.98。
88.在本实施例中,第一透镜在光学成像镜头的光轴上的厚度ct1、第二透镜在光学成像镜头的光轴上的厚度ct2与第一透镜和第二透镜在光轴上的空气间隔t12之间满足:0.5<|ct1

ct2|/t12<0.8。合理分配第一透镜、第二透镜的中心厚度,有利于透镜的加工和组立,并能有效降低透镜的鬼像风险、厚度敏感度和面型敏感度,通过平衡第一透镜和第二透镜之间的空气间隙,可以减弱两片透镜间的光线偏折和能量分布,避免光焦度过于集中带来的光线偏折陡峭。透镜的中心厚度和空气间隔的配合可以有效地降低光学成像镜头的慧差和像散,对于场曲的稳定和mtf峰值有较大的帮助。优选地,0.51<|ct1

ct2|/t12<0.75。
89.在本实施例中,第三透镜在光学成像镜头的光轴上的厚度ct3、第四透镜在光轴上的厚度ct4与第五透镜在光轴上的厚度ct5之间满足:0.9<(ct3 ct4)/(ct4 ct5)<1.1。通过将(ct3 ct4)/(ct4 ct5)限制在合理的范围内,光学成像镜头的中间部分呈厚度对称状态,使得光学成像镜头更加稳定、加工性强。合理控制第三透镜、第四透镜和第五透镜的中心厚度,使各自透镜的中心厚度满足组立稳定性要求的最小厚度,可以降低透镜的组立变形和
鬼像反射能量,而且可以更好的平衡光学成像镜头的畸变和色散,有利于光学成像镜头的小型化。优选地,0.9<(ct3 ct4)/(ct4 ct5)<1.08。
90.在本实施例中,第二透镜和第三透镜在光学成像镜头的光轴上的空气间隔t23与第一透镜至第五透镜中任意相邻两个透镜之间在光学成像镜头的光轴上的空气间隔的总和σat之间满足:0.35<t23/∑at<0.45。通过将t23/∑at限制在合理的范围内,使第二透镜和第三透镜在光轴上的空气间隔较大,可以有效减弱第二透镜、第三透镜之间的光线偏折,减弱第二透镜与第三透镜之间的能量密度,还可以合理分配其他透镜之间的空气间隙,既可以确保加工组装工艺性,避免两个透镜太近导致的干涉问题,又有利于调整光学成像镜头的场曲,降低透镜敏感程度。优选地,0.36≤t23/∑at<0.44。
91.在本实施例中,第三透镜的像侧面的最大有效半径dt32与第五透镜的像侧面的最大有效半径dt52之间满足:0.4<dt32/dt52<0.5。合理控制第三透镜和第五透镜的最大有效半径之比,可以保证透镜的小型化,并且避免第三透镜和第五透镜的半径差距较大,从而保证光学成像镜头的尺寸的均匀性。通过限制口径比值,也可以有效滤除宽光束杂光,减少了光学成像镜头的杂光和鬼像。优选地,0.42≤dt32/dt52<0.47。
92.在本实施例中,第一透镜的物侧面的最大有效半径dt11、第三透镜的像侧面的最大有效半径dt32与光学成像镜头的光阑的最大有效半径sr之间满足:0.9<(dt32

dt11)/sr<1.1。合理控制第一透镜、第三透镜和光阑的半口径的关系,一方面可以有效控制光学成像镜头的渐晕系数,拦截成像质量较差的部分光线,从而可以提升整个光学成像镜头的解像力和像面照度;另一方面可以避免第一透镜和第三透镜之间的半径差异过大导致大段差的问题,确保组装的稳定性,同时保证镜头cra(chief ray angle)可以更好的和感光芯片匹配。优选地,0.93<(dt32

dt11)/sr<1.07。
93.可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤波片和/或用于保护位于成像面上的感光元件的保护玻璃。
94.在本技术中的光学成像镜头可采用多片镜片,例如上述的五片。通过合理分配各透镜的光焦度、面形、各透镜的中心厚度以及各透镜之间的轴上距离等,可有效增大光学成像镜头的孔径、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于智能手机等便携式电子设备。上述的光学成像镜头还具有孔径大、视场角大。超薄、成像质量佳的优点,能够满足智能电子产品微型化的需求。
95.在本技术中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
96.然而,本领域技术人员应当理解,在未背离本技术要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五片透镜为例进行了描述,但是光学成像镜头不限于包括五片透镜。如需要,该光学成像镜头还可包括其它数量的透镜。
97.下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体面型、参数的举例。
98.需要说明的是,下述的例子一至例子六中的任何一个例子均适用于本技术的所有
实施例。
99.例子一
100.如图1至图5所示,描述了本技术例子一的光学成像镜头。图1示出了例子一的光学成像镜头结构的示意图。
101.如图1所示,光学成像镜头由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、滤波片e6和成像面s13。
102.第一透镜e1具有正光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凸面。第二透镜e2具正光焦度,第二透镜的物侧面s3为凹面,第二透镜的像侧面s4为凸面。第三透镜e3具有负光焦度,第三透镜的物侧面s5为凹面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凸面,第五透镜的像侧面s10为凹面。滤波片e6具有滤波片的物侧面s11和滤波片的像侧面s12。来自物体的光依序穿过各表面s1至s13并最终成像在成像面s13上。
103.在本例子中,光学成像镜头的总有效焦距f为2.48mm,光学成像镜头的最大半视场角semi

fov为53.25
°
光学成像镜头的总长ttl为3.97mm以及像高imgh为3.04mm。
104.表1示出了例子一的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离、焦距和有效半径的单位均为毫米(mm)。
[0105][0106]
表1
[0107]
在例子一中,第一透镜e1至第五透镜e5中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型可利用但不限于以下非球面公式进行限定:
[0108][0109]
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥系数;ai是非球面第i

th阶的修正系数。下表2给出了可用于例子一中各非球面镜面s1

s10的高次
项系数a4、a6、a8、a10、a12、a14、a16、a18、a20、a22、a24、a26、a28、a30。
[0110]
面号a4a6a8a10a12a14a16s1

1.1041e

01

4.5104e

011.5159e 003.4016e 00

1.8333e 021.5027e 03

5.9568e 03s2

2.8276e

012.1578e

01

5.6289e 003.2521e 01

1.0173e 021.1924e 021.8361e 02s3

2.8732e

011.2300e 00

1.5531e 019.8260e 01

3.8793e 029.4825e 02

1.3919e 03s4

7.6220e

02

6.2967e

013.1406e 00

1.8945e 016.4160e 01

1.2710e 021.4907e 02s51.3724e 00

4.0233e 005.5829e 00

3.3677e 004.5599e 00

1.2245e 011.4001e 01s61.0493e 00

2.0417e 00

7.8207e

011.0490e 01

2.0520e 012.1296e 01

1.3202e 01s71.5055e

01

2.6598e

01

2.1670e

011.0814e 00

1.5617e 001.3023e 00

7.0671e

01s8

1.2951e

011.6199e 00

3.6655e 004.4355e 00

3.2749e 001.4915e 00

3.8150e

01s96.9420e

02

2.4995e

01

3.2870e

011.3656e 00

2.2728e 002.5089e 00

1.9544e 00s10

1.0681e

01

2.4624e

016.0888e

01

7.9717e

017.2425e

01

4.7692e

012.2912e

01面号a18a20a22a24a26a28a30s11.1856e 04

9.4364e 030.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s2

6.7552e 025.6462e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s31.1324e 03

3.9477e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s4

9.5973e 012.5973e 010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s5

6.5291e 009.5686e

010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s64.6817e 00

7.3512e

010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s72.5792e

01

6.2976e

029.8764e

03

8.9969e

043.6173e

050.0000e 000.0000e 00s82.8216e

021.3116e

02

4.3778e

035.5271e

04

2.6606e

050.0000e 000.0000e 00s91.0788e 00

4.1958e

011.1362e

01

2.0910e

022.4903e

03

1.7298e

045.3207e

06s10

8.0155e

022.0275e

02

3.6533e

034.5587e

04

3.7360e

051.8064e

06

3.9009e

08
[0111]
表2
[0112]
图2示出了例子一的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图3示出了例子一的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图4示出了例子一的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图5示出了例子一的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。
[0113]
根据图2至图5可知,例子一所给出的光学成像镜头能够实现良好的成像品质。
[0114]
例子二
[0115]
如图6至图10所示,描述了本技术例子二的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图6示出了例子二的光学成像镜头结构的示意图。
[0116]
如图6所示,光学成像镜头由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、滤波片e6和成像面s13。
[0117]
第一透镜e1具有正光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凸面。第二透镜e2具正光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凸面。第三透镜e3具有负光焦度,第三透镜的物侧面s5为凹面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凸面,第五透镜的像侧面s10为凹面。滤波片e6具有滤波片的物侧面s11和滤波片的像侧面s12。来自物体的光依序穿过各表面s1至s13并最终成像在成像面s13上。
[0118]
在本例子中,光学成像镜头的总有效焦距f为2.48mm,光学成像镜头的最大半视场角semi

fov为51.30
°
光学成像镜头的总长ttl为3.96mm以及像高imgh为2.88mm。
[0119]
表3示出了例子二的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离、焦距和有效半径的单位均为毫米(mm)。
[0120][0121]
表3
[0122]
表4示出了可用于例子二中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子二中给出的公式(1)限定。
[0123][0124]
[0125]
表4
[0126]
图7示出了例子二的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图8示出了例子二的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图9示出了例子二的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10示出了例子二的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。
[0127]
根据图7至图10可知,例子二所给出的光学成像镜头能够实现良好的成像品质。
[0128]
例子三
[0129]
如图11至图15所示,描述了本技术例子三的光学成像镜头。图11示出了例子三的光学成像镜头结构的示意图。
[0130]
如图11所示,光学成像镜头由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、滤波片e6和成像面s13。
[0131]
第一透镜e1具有正光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凸面。第二透镜e2具正光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凸面。第三透镜e3具有负光焦度,第三透镜的物侧面s5为凹面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凸面,第五透镜的像侧面s10为凹面。滤波片e6具有滤波片的物侧面s11和滤波片的像侧面s12。来自物体的光依序穿过各表面s1至s13并最终成像在成像面s13上。
[0132]
在本例子中,光学成像镜头的总有效焦距f为2.39mm,光学成像镜头的最大半视场角semi

fov为53.64
°
光学成像镜头的总长ttl为3.91mm以及像高imgh为2.90mm。
[0133]
表5示出了例子三的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离、焦距和有效半径的单位均为毫米(mm)。
[0134][0135]
表5
[0136]
表6示出了可用于例子三中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子三中给出的公式(1)限定。
[0137]
面号a4a6a8a10a12a14a16s1

1.4803e

014.0251e

01

1.1938e 011.4130e 02

1.1105e 035.6265e 03

1.7587e 04s2

2.5041e

01

7.0086e

017.3593e 00

7.2525e 014.3843e 02

1.6730e 033.9410e 03s3

3.1045e

011.4876e 00

1.8340e 011.1819e 02

4.8245e 021.2336e 03

1.9116e 03s4

1.3576e

015.9712e

02

1.3363e 00

9.7516e

011.9835e 01

6.3689e 011.0409e 02s51.2286e 00

1.3841e 00

1.3171e 017.5264e 01

2.0383e 023.4007e 02

3.5533e 02s69.0123e

01

6.6014e

01

6.5934e 002.5341e 01

4.4841e 014.6876e 01

3.0007e 01s78.2406e

02

1.4315e

02

7.6270e

011.7926e 00

2.1348e 001.6029e 00

8.1459e

01s8

9.9394e

021.3567e 00

2.7288e 002.4883e 00

8.1274e

01

4.6978e

016.3512e

01s99.5470e

02

4.6237e

013.7755e

011.4759e

01

1.0582e 001.7634e 00

1.6532e 00s10

1.4214e

01

1.5412e

014.9411e

01

6.9304e

016.4032e

01

4.1708e

011.9546e

01面号a18a20a22a24a26a28a30s13.0583e 04

2.2418e 040.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s2

5.2210e 033.0035e 030.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s31.6512e 03

6.0945e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s4

8.9631e 013.2308e 010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s52.1265e 02

5.5327e 010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s61.1003e 01

1.7804e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s72.8559e

01

6.8168e

021.0573e

02

9.5918e

043.8553e

050.0000e 000.0000e 00s8

3.2024e

019.1584e

02

1.5553e

021.4661e

03

5.9267e

050.0000e 000.0000e 00s99.8758e

01

3.9366e

011.0620e

01

1.9182e

022.2248e

03

1.4991e

044.4646e

06s10

6.6278e

021.6201e

02

2.8164e

033.3865e

04

2.6716e

051.2422e

06

2.5772e

08
[0138]
表6
[0139]
图12示出了例子三的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图13示出了例子三的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图14示出了例子三的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图15示出了例子三的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。
[0140]
根据图12至图15可知,例子三所给出的光学成像镜头能够实现良好的成像品质。
[0141]
例子四
[0142]
如图16至图20所示,描述了本技术例子四的光学成像镜头。图16示出了例子四的光学成像镜头结构的示意图。
[0143]
如图16所示,光学成像镜头由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、滤波片e6和成像面s13。
[0144]
第一透镜e1具有正光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凸面。第二透镜e2具正光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凹面,第三透镜的像侧面s6为凸面。第四透镜e4具有负光焦度,第四透镜的物侧面s7为凹面,第四透镜的像侧面s8为凸面。第五透镜e5具有正光焦度,第五透镜的物侧面s9为凸面,第五透镜的像侧面s10为凹面。滤波片e6具有滤波片的物侧面s11和滤波片的像侧面s12。来自物体的光依序穿过各表面s1至s13并最终成像在成像面s13上。
[0145]
在本例子中,光学成像镜头的总有效焦距f为2.35mm,光学成像镜头的最大半视场角semi

fov为54.23
°
光学成像镜头的总长ttl为3.77mm以及像高imgh为3.95mm。
[0146]
表7示出了例子四的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离、焦距和有效半径的单位均为毫米(mm)。
[0147][0148][0149]
表7
[0150]
表8示出了可用于例子四中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子四中给出的公式(1)限定。
[0151]
面号a4a6a8a10a12a14a16s1

9.5097e

02

9.5500e 004.8641e 02

1.5903e 043.4457e 05

5.1527e 065.4594e 07s2

5.8136e

012.8221e 00

5.5709e 018.4033e 02

8.5794e 036.0370e 04

2.9907e 05s3

5.0790e

011.7180e 00

1.9047e 011.6128e 02

9.6142e 024.1402e 03

1.2963e 04s4

2.1640e

013.8070e

01

4.3114e 004.2886e 01

2.9957e 021.4609e 03

5.0108e 03s5

9.7332e

02

6.0212e

01

6.6632e 001.2951e 02

8.7768e 023.5463e 03

9.6533e 03s63.6780e 00

3.5939e 011.9719e 02

7.0767e 021.8064e 03

3.4447e 035.0334e 03s76.1411e 00

4.5207e 012.2878e 02

7.8619e 021.9191e 03

3.4361e 034.5839e 03s82.2642e 00

9.9198e 003.1358e 01

6.4479e 018.7203e 01

7.8229e 014.4397e 01s9

3.0707e

01

7.5381e

012.7292e 00

4.9550e 005.9939e 00

5.1103e 003.1147e 00s10

4.5246e

011.0654e

012.8834e

01

5.6052e

015.9356e

01

4.3748e

012.3478e

01面号a18a20a22a24a26a28a30s1

4.1563e 082.2796e 09

8.9214e 092.4279e 10

4.3618e 104.6465e 10

2.2212e 10s21.0570e 06

2.6730e 064.7932e 06

5.9437e 064.8413e 06

2.3283e 065.0066e 05s32.9585e 04

4.9035e 045.8223e 04

4.8142e 042.6269e 04

8.4878e 031.2280e 03s41.2246e 04

2.1449e 042.6735e 04

2.3153e 041.3240e 04

4.4941e 036.8568e 02s51.8537e 04

2.5494e 042.4982e 04

1.7014e 047.6396e 03

2.0294e 032.4114e 02s6

5.6724e 034.8767e 03

3.0997e 031.3711e 03

3.7666e 024.9518e 01

6.9866e

01s7

4.5733e 033.3914e 03

1.8382e 037.0547e 02

1.8110e 022.7815e 01

1.9277e 00s8

1.2199e 01

2.6066e 004.0574e 00

1.8340e 004.5090e

01

6.0483e

023.4821e

03s9

1.3637e 004.2858e

01

9.5792e

021.4864e

02

1.5229e

039.2691e

05

2.5399e

06s10

9.2284e

022.6397e

02

5.4095e

037.7168e

04

7.2641e

054.0517e

06

1.0134e

07
[0152]
表8
[0153]
图17示出了例子四的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由
光学成像镜头后的会聚焦点偏离。图18示出了例子四的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图19示出了例子四的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20示出了例子四的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。
[0154]
根据图17至图20可知,例子四所给出的光学成像镜头能够实现良好的成像品质。
[0155]
例子五
[0156]
如图21至图25所示,描述了本技术例子五的光学成像镜头。图21示出了例子五的光学成像镜头结构的示意图。
[0157]
如图21所示,光学成像镜头由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、滤波片e6和成像面s13。
[0158]
第一透镜e1具有正光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凸面。第二透镜e2具正光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凹面,第三透镜的像侧面s6为凸面。第四透镜e4具有负光焦度,第四透镜的物侧面s7为凹面,第四透镜的像侧面s8为凸面。第五透镜e5具有正光焦度,第五透镜的物侧面s9为凸面,第五透镜的像侧面s10为凹面。滤波片e6具有滤波片的物侧面s11和滤波片的像侧面s12。来自物体的光依序穿过各表面s1至s13并最终成像在成像面s13上。
[0159]
在本例子中,光学成像镜头的总有效焦距f为2.27mm,光学成像镜头的最大半视场角semi

fov为57.37
°
光学成像镜头的总长ttl为3.76mm以及像高imgh为3.03mm。
[0160]
表9示出了例子五的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离、焦距和有效半径的单位均为毫米(mm)。
[0161][0162]
表9
[0163]
表10示出了可用于例子五中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子五中给出的公式(1)限定。
[0164][0165][0166]
表10
[0167]
图22示出了例子五的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图23示出了例子五的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图24示出了例子五的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图25示出了例子五的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。
[0168]
根据图22至图25可知,例子五所给出的光学成像镜头能够实现良好的成像品质。
[0169]
例子六
[0170]
如图26至图30所示,描述了本技术例子六的光学成像镜头。图26示出了例子六的光学成像镜头结构的示意图。
[0171]
如图26所示,光学成像镜头由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、滤波片e6和成像面s13。
[0172]
第一透镜e1具有正光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凸面。第二透镜e2具正光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凹面,第三透镜的像侧面s6为凸面。第四透镜e4具有负光焦度,第四透镜的物侧面s7为凹面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凸面,第五透镜的像侧面s10为凹面。滤波片e6具有滤波片的物侧面s11和滤波片的像侧面s12。来自物体的光依序穿过各表面s1至s13并最终成像在成像面s13上。
[0173]
在本例子中,光学成像镜头的总有效焦距f为2.45mm,光学成像镜头的最大半视场角semi

fov为51.69
°
光学成像镜头的总长ttl为3.93mm以及像高imgh为2.90mm。
[0174]
表11示出了例子六的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离、焦距和有效半径的单位均为毫米(mm)。
[0175][0176][0177]
表11
[0178]
表12示出了可用于例子六中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子六中给出的公式(1)限定。
[0179]
面号a4a6a8a10a12a14a16s1

1.0634e

01

6.1251e 002.4489e 02

6.2418e 031.0458e 05

1.1999e 069.6594e 06s2

5.2330e

012.9200e 00

4.8143e 015.6530e 02

4.5159e 032.5044e 04

9.7894e 04s3

5.0263e

012.6062e 00

3.1095e 012.7644e 02

1.7532e 037.9845e 03

2.6255e 04s4

1.4688e

01

6.9096e

016.6816e 00

3.6328e 011.3336e 02

3.4959e 026.7970e 02s51.4334e

01

3.4373e 002.1792e 01

9.6030e 013.4465e 02

9.7092e 022.0293e 03s66.4539e 00

5.3268e 012.4088e 02

6.8319e 021.2697e 03

1.5401e 031.1536e 03s77.9989e 00

5.7385e 012.6638e 02

8.3024e 021.8217e 03

2.8985e 033.3899e 03s81.9613e 00

7.3029e 002.2763e 01

5.0562e 017.8786e 01

8.7895e 017.1095e 01s9

1.9731e

01

8.8223e

012.9475e 00

5.4016e 006.5932e 00

5.6202e 003.4051e 00s10

4.7277e

011.5003e

012.6565e

01

6.0375e

016.7665e

01

5.0712e

012.7095e

01面号a18a20a22a24a26a28a30s1

5.5095e 072.2166e 08

6.1527e 081.1212e 09

1.2067e 095.8112e 080.0000e 00s22.7132e 05

5.2994e 057.1311e 05

6.2927e 053.2774e 05

7.6339e 040.0000e 00s36.2582e 04

1.0785e 051.3267e 05

1.1332e 056.3724e 04

2.1172e 043.1434e 03s4

9.9472e 021.0874e 03

8.6280e 024.6969e 02

1.5686e 022.4179e 010.0000e 00s5

3.0335e 033.1583e 03

2.2193e 039.9817e 02

2.5838e 022.9167e 010.0000e 00s6

4.5630e 027.3942e 01

7.4762e 011.1095e 02

5.8222e 011.0620e 010.0000e 00s7

2.9168e 031.8250e 03

8.0768e 022.3953e 02

4.2676e 013.4503e 000.0000e 00s8

4.1700e 011.7517e 01

5.1241e 009.8927e

01

1.1312e

015.7956e

030.0000e 00s9

1.4781e 004.6025e

01

1.0191e

011.5668e

02

1.5910e

039.6005e

05

2.6089e

06s10

1.0505e

012.9564e

02

5.9645e

038.3921e

04

7.8092e

054.3150e

06

1.0712e

07
[0180]
表12
[0181]
图27示出了例子六的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由
光学成像镜头后的会聚焦点偏离。图28示出了例子六的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图29示出了例子六的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图30示出了例子六的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。
[0182]
根据图27至图30可知,例子六所给出的光学成像镜头能够实现良好的成像品质。
[0183]
综上,例子一至例子六分别满足表13中所示的关系。
[0184]
条件式/实施例123456ttl/imgh1.311.371.350.951.241.36sd/imgh0.941.000.970.660.870.94f*tan(semi

fov)/td1.191.091.171.261.351.15f1/f1.972.022.172.102.141.91f/(f3 f4)

2.04

2.06

2.37

3.10

2.98

2.87f1234/f23450.480.470.520.830.870.66(r9

r10)/(r9 r10)0.290.330.290.060.050.11f4/(r7 r8)2.453.273.121.351.351.36∑at/bfl0.660.700.630.490.470.47(∑at bfl)/∑ct0.950.910.900.870.820.86|ct1

ct2|/t120.670.530.590.720.690.58(ct3 ct4)/(ct4 ct5)0.930.920.911.031.021.07t23/∑at0.360.420.390.420.410.43dt32/dt520.430.440.440.440.430.46(dt32

dt11)/sr0.971.000.981.041.050.95
[0185]
表13表14给出了例子一至例子六的光学成像镜头的有效焦距f,各透镜的有效焦距f1至f5。
[0186]
实施例参数123456f1(mm)4.894.995.194.934.854.67f2(mm)4.554.193.96117.03120.82852.47f3(mm)

3.33

3.22

3.051.791.781.44f4(mm)2.112.022.05

2.55

2.54

2.30f5(mm)

3.39

2.99

3.4111.5210.09

377.68f(mm)2.482.482.392.352.272.45ttl(mm)3.973.963.913.773.763.93imgh(mm)3.042.882.903.953.032.90semi

fov(
°
)53.2551.3053.6454.2357.3751.69
[0187]
表14
[0188]
本技术还提供一种成像装置,其电子感光元件可以是感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
[0189]
显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
[0190]
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本技术的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
[0191]
需要说明的是,本技术的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本技术的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
[0192]
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜