一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

发热组件及加热装置的制作方法

2021-08-17 13:40:00 来源:中国专利 TAG:发热 加热 组件 装置 电子
发热组件及加热装置的制作方法

本实用新型涉及电子烟技术领域,特别是涉及一种发热组件及加热装置。



背景技术:

加热不燃烧烟具主要是以200℃~400℃的低温烘烤烟草,使之产生烟气,但又不会有大量裂解带来的有害物质。目前,加热不燃烧烟具包括发热组件,发热组件包括安装座和安装在安装座上的发热体,发热体发热加热烟草或烟弹。然而,在实际使用过程中,发热组件的安装座容易受发热体的影响而发烫,使用寿命较短。



技术实现要素:

基于此,有必要提供一种使用寿命较长的发热组件。

一种发热组件,包括:

发热体,所述发热体包括:

基体,所述基体具有底面;

发热线路,位于所述基体上,所述发热线路包括发热部和与所述发热部电连接的发热电极,所述发热电极靠近所述底面;

安装座,与所述基体固定连接,所述安装座与所述基体的连接处位于所述发热电极靠近所述底面的一侧。

传统的安装座位于发热部上,发热电极与安装座间隔设置,安装座容易受到发热部发热的影响,而上述发热体通过将发热电极靠近发热部的面到底面的距离设置为大于或等于安装座到底面的距离,使得安装座远离发热的发热部,从而提高安装座的寿命。

在其中一个实施例中,所述发热组件还包括位于所述安装座内的卡持件,所述卡持件固定于所述基体上,并与所述安装座的内壁抵接,以使所述安装座与所述基体固定连接,所述卡持件位于所述发热电极靠近所述底面的一侧。

在其中一个实施例中,所述基体包括本体及位于所述本体上的绝缘层,所述本体具有第二凸起,所述第二凸起位于所述发热电极靠近所述底面的一侧,所述安装座上设置有卡持槽,所述第二凸起卡持在所述卡持槽内,以使所述安装座与所述基体固定连接,所述卡持槽位于所述发热电极靠近所述底面的一侧。

在其中一个实施例中,所述发热体还包括位于所述基体上并与所述发热线路相间隔的测温线路,所述测温线路包括测温部和与所述测温部电连接的测温电极,所述测温电极收容于所述安装座。

在其中一个实施例中,所述发热部呈u形;及/或,所述测温部呈u形。

在其中一个实施例中,所述发热电极包括第一电极和与所述第一电极相间隔的第二电极,所述测温电极包括第三电极和与所述第三电极相间隔的第四电极,所述第一电极、所述第二电极、所述第三电极和所述第四电极上均连接有引线,且各引线相互间隔。

在其中一个实施例中,所述发热组件还包括密封件,所述密封件套设于所述发热体上,所述密封件位于所述发热部与所述发热电极的连接处,所述密封件靠近所述安装座。

在其中一个实施例中,所述密封件与所述发热体的之间存在0.5mm~2mm的间隙。

在其中一个实施例中,所述基体为柱状或条形片状;及/或

所述基体包括本体和位于所述本体上的绝缘层,所述本体包括基部和与所述基部连接的尖部,所述尖部向远离所述基部的方向延伸,所述尖部的横截面的宽度在沿远离所述基部的方向上逐渐减小,所述安装座安装在远离所述尖部的所述基部上。

在其中一个实施例中,所述本体为陶瓷本体或不锈钢本体;

及/或,所述绝缘层为玻璃陶瓷绝缘层或低温陶瓷绝缘层;

及/或,所述绝缘层的厚度为0.02mm~0.5mm。

在其中一个实施例中,所述发热线路上覆盖有保护层。

在其中一个实施例中,所述基体为条形片状,所述基体包括本体和两个绝缘层,所述本体具有上表面和下表面,两个所述绝缘层分别位于所述上表面和所述下表面上。

一种加热装置,包括壳体和上述的发热组件。

附图说明

图1为一实施方式的发热组件的立体图;

图2为图1所示的发热组件的爆炸图;

图3为图1所示的发热组件的发热体的分解图;

图4为图1所示的发热组件的发热体的另一爆炸图;

图5为图1所示的发热组件的隐藏密封件和安装盖后的结构图;

图6为图1所示的发热组件正视图;

图7为图6所示的发热组件沿a-a线的剖面图;

图8为另一实施方式的发热组件的立体图;

图9为图8所示的发热组件的爆炸图;

图10为图8所示的发热组件的另一爆炸图;

图11为图8所示的发热组件的发热体隐藏保护层之后的结构图;

图12为图8所示的发热组件隐藏安装盖后的结构图;

图13为实施例1的发热组件的温控曲线;

图14为对比例1的发热组件的测温线路和发热线路的结构图;

图15为对比例1的发热组件的温控曲线。

附图标号:

10、发热组件;100、发热体;110、基体;111、本体;113、绝缘层;111a、基部;111b、尖部;115、底面;119、发热区;117、电极设置区;119a、高温区;130、发热线路;131、发热部;133、发热电极;131a、发热线;133a、第一电极;133b、第二电极;150、测温线路;151、测温部;153、测温电极;153a、第三电极;153b、第四电极;170、保护层;101、安装座;101a、安装底座;101b、安装盖;103、密封件;105、卡持件;140、引线。

20、发热组件;200、发热体;210、基体;211、本体;211c、第一凸起;211d、第二凸起;213、绝缘层;230、发热线路;231、发热部;233、发热电极;233a、第一电极;233b、第二电极;250、测温线路;251、测温部;253、测温电极;253a、第三电极;253b、第四电极;270、保护层;201、安装座;201a、安装底座;201c、滑槽;201d、滑块;201f、卡持槽;201b、安装盖;203、密封件。

319、发热区;351、测温部。

具体实施方式

为了便于理解本实用新型,下面将对本实用新型进行更全面的描述,本实用新型可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本实用新型公开内容更加透彻全面。

需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。当使用术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“内”、“外”、“底部”等指示方位或位置关系时,是为基于附图所示的方位或位置关系,仅为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。

除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。

请参阅图1和图2,本实用新型一实施方式提供了一种发热组件10,该发热组件10包括安装座101和安装在安装座101上的发热体100。

具体地,请参阅图3和图4,发热体100包括基体110和设置于基体110上的发热线路130和测温线路150,发热线路130和测温线路150相互独立。

基体110用于为发热线路130和测温线路150提供支撑。基体110具有底面115,基体110包括本体111及绝缘层113,发热线路130和测温线路150位于绝缘层113上。本体111包括基部111a和与基部111a连接的尖部111b,基部111a呈柱状,尖部111b向远离基部111a的方向延伸,尖部111b的横截面的宽度在沿远离基部111a的方向上逐渐减小。基部111a作为绝缘层113的支撑,尖部111b的设置利于发热体100插入待加热物体(例如烟草)中。在一个可选地具体示例中,基部111a呈圆柱状、三棱柱状或四棱柱状。当然,在其他一些实施例中,基部111a的形状不限于上述,还可以是其他形状。在图3所示的实施例中,基部111a的纵截面为矩形,尖部111b的纵截面为等腰三角形。当然,在其他实施例中,尖部111b的纵截面不限于等腰三角形,还可以是其他三角形。

在一些实施例中,基部111a为中空结构。中空结构的基部111a可以减轻发热体100的重量,同时也可以减少热量向电极设置区117的传递,提高热量利用率。

在一些实施例中,在基部111a远离尖部111b的区域上开设有盲孔。进一步地,盲孔靠近安装座101。在靠近安装座101的基部111a上设置盲孔同样可以减少热量向安装座101的传递,提高热量利用率,提高安装座101及安装座101内的其他部件的寿命。

具体地,本体111为陶瓷本体111。例如,氧化锆陶瓷本体111、氧化铝陶瓷本体111等。进一步地,基部111a为陶瓷基部111a,尖部111b为陶瓷尖部111b。当然,在其他一些实施例中,基部111a的材料不限于陶瓷,还可以是其他材料,例如不锈钢。尖部111b的材料也不限于陶瓷,也可以是其他材料,例如不锈钢。

绝缘层113卷绕在基部111a上,绝缘层113为发热线路130和测温线路150提供支撑,同时也起绝缘作用。具体地,绝缘层113卷绕在本体111的外表面。在图3所示的实施例中,绝缘层113卷绕在基部111a的外表面。在一些实施例中,先在绝缘层113上通过丝印方式制备发热线路130和测温线路150,然后将绝缘层113卷绕(例如流延成型)在基部111a上并与基部共同烧结,这样操作可以提高在柱状的基部111a上制备发热线路130和测温线路150的效率,避免了由于发热线路130和测温线路150的微小而难以在柱状本体111上进行操作的难题。

具体地,绝缘层113为玻璃陶瓷绝缘层113或低温陶瓷绝缘层113。玻璃陶瓷绝缘层113的材料为微晶玻璃。低温陶瓷绝缘层113的材料为低温陶瓷。在一个可选地具体示例中,绝缘层113为玻璃陶瓷绝缘层113,绝缘层113的材料为钙硼硅玻璃-氧化硅填充。在另一个可选地具体示例中,绝缘层113为硼酸锡钡陶瓷绝缘层113或硼酸锆钡陶瓷绝缘层113,绝缘层113的材料为硼酸锡钡陶瓷或硼酸锆钡陶瓷。当然,可以理解的是,绝缘层113的材料不限于上述,还可以其他可以作为绝缘层113且可以卷绕在本体111上的材料。在本文中,低温陶瓷是指烧结温度在1000℃以下的陶瓷。进一步地,基部111a的材料与绝缘层113的材料不同。例如,绝缘层113选择延展性高于基部111a的材料,基部111a选择硬度高于绝缘层113的材料。

在本实施方式中,绝缘层113的厚度为0.02mm~0.5mm。可选地,绝缘层113的厚度为0.02mm、0.05mm、0.1mm、0.2mm、0.3mm、0.4mm或0.5mm。

可以理解的是,在一些实施例中,绝缘层113可以省略。当绝缘层113省略时,本体111为绝缘材料即可。

请参阅图3或图4,基体110为柱状,基体110上设有发热区119和与发热区119相邻的电极设置区117,电极设置区117和发热区119在基体110的长度方式上排列,与发热区119相比,电极设置区117更靠近底面115。发热区119为发热体100发热的区域,发热线路130位于发热区119;电极设置区117为将发热体100安装于安装座101上的区域。进一步地,发热区119包括高温区119a,高温区119a是发热体100在工作时温度较高的区域。在其中一个实施例中,高温区119a与电极设置区117相间隔。在另一个实施例中,高温区119a与电极设置区117相邻。

具体地,对于基体110为柱状或条形片状的发热体100,高温区119a在基体110的长度方向上的长度(图3中的a)与发热区119及电极设置区117在基体110长度方向上的长度之和(图3中的b)之比为1:(2~5)。进一步地,高温区119a在基体110的长度方向上的长度与发热区119在基体110长度方向上的长度(图3中的c)之比为1:(1.5~4)。在图3所示的实施例中,高温区119a在基体110的长度方向上的长度与发热区119及电极设置区117在基体110长度方向上的长度之和之比为1:3。高温区119a在基体110的长度方向上的长度与发热区119在基体110长度方向上的长度之比为1:2。

请参阅图3,发热线路130贴覆于绝缘层113上,发热线路130是发热体100的产生热量的部分。发热线路130包括发热部131和与发热部131电连接的发热电极133。发热电极133是用于连接发热部131与电源的部件。发热部131贴覆于绝缘层113远离本体111的一侧的表面上,发热部131在绝缘层113上形成发热区119;发热电极133也贴覆于绝缘层113的表面上,发热电极133包括第一电极133a和第二电极133b,第一电极133a和第二电极133b也位于基体110的表面上,并靠近安装座101;第一电极133a与发热部131的一端电连接,第二电极133b与发热部131的另一端电连接。当然,第一电极133a和第二电极133b间隔设置,以分别连接电源的两极(正极和负极)。在其他实施方式中,发热线路130和测温线路150设置于绝缘层113的同一表面,且发热线路130和测温线路150与基部111a的外表面贴合。

具体地,发热部131包括发热线131a,发热线131a的一端与第一电极133a电连接,另一端与第二电极133b连接。进一步地,发热线131a与第一电极133a和第二电极133b通过丝印方式连接。在一个可选地具体示例中,发热部131包括一根u形的发热线131a,发热线131a贴覆于绝缘层113远离本体111的表面上,发热线131a的一端与第一电极133a电连接,另一端与第二电极133b连接。在图3所示的实施例中,发热部131为两根间隔设置于绝缘层113上的发热线131a,两根发热线131a均呈u形,其中一根发热线131a位于另一根发热线131a的内侧,第一电极133a和第二电极133b均呈u形,第一电极133a的两端分别与两根发热线131a的一端电连接,第二电极133b的两端分别与两根发热线131a的另一端电连接。可以理解的是,在其他实施例中,发热线131a的根数不限于上述,还可以其他数量。发热线131a为多根时,多根发热线131a间隔设置,且各根发热的一端与第一电极133a电连接,另一端与第二电极133b连接。当然,发热线131a的形状也不限于u形,还可以是其他形状,例如v形、s形等。第一电极133a和第二电极133b的形状也不限于u性,还可以是条形或l形。

在其中一个实施例中,发热区119由高温区119a和非高温区组成。在高温区119a的发热线131a的宽度小于在非高温区的发热线131a的宽度。基体110为柱状或条形片状,高温区119a的长度为宽度较小的发热线131a在基底110的长度方向上的长度,高温区119a的宽度为基体110的宽度。具体地,发热线131a包括依次连接的电极段、中间段及顶部段,电极段靠近发热电极133,顶部段靠近测温部151。在一个可选地具体示例中,中间段的宽度小于电极段和顶部段的宽度(中间段的宽度最小)。将发热线131a的中间段的宽度设置为小于电极段和顶部段的宽度,使得发热体100的发热较为集中于中间段,并向顶部段与电极段扩散,符合加热时的烟气口感,也可以使得靠近发热电极133的区域的温度较低,防止高温影响或损坏安装座。也即是,当发热线131a的中间段的宽度小于电极段和顶部段的宽度时,高温区119a是中间段所在的区域,高温区119a的长度为中间段在基底110的长度方向上的长度,高温区119a的宽度为基体110的宽度。此时,高温区119a与电极设置区117相间隔。

在另一个可选地具体示例中,发热线131a的顶部段的宽度小于电极段和中间段的宽度,使得发热体100的发热集中于顶部段,高温区119a是顶部段所在的区域,高温区119a的长度为顶部段在基底110的长度方向上的长度,高温区119a的宽度为基体110的宽度。此时,高温区119a与电极设置区117相间隔。

在另一个可选地具体示例中,发热线131a的电极段的宽度小于中间段和顶部段的宽度,使得发热体100的发热集中于电极段,高温区119a是电极段所在的区域,高温区119a的长度为电极段在基底110的长度方向上的长度,高温区119a的宽度为基体110的宽度,此时,高温区119a与电极设置区117相邻。

具体地,发热部131由高电阻率的电阻浆料制备而成。更具体地,发热线131a由高电阻率的电阻浆料制备而成。发热部131可以是通过丝印厚膜浆料的方式将高电阻率的电阻浆料转移至绝缘层113上,然后烧结而成。具体地,制备发热部131的高电阻率的电阻浆料中包括含有镍(ni)、银(ag)、钯(pd)、铂(pt)及钌(ru)中的至少一种。进一步地,制备发热部131的电阻浆料中含有镍、银钯合金(agpd)、银铂合金(agpt)或银钌合金(ag-ru)。当然,制备发热部131的高电阻率的电阻浆料中还含有粘结剂。例如无机粘结剂。可以理解的是,粘结剂在高电阻率的电阻浆料中的占比较少。当然,发热部131的制备方法不限于此,还可以是其他本领域常用的方法。

在其中一个实施例中,发热部131的方阻为20mω/□~200mω/□。进一步地,发热部131的方阻为20mω/□、50mω/□、80mω/□、100mω/□、120mω/□、150mω/□、180mω/□或200mω/□。

在其中一个实施例中,在常温下,发热部131的电阻为0.5ω~2ω。进一步地,在常温下,发热部131的电阻为1ω~2ω。当然,在其他实施例中,发热部131在常温下的电阻不限于上述,可以根据需要调整制备发热部131的电阻浆料的材料、发热部131的长度、发热部131的宽度、发热部131的厚度和发热部131的图案来设定发热部131的电阻。

在其中一个实施例中,发热部131为正温度系数热敏电阻。通过将发热部131设置为正温度系数热敏电阻,可以使得发热部131快速发热,而温度达到一定值之后,由于发热部131的电阻由于温度的上升而急剧上升,从而使得发热部131几乎无电流通过而停止发热,进而避免发热区119持续地温度过高。

具体地,发热电极133由低电阻率的电阻浆料制成。更具体地,第一电极133a和第二电极133b由低电阻率的电阻浆料制成。同样地,发热电极133可以通过丝印浆料的方式将低电阻率的电阻浆料转移至绝缘层113上,然后烧结而成。具体地,制备发热电极133的低电阻率的电阻浆料中包括含有银(ag)及金(au)中的至少一种。在一个可选地具体示例中,制备发热电极133的电阻浆料中含有ag、au、金合金或银合金。当然,制备发热电极133的低电阻率的电阻浆料中还含有粘结剂。例如无机粘结剂。可以理解的是,粘结剂在低电阻率的电阻浆料中的占比比在高电阻率的电阻浆料中的占比大。当然,发热电极133的制备方法不限于此,还可以是其他本领域常用的方法。

在本实施方式中,发热电极133的方阻不超过5mω/□。进一步地,发热电极133的方阻为1mω/□~5mω/□。发热电极133的电阻远小于发热部131的电阻,例如发热电极133的电阻为0.1ω~0.5ω。如此发热电极133在通电时几乎不产生热量,降低安装座101的温度并且节省能耗。

请参阅图3,测温线路150用于反馈发热体100的温度,测温线路150贴覆于绝缘层113远离本体111一侧的表面上,测温线路150与发热线路130间隔设置,以使发热线路130和测温线路150相互独立。发热线路130和测温线路150相互独立设置时,测温线路150的自发热少,因电流加热而引入的杂信号少,有利于电子元件对于温度的精确控制。

具体地,测温线路150包括测温部151和与测温部151电连接的测温电极153。测温部151是测温线路150的用于测量温度的部分,测温部151在高温区119a内;测温电极153是用于连接测温部151与电源的部件,测温电极153贴覆于绝缘层113上。当高温区119a与电极设置区117相间隔时,测温电极153从发热区119延伸至电极设置区117内。当高温区119a与电极设置区117相邻时,测温电极153完全位于电极设置区117内。在一个可选地具体示例中,测温电极153靠近测温部151的一端与发热电极133靠近发热部131一端齐平。测温部151具有电阻tcr特性,即温度与电阻之间存在特定对应关系。通过电源与电子控制装置,在测温部151上施加一定电压时,获得特定电流数值,从而获得测温部151的阻值,进而通过测得的阻值得到发热体100的温度。更具体地,测温电极153包括第三电极153a和第四电极153b,第三电极153a和第四电极153b从发热区119延伸至电极设置区117,测温部151的一端与第三电极153a电连接,测温部151的另一端与第四电极153b电连接。在一个可选地具体示例中,测温部151与第三电极153a和第四电极153b通过焊接连接。

在发热体100上,从发热区119到电极设置区117,发热体100的温度往往是逐渐降低的,主要原因在于,用户在抽吸烟气时,气流是从电极设置区117向发热区119方向流动,即电极设置区117先被降温,另一方面由于热量传导的特性,热量在高度较高的位置也会略大于低的位置。在远离电极设置区117的发热区119的温度往往高于靠近电极设置区117的发热区119的温度,因此,将测温部151设置在远离电极设置区117的发热区119能够更加准确地反应发热体100的温度,从而便于更加准确地控制加热起始阶段的温度,使得加热起始阶段的温度与设计温度的偏差更小。进一步地,测温部151位于高温区119a内。测温部151位于高温区119a内,可以更加准确地反应发热体100的最高温度,更便于控制发热体100的发热电路的电压,减少发热线路130的发热,使得加热起始阶段的实际温度与设计温度的偏差更小,提高实际加热起始阶段的实际温度与设计温度的一致性。

更具体地,测温部151包括测温线。在发热部131为一根u形的发热线131a的实施例中,测温部151为一根测温线,测温线远离u形发热线131a与第一电极133a和第二电极133b连接处(即u形发热线131a的两端所形成的开口处),并靠近u形发热线131a的底部,且测温线在u形发热线131a的内侧。在发热部131的发热线131a的数量为多根的实施例中,测温线的数量可以一个,也可以是多个。可选地,测温线为一根时,测温线设置于由多根发热线131a形成的高温区119a;在测温线为多个时,测温线间隔地设置于由多根发热线131a形成的高温区119a。

在图3所示的实施例中,测温线也呈u形,由发热线131a形成的高温区119a是到基体110的底面115的距离大于基底长度的2/3的发热区119。在高温区119a域内,测温线位于两根u形发热线131a之间,且测温线与两根u形发热线131a间隔;第三电极153a和第四电极153b在绝缘层113远离本体111一侧表面的部分呈条形,部分第三电极153a位于第一电极133a内侧,部分第四电极153b位于第二电极133b内侧。

当然,在其他实施例中,测温线的形状也不限于u形,还可以是其他形状,例如v形、s形等。第三电极153a和第四电极153b的形状也不限于条形,还可以是其他形状,例如l形。

具体地,测温部151同样可以采用高电阻率的电阻浆料制备而成。更具体地,测温线同样可以采用高电阻率的电阻浆料制备而成。测温部151可以是通过丝印厚膜浆料的方式将高电阻率的电阻浆料转移至绝缘层113上,然后烧结而成。在本实施方式中,制备测温部151的高电阻率的电阻浆料中包括含有镍(ni)、银(ag)、钯(pd)、铂(pt)及钌(ru)中的至少一种。进一步地,制备测温部151的电阻浆料中含有镍、银钯合金(agpd)、银铂合金(agpt)或银钌合金(ag-ruo)。当然,制备测温部151的高电阻率的电阻浆料中还含有粘结剂。例如无机粘结剂。可以理解的是,粘结剂在高电阻率的电阻浆料中的占比较少。当然,测温部151的制备方法不限于此,还可以是其他本领域常用的方法。

在其中一个实施例中,测温部151的方阻为20mω/□~200mω/□。进一步地,测温部151的方阻为20mω/□、50mω/□、80mω/□、100mω/□、120mω/□、150mω/□、180mω/□或200mω/□。

由于测温部151不用发热,其初始阻值通常比测温部151的电阻大。在其中一个实施例中,在常温下,测温部151的电阻为1.5ω~20ω。进一步地,在常温下,测温部151的电阻为10ω~20ω。当然,在其他实施例中,测温部151在常温下的电阻不限于上述,可以根据需要调整制备测温部151的电阻浆料的材料、测温部151的长度、测温部151宽度、测温部151厚度和测温部151图案来设定测温部151的电阻。

在其中一个实施例中,测温部151为正温度系数热敏电阻。通过将测温部151设置为正温度系数热敏电阻,电阻值随温度变化的跨度更大,可以更加准确地反应周围环境的温度。进一步地,发热部131的电阻温度系数低于测温部151的电阻温度系数。通过发热部131的电阻温度系数低于测温部151的电阻温度系数使发热与测温功能分开,发热线路130上的能耗较低且成本低。在一个可选地具体示例中,发热部131的材料选自镍铬合金、钽合金、金铬合金及镍磷合金中的一种。采用上述材料可以使得发热部131的电阻温度系数较低,此时,发热部131的阻值随温度化非常小,阻值稳定可靠,发热稳定。测温部151的材料选自铜、镍、锰及钌中的至少一种。进一步地,测温部151的材料选自铜、镍、锰及钌中的一种。根据tcr特性,随着温度升高,测温部151的内阻的增加,测温部151的电阻温度系数越大,则内阻增加越明显,测温电路中的电流变化越大,越容易被电流传感器测量,测量结果更准确。

具体地,测温电极153也由低电阻率的电阻浆料制成。更具体地,第三电极153a和第四电极153b也由低电阻率的电阻浆料制成。测温电极153可以通过丝印浆料的方式将低电阻率的电阻浆料转移至绝缘层113上,然后烧结而成。具体地,制备测温电极153的低电阻率的电阻浆料中包括含有银(ag)及金(au)中的至少一种。在一个可选地具体示例中,制备测温电极153的电阻浆料中含有ag、au、金合金或银合金。当然,制备测温电极153的低电阻率的电阻浆料中还含有粘结剂。例如无机粘结剂。可以理解的是,粘结剂在低电阻率的电阻浆料中的占比比在高电阻率的电阻浆料中的占比大。当然,测温电极153的制备方法不限于此,还可以是其他本领域常用的方法。

在本实施方式中,测温电极153的方阻不超过5mω/□。进一步地,测温电极153的方阻为1mω/□~5mω/□。测温电极153的电阻远小于测温部151的电阻。例如测温电极153的电阻为0.1ω~0.5ω。如此测温电极153在通电时几乎不产生热量,降低安装座101的温度并且节省能耗。请参阅图2,在测温电极153上还设置有引线140,测温电极153上的引线140用于电连接电源和测温电极153;发热电极133上也设置有引线140,发热电极133上的引线140用于电连接电源和发热电极133;测温电极153上的引线140和发热电极133上的引线140间隔设置。

具体地,发热电极133上焊接有引线140,测温电极153上也焊接有引线140,测温电极153与引线140的焊接点及发热电极133与引线140的焊接点均位于安装座101内;测温电极153上的引线140所在的平面与发热电极133的引线140所在的平面不共面。测温电极153与引线140的焊接点比发热电极133与引线140的焊接点更靠近基体110的底面115。在图2所示的实施例中,测温电极153的引线140和发热电极133位于绝缘层113远离本体111一侧的不同面上;测温电极153的一部分位于绝缘层113远离本体111的一侧,另一部分位于绝缘层113靠近本体111的一侧,测温电极153通过位于绝缘层113靠近本体111一侧的电极与引线140连接。在本实施方式中,发热电极133数量为两个,测温电极153的数量为两个,引线的数量为四个,两个发热电极133和两个测温电极153均各连接一根引线。

在一些实施例中,发热体100还包括保护层170,保护层170用于保护位于发热区119的发热部131、测温部151和测温电极153。具体地,保护层170位于发热区119内,保护区覆盖发热部131、全部测温部151及部分所述测温电极153。在本实施方式中,保护层170为釉层。保护层170为釉层时,由于釉层表面光滑,保护层170保护发热区119的部件的同时也使得发热体100具有抗烟油粘附的效果,使得拔插待加热物更为顺畅。在其他实施例中,保护层170的材料不限于釉,还可以是其他材料。

在一个可选地具体示例中,保护层170的厚度为0.1mm~0.5mm。当然,保护层170的厚度大于0.5mm时,不利于将发热部131的热量传导给待加热物体。当保护层170的厚度小于0.1mm时,保护层170可能被损坏或容易脱离。

在本实施方式中,基本呈圆柱状,基部111a的直径为2mm~5mm,基部111a的长度为15mm~25mm,本体111的长度为18mm~30mm;发热部131在基部111a的长度方向上的长度为8mm~12mm,发热线131a的宽度为0.5mm~1.5mm。在其中一个可选地具体示例中,基部111a的直径为3mm,基部111a的长度为16mm,本体111的长度为20mm;发热部131在基部111a的长度方向上的长度为10mm,发热线131a的宽度为0.8mm。当然,在其他实施方式中,本体111、基部111a及发热线131a的尺寸不限于上述,还可以根据需求进行调整。

请参阅图3,发热电极133靠近发热部131的一侧至基体110的底面115的区域为电极设置区117。安装座101位于电极设置区117内。请参阅图4~图7,安装座101用于固定发热体100,安装座101为中空结构,安装座101与发热体100的基体110固定连接,安装座101与基体110的连接处位于发热电极133靠近底面115的一侧。通过将安装座101与基体110的连接处设于发热电极133靠近底面115的一侧,使得安装座101与基体110接触的部分远离发热部131而更靠近底面115,从而减少发热部131的热量对安装座101的影响,提高安装座101的寿命。更具体地,安装座101与基体110的连接处位于发热电极133与底面115之间,安装座101与基体110的连接处和发热电极133及底面115相间隔;或者安装座101与基体110的连接处在靠近底面115的一侧并与发热电极133邻接。进一步地,安装座101与基体110的相卡持处或者相抵接处位于发热电极133与底面115之间,安装座101与基体110的相卡持处或者相抵接处与发热电极133和底面115相间隔;或者安装座101与基体110的相卡持处或者相抵接处在靠近底面115的一侧并与发热电极133邻接。

请参阅图7,发热组件10还包括卡持件105,卡持件105套设于基体110上并与基体110固定,卡持件105位于安装座101内并与安装座101的内壁卡持。通过卡持件105与安装座101的配合,使得发热体100被固定在安装座101中。在图7所示的实施例中,卡持件105位于发热电极133与引线的连接处与测温电极153与引线的连接处之间;部分测温电极153收容于安装座内。当然,在其他实施例中,卡持件105还可以在安装座101内的其他位置,例如,卡持件105位于测温电极153与底面115之间。当然,卡持件105上具有便于引线140穿过的通孔或槽。可选地,卡持件105为法兰。在一些实施例中,卡持件105与发热体100的基体110为一体成型。当然,在其他实施例中,卡持件105可以省略。当卡持件105省略时,发热体100可以采用过盈配合的方式安装于安装座101上。当然,基体110与安装座101过盈配合时的接触部分位于发热电极133靠近底面的一侧。

当然,在其他实施例中,测温电极153也可以完全收容在安装座101内。可以理解的是,在其他一些实施例中,安装座101与基体110的连接处也可以位于发热电极133靠近发热部133的一侧或者发热电极133上,此时,安装座101更靠近发热部131,容易受热影响而寿命缩短。

请参阅图4和图5,安装座101包括安装底座101a和安装盖101b。安装底座101a和安装盖101b可以是活动连接,也可以是固接。可选地,安装座101与安装盖101b卡接。当然,在安装底座101a和/或安装盖101b上开设有通孔,以供引线140穿出;安装座101和/或安装盖101b内开有多个引线槽,各引线140分别置于不同的引线槽中,以使各引线140间隔。在图5所示的实施例中,安装座101内无发热部131,从而进一步减少发热体100对安装座101的影响。当然,在其他一些实施例中,安装座101内也可以有部分发热部131。

请参阅图7,发热组件10还包括密封件103,密封件103套设于发热体100上,密封件103位于发热部131与发热电极133的连接处。密封件103用于防止加热之后形成的产物(例如加热烟草或烟弹而产生的雾化液)沿发热体100的表面流入安装座101内,而使得安装座101内的电极受到影响。可选地,密封件103与安装座101抵接且部分收容于安装座101内。在一个可选地具体示例中,密封件103的材料为硅胶。当然,在其他实施例中,密封件103还可以是其他材料。

可选地,密封件103与发热体100为松配合,只要加热烟草或烟弹而产生的雾化液难以通过间隙进入安装座101内即可。例如,密封件103与发热体100之间有0.5mm~2mm的间隙。在这个间隙范围内,加热烟草或烟弹而产生的雾化液难以通过间隙进入安装座101内。更进一步地,密封件103与发热体100之间有1mm的间隙。可以理解的是,在一些实施例中,密封件103可以省略。当密封件103省略时,可以采用安装座101还具有密封件103的功能的设计,例如将安装座101靠近发热电极133与发热部131连接处的一端采用可以防止加热之后形成的产物流入安装座101的设置。当然,也可以在安装座101内设置保护件保护电极。

请参阅图8~图12,本实用新型还提供了另一实施方式的发热组件20,该发热组件20的结构与发热组件10的结构大致相同。发热组件20包括安装座201、安装于安装座201上的发热体200和密封件203;密封件203套设于发热体200上,靠近安装座201。发热体200包括基体210和设置于基体210上且相互独立的发热线路230和测温线路250,发热线路230包括发热部231和发热电极233,发热部231在基体210上形成发热区,发热电极233包括第一电极233a和第二电极233b,测温线路250包括测温部251和测温电极253,测温部251位于远离安装座201的发热区内,测温电极253从发热区延伸至安装座201内,测温电极253包括第三电极253a和第四电极253b。发热组件20与发热组件10的不同在于,在发热组件20中:

基体210为条形片状。具体地,本体211为条形片状,且本体211具有第一凸起211c和第二凸起211d,第一凸起211c与第二凸起211d间隔设置,第一凸起211c靠近发热电极233,第二凸起211d靠近基体210的底面。安装座201的安装底座201a上设置有滑槽201c,安装盖201b上设置有滑块201d。安装底座201a与安装盖201b通过滑槽201c与滑块201d的配合而活动连接。安装底座201a上还设有卡持槽201f,卡持槽201f位于发热电极233靠近基体210的底面的一侧,第二凸起211d卡持于卡持槽201f内,以使安装座201与基体110固定连接。进一步地,安装底座201a上还形成有导向凸起,以便于安装发热体200。本体211的上表面和下表面均设有绝缘层213,且在靠近本体211下表面的绝缘层213上还设有保护层270;发热电极233和测温电极253共面。

本实用新型一实施方式还提供一种加热装置,该加热装置包括上述任一发热组件。

具体实施例

以下结合具体实施例进行详细说明。以下实施例如未特殊说明,则不包括除不可避免的杂质外的其他组分。实施例中采用试剂和仪器如非特别说明,均为本领域常规选择。实施例中未注明具体条件的实验方法,按照常规条件,例如文献、书本中所述的条件或者生产厂家推荐的方法实现。

实施例1

实施例1的发热组件的结构如图1所示,其中,发热体的基部为氧化锆陶瓷,直径为3mm,基部的长度为16mm,卷绕在基部上的绝缘层的厚度为0.3mm,发热线在基部长度方向上的长度为10mm,发热线的宽度为0.8mm,发热线在基部的宽度方向上形成的最大长度为5.06mm,测温线在基部的长度方向上的长度为4mm,测温线到两条发热线的距离相等,发热部常温下的电阻为1ω,发热部的方阻为100mω/□,发热部的主要材料为ni;测温部常温下的电阻为10ω,测温部的方阻为150mω/□,测温部的主要材料为agpb,测温电极和发热电极均为银浆制成的电极。

采用红外测温测试实施例1的发热组件的起始阶段的恒温稳定性,结果如图13所示。图13中,横坐标为时间,每个方格在水平方向上的长度代表15s,纵坐标为温度(℃)。由图13可知,实施例1的发热体的测温部可以准确反映发热体的实时温度,发热体最高温度出现很小的上冲达到345℃,随后逐渐平稳温度达到340℃,高温过冲仅为5℃左右并随后很大达到平稳温度。由此可见,按照上述,将测温部设置在远离电极设置区的发热区,可以很好地改善发热体起始阶段温度难以控制一致的问题。

对比例1

对比例1的发热组件的结构大致与是实施例1的相同,其不同在于,如图14所示,对比例1的测温部351的设置在整个发热区319中,对比例1的测温部351的方阻与实施例1相同。

对比例1的发热组件起始阶段的恒温稳定性如图15所示。图15中,横坐标为时间,每个方格在水平方向上的长度代表15s,纵坐标为温度(℃)。由图15可知对比例1的发热体进行恒温温度控制时,因测温部351不能反映发热体实时温度,发热体最高温度出现较大的上冲达到362℃,随后逐渐平稳温度达到338℃,高温过冲达到24℃左右;并且此温度过冲随发热体本身差异,会有更大的变化,进而会导致批量生产过程中,更难使得控制发热体的起始阶段温度一致更难。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜