一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于二维材料的双异质结构的柔性光电探测器及其制备工艺的制作方法

2021-10-24 05:14:00 来源:中国专利 TAG:光电 材料科学 柔性 制备 探测器


1.本发明属于材料科学、光电器件及微纳制造技术领域,具体涉及一种基于二维材料的双异质结构的柔性光电探测器及其制备工艺。


背景技术:

2.光电探测器是广泛应用于军事和国民经济的重要光电器件之一,在世界上受到高度重视。由于感光材料以及器件结构不同,探测器在响应波段、响应率、探测率、响应速度等方面表现迥异。这些性能各异的光电探测器可广泛用于图像传感、导弹制导、环境监测、夜视系统等领域。由于二维材料层间不存在共价键,因此不受晶格匹配和材料种类的限制,通过依次堆叠不同的材料就可以获得趋向于完美的异质结。通过范德华异质结构建的柔性探测器,通常能够满足对新型光电子器件轻量化设计的需求,易于携带,具有优异的移植性、大面积兼容性和更高的可扩展性等优点,因而在光电子器件领域的发展中具有良好的应用前景。


技术实现要素:

3.本发明的目的在于针对光电探测器的柔性化和轻量化的需求,提供了一种基于二维材料的双异质结构的柔性光电探测器及其制备工艺,用于增强柔性光电探测器的响应率。
4.为达到上述目的,本发明采用如下技术方案予以实现:
5.基于二维材料的双异质结构的柔性光电探测器,包括聚对苯二甲酸乙二酯基底、单层二硫化钼、石墨烯、碳纳米管薄膜和金属电极;其中单层二硫化钼位于聚对苯二甲酸乙二酯基底表面,石墨烯覆盖在单层二硫化钼上方,碳纳米管薄膜再覆盖在石墨烯上方,金属电极形成于石墨烯和碳纳米管薄膜上方。
6.本发明进一步的改进在于,碳纳米管薄膜与石墨烯的覆盖结构为十字交叉结构,单层二硫化钼完全被覆盖在石墨烯下方。
7.本发明进一步的改进在于,该探测器制备采用的材料都是二维材料。
8.本发明进一步的改进在于,该探测器一共有两对异质结,分别是碳纳米管薄膜/石墨烯异质结和石墨烯/单层二硫化钼异质结;利用碳纳米管薄膜对近红外光子的高吸收特性以及碳纳米管薄膜/石墨烯异质结对碳纳米管所产生光生载流子进行有效分离,使得该双异质结构的柔性光电探测器的光谱响应能够拓展至红外波段范围,突破了单层二硫化钼自身的响应极限。
9.本发明进一步的改进在于,当激光波长在可见光范围内时,在零偏压下的光响应由石墨烯/单层二硫化钼异质结产生,而当激光波长在近红外的范围时,在零偏压下的光电响应由碳纳米管薄膜/石墨烯异质结产生。
10.本发明进一步的改进在于,通过碳纳米管薄膜/石墨烯/单层二硫化钼双异质结的内建电场作用,会使该器件在无偏压下能够进行光探测,并增强器件的光响应强度。
11.基于二维材料的双异质结构的柔性光电探测器的制备工艺,包括如下步骤:
12.1)制备单层mos2并转移到清洗完成后干净的pet基底上;
13.2)制备单晶单层石墨烯薄膜并转移到pet基底上,完全覆盖mos2;
14.3)在步骤2)石墨烯薄膜上进行光刻和等离子体工艺来刻蚀边缘;
15.4)制备cnt薄膜并转移到pet基底上,覆盖在石墨烯上方;
16.5)在步骤4)cnt薄膜上进行光刻和等离子体工艺来刻蚀,形成十字交叉结构;
17.6)在步骤5)得到cnt薄膜两端和在步骤3)得到的石墨烯薄膜两端制备探测器的金属电极,得到基于二维材料的双异质结构的柔性光电探测器。
18.本发明进一步的改进在于,步骤3)和5)中,采用光刻和等离子体刻蚀工艺对石墨烯和cnt薄膜来进行图形化处理:首先在材料表面通过旋转匀胶、前烘、曝光、显影以及后烘来制备出一层光刻胶掩膜层,得到图形化的掩膜层,同时部分需要刻蚀的材料部分被裸露出来,形成刻蚀窗口;在刻蚀窗口处,裸露出来的材料部分被等离子体所刻蚀,得到所需图案。
19.本发明进一步的改进在于,步骤6)中,采用旋转匀胶、前烘、曝光、显影以及后烘来制备出一层光刻胶掩膜层,并结合金属沉积和剥离微纳制造工艺,在石墨烯和cnt薄膜左右两侧制备20nm厚的ti及80nm厚的au电极;其中ti作为缓冲材料,导电性能优异的au作为电极材料。
20.本发明至少具有如下有益的技术效果:
21.本发明提供的一种基于二维材料的双异质结构的柔性光电探测器,通过单层二硫化钼、石墨烯、碳纳米管薄膜这几种二维材料的叠合形成范德瓦尔斯异质结。由于层间不存在共价键,因此不受晶格匹配和材料种类的限制,通过依次堆叠不同的材料就可以获得趋向于完美的异质结,完美的异质结构带来了完美的电学性质。例如,堆叠得到的金属

半导体异质结界面缺陷极少,解除了费米能级钉扎,使得其界面势垒高度趋向于肖特基

莫特极限。更加美妙的是,由于二维材料柔韧性,这样的异质结加工成的各种器件具有非常好的延展性和可弯折性,在柔性电子学领域具有广泛的应用前景。
22.本发明提供的一种基于二维材料的双异质结构的柔性光电探测器的制备工艺,基于范德瓦尔斯异质结和双异质结理论方法,利用碳纳米管薄膜对近红外光子的高吸收特性,以及碳纳米管薄膜/石墨烯异质结对碳纳米管所产生光生载流子进行有效分离,使得该双异质结光电器件的光谱响应可拓展至红外波段范围,突破了二硫化钼自身的响应极限。当激光波长在可见光范围内时,在零偏压下的光响应主要由石墨烯/单层二硫化钼异质结产生,而当激光波长在近红外的范围时,在零偏压下的光电响应主要由碳纳米管薄膜/石墨烯异质结产生。通过碳纳米管薄膜/石墨烯/单层二硫化钼双异质结的内建电场作用,会使该器件在无偏压下可以进行光探测,并增强器件的光响应强度。
23.综上所述,本发明提出的基于二维材料的双异质结构的柔性光电探测器,由于器件制备采用的材料都是二维材料,所以器件为柔性可弯曲结构,并且制备工艺操作简单,可靠性强。通常能够满足对新型光电子器件轻量化设计的需求,易于携带,具有优异的移植性、大面积兼容性和更高的可扩展性等优点,因而在光电子器件领域的发展中具有良好的应用前景,并且突破了二硫化钼的光谱响应范围,提高探测器光电响应率,实现技术创新。
附图说明
24.图1是基于二维材料的双异质结构的柔性光电探测器及其制备工艺示意图;
25.附图标记说明:
26.1、聚对苯二甲酸乙二酯基底,2、单层二硫化钼,3、石墨烯,4、碳纳米管薄膜,5、金属电极。
具体实施方式
27.为使本发明的目的、技术方案及优势更加清楚明了,下面结合附图对本发明原理及实验过程作进一步说明。
28.如图1所示,本发明提供的一种基于二维材料的双异质结构的柔性光电探测器,包括聚对苯二甲酸乙二酯基底1、单层二硫化钼2、石墨烯3、碳纳米管薄膜4和金属电极5;其中单层二硫化钼2位于聚对苯二甲酸乙二酯基底1表面,石墨烯3覆盖在单层二硫化钼2上方,碳纳米管薄膜4再覆盖在石墨烯3上方,金属电极5形成于石墨烯3和碳纳米管薄膜4上方。
29.为了使探测器制备成柔性化,以及提高探测器响应率,本发明基于范德瓦尔斯异质结和双异质结理论方法,工作原理为:
30.利用碳纳米管薄膜4对近红外光子的高吸收特性,以及碳纳米管薄膜4/石墨烯3异质结对碳纳米管所产生光生载流子进行有效分离,使得该双异质结光电器件的光谱响应可拓展至红外波段范围,突破了二硫化钼2自身的响应极限。当激光波长在可见光范围内时,在零偏压下的光响应主要由石墨烯3/单层二硫化钼2异质结产生,而当激光波长在近红外的范围时,在零偏压下的光电响应主要由碳纳米管薄膜4/石墨烯3异质结产生。通过碳纳米管薄膜4/石墨烯3/单层二硫化钼2双异质结的内建电场作用,会使该器件在无偏压下可以进行光探测,并增强器件的光响应强度。
31.为了简单高效实现上述基于二维材料的双异质结构的柔性光电探测器,本发明提供了一套可靠的制备工艺流程,如图1所示,包括如下步骤:
32.1)制备单层mos2并转移到清洗完成后干净的pet基底上;
33.2)制备单晶单层石墨烯薄膜并转移到pet基底上,完全覆盖mos2;
34.3)在步骤2)石墨烯薄膜上进行光刻和等离子体工艺来刻蚀边缘;
35.4)制备cnt薄膜并转移到pet基底上,覆盖在石墨烯上方;
36.5)在步骤4)cnt薄膜上进行光刻和等离子体工艺来刻蚀,形成十字交叉结构;
37.6)在步骤5)得到cnt薄膜两端和在步骤3)得到的石墨烯薄膜两端制备探测器的金属电极,得到一种基于二维材料的双异质结构的柔性光电探测器。
38.步骤1)中所述单层二硫化钼制备及转移方法为本领域技术人员所熟知所常用的方法,在此不作赘述;
39.步骤2)中所述单晶单层石墨烯纳米带制备及转移方法为本领域技术人员所熟知所常用的方法,在此不作赘述;
40.步骤3)中,采用光刻和等离子体刻蚀工艺对石墨烯来进行图形化处理:首先在石墨烯表面通过旋转匀胶、前烘、曝光、显影以及后烘来制备出一层光刻胶掩膜层,得到图形化的掩膜层,同时部分需要刻蚀的石墨烯部分被裸露出来,形成刻蚀窗口;在刻蚀窗口处,裸露出来的石墨烯部分被等离子体所刻蚀,得到所需图案。
41.步骤4)中所述cnt薄膜制备及转移方法为本领域技术人员所熟知所常用的方法,在此不作赘述;
42.步骤5)中,采用光刻和等离子体刻蚀工艺对cnt薄膜来进行图形化处理:首先在cnt薄膜表面通过旋转匀胶、前烘、曝光、显影以及后烘来制备出一层光刻胶掩膜层,得到图形化的掩膜层,同时部分需要刻蚀的cnt薄膜部分被裸露出来,形成刻蚀窗口;在刻蚀窗口处,裸露出来的cnt薄膜部分被等离子体所刻蚀,得到所需图案。
43.步骤6)中,采用旋转匀胶、前烘、曝光、显影以及后烘来制备出一层光刻胶掩膜层,并结合金属沉积和剥离微纳制造工艺,在石墨烯和cnt薄膜左右两侧制备20nm厚的ti及80nm厚的au电极;其中ti作为缓冲材料,导电性能优异的au作为电极材料。
44.实施例1
45.在步骤1)中,对单层mos2制备实施过程进行详细的说明讲解:
46.首先取出晶面为(110)的si片进行洁净清洗,先利用大量自来水来进行冲刷清洗表面污垢;随后再用去离子水来将表面自来水清洗干净;接着再将硅片泡在丙酮溶液中,超声10min;随后再将硅片浸泡在无水乙醇中,超声5min;最后再氮气中吹干硅片,完成清洗。
47.接着在清洗干净的硅片上溅射mo膜,首先将mo靶材放置在磁控溅射机的溅射靶位处,以及将洁净的硅片放置在溅射位置;接着关闭腔室,进行抽真空,抽至2.0
×
10
‑3pa左右;接着进行0.1a恒流溅射,溅射速率为0.2nm/s,溅射时长为20秒。溅射出4nm左右超薄mo膜于si基底上。
48.最后通过cvd炉来制备单层mos2薄膜,首先称取一定质量的s粉,放置在cvd管式炉的低温区,然后将mo膜放置在高温区;接着进行抽真空,抽至1.0
×
10
‑1pa;随后对高温区和低温区分别升温至120℃和80℃,除去腔室中的水蒸气;接着低温区缓慢升温至180℃,高温区升温至550℃;为使s粉和mo膜充分反应,保持温度20min;随后自然降温即可,反应过程中要一直通有氩气作为保护;最后取出基底即可得到单层mos2薄膜。
49.实施例2
50.步骤2)中单层石墨烯的制备方法与单层mos2制备方法类似,这里主要讲解石墨烯的湿法转移方法:
51.首先在制备好的铜箔基底上的石墨烯上旋涂pmma,选用的pmma胶的粘度不宜过高,950a2比较合适。匀胶机转速设置为500rpm,10s;3000rpm,40s,将pmma滴涂到石墨烯表面,使得pmma完全覆盖住石墨烯;旋涂结束后,取下铜箔,然后放到加热板上120℃加热5min,使形成pmma膜。
52.接着将铜箔基底刻蚀干净,将铜箔轻轻放入0.5ml过硫酸铵刻蚀液里面,保证铜箔平整地漂浮在刻蚀液表面,等待铜箔完全被刻蚀,大概4小时左右,用肉眼观察无铜残留。
53.随后将石墨烯转移到目标衬底上,首先用洁净的pet衬底将石墨烯从刻蚀液中捞出;接着将捞起的石墨烯放去离子水中,浸泡30min,然后更换去离子水,重复两次过程,以便去除干净刻蚀液;随后放置在在空气中30min;最后在放置在90℃的加热板上加热30min,去除干净石墨烯和衬底之间的水分。
54.最后去除石墨烯表面的pmma,首先将石墨烯放置在丙酮溶液中,浸泡20min;接着再取洁净的丙酮溶液,重复两次该过程,保证去除干净pmma;最后用无水乙醇冲洗石墨烯,将残留的丙酮冲洗干净。
55.实施例3
56.步骤2)和步骤4)中都采用了电子束光刻来形成图案,接下来对该过程进行详细讲解:
57.首先是旋涂光刻胶,光刻胶选用的是分子量为950k的a6 pmma胶,然后设置好旋涂参数,500rpm,10s;6000rpm,50s;然后将衬底片放置到旋涂机上面,旋涂pmma;将pmma溶液滴到衬底上覆盖住整块衬底,然后开始旋涂。旋涂完毕,使用加热台在100℃下持续加热3min。加热完毕取下衬底冷却到室温就完成了涂胶过程。
58.接着确定需要光刻的区域绘制版图,首先使用金相显微镜拍照,找到需要光刻所在区域,进行拍照,放大倍数为200倍;将拍好的照片使用adobe illustrator处理,得到材料的图形轮廓,导入到l

edit里面绘制出相应的版图。
59.随后进行电子束光刻,首先在电镜下找到对准标记,然后反复调整对准,多次对准以后开始光刻。最后进行显影,显影液为mibk(甲基异丁酮),显影时间为30s;显影完成后,用去离子水清洗,最后用氮气吹干即可。
60.以上结合附图对本发明的具体实施方法作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜