一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于回溯贝叶斯的机器人伺服系统性能指标标定方法与流程

2021-09-25 02:38:00 来源:中国专利 TAG:机器人 伺服系统 标定 回溯 性能指标


1.本发明涉及工业机器人伺服系统性能领域,尤其涉及一种基于回溯贝叶斯的机器人伺服系统性能指标标定方法。


背景技术:

2.目前,世界上的几大工业机器人厂商,如abb,安川等。其进入市场的伺服系统往往都具有较高的性能。除了本身的制造技术外。对产品进行严谨详尽的性能指标标定也尤其重要。对伺服系统及其各个部件进行标定的意义主要在于以下两点:
3.伺服系统主要包括:伺服电机、光电编码器、控制器三大组成部分。三个部分各自的性能指标决定了伺服系统最终的性能指标的优劣。因此,在厂家生产伺服系统时,对各部件进行合理选择尤其重要。这就需要伺服系统设计者了解其三大组成部分各自的性能指标,使搭配出的伺服系统满足使用工况所要求的性能指标。而伺服电机、光电编码器、控制器的种类繁多,想要选择出合适的型号,其工作繁琐且耗时。这就需要将伺服系统各个部件按照各自的性能指标进行标定,给出性能分级。使伺服系统设计人员能够快速为伺服系统匹配合适的部件。
4.另一方面,当伺服系统设计完成后,需要评价其性能是否满足需求。此时,便需要对伺服系统的性能指标进行标定,分级。若伺服系统性能达不到性能指标要求,则可根据标定树锁定不满足精度的部件。使设计人员方便对其进行调整。


技术实现要素:

5.针对上述现有需求的,本发明提供了一种基于回溯贝叶斯的机器人伺服系统性能指标标定方法,有效解决了现有工业机器人伺服系统性能指标未有明确标定方法的技术问题。
6.为了实现上述目的,本发明具体技术方案如下:一种基于回溯贝叶斯的机器人伺服系统性能指标标定方法,包括以下步骤:
7.(1)根据伺服系统部件性能对伺服系统整体性能的影响,对伺服系统各部件性能进行优先级分类;
8.(2)根据伺服系统各部件性能优先级分类,建立伺服系统各部件性能指标标定树,整合伺服系统各部件性能指标标定树,建立伺服系统整体性能指标标定树;
9.(3)参考伺服系统整体指标标定树,用基于回溯贝叶斯分类器算法对工业机器人伺服系统性能指标进行等级标定;
10.(4)根据基于回溯贝叶斯分类器对工业机器人伺服系统性能指标的标定等级,选取满足用户需求的工业机器人伺服系统各部件型号。
11.基于回溯贝叶斯分类算法对工业机器人伺服系统的性能指标标定是将工业机器人伺服系统,通过回溯贝叶斯分类算法,将相互独立的性能指标按照不同标定等级的规定,分别计算出各个标定等级的概率;因为在伺服系统中各个性能指标对伺服系统的影响大小
不同,所以采用伺服系统各部件性能优先级分类,把客户最关心的指标作为必须满足的指标,进而计算概率;伺服系统及各部件性能指标标定树的建立是本发明提出的一种标定方法,以满足工业机器人伺服系统精度为目标建立的标定等级;基于回溯贝叶斯分类器的伺服系统部件选型过程,是在前三步骤的应用下,通过回溯贝叶斯分类器的伺服系统部件选型,最终选择满足客户要求的伺服系统。
12.进一步的,上述步骤1)中,基于回溯贝叶斯分类算法对工业机器人伺服系统的性能指标标定包括以下步骤:
13.1.1)x=(x1,x2,...x
d
)表示含有d维属性的数据对象。训练集s含有k个类别,表示为y=(y1,y2,...y
k
)。
14.x代表伺服系统或伺服系统各部件的性能指标,以伺服系统电机为例:
15.x=(温升,过载能力,转矩系数,最大转速,尺寸质量)
16.各属性满足要求取值为1,反之取值为0。例如,某一伺服系统电机温升满足要求,过载能力满足要求,转矩系数不满足要求,最大转速满足要求,尺寸质量不满足要求。则此时x取值为:x=(1,1,0,1,0)。
17.y代表伺服系统或其各部件在某一标定等级下的概率,本方案对伺服电机共有5个标定等级。y=(y1,y2,...y5),y1,y2,...y5均为0~1间的概率。
18.1.2)已知待分类数据对象x,即某一伺服系统产品,或某一伺服系统部件。预测x所属类别y,计算方式如下:
19.y
k
=argmax(p(y
k
|x))(1.1)
20.1.3)根据贝叶斯定理,p(y
k
|x)计算方式如下:
[0021][0022]
计算过程中,p(x)对于p(y
k
|x),相当于常数。因此,若想得到p(y
k
|x)最大值,只需计算p(x|y
k
)p(y
k
)最大值。如果类别的先验概率未知,即p(y
k
)未知,则通常假定这些类别是等概率的,即p(y1)=p(y2)=

=p(y
k
)。
[0023]
1.4)由于伺服系统各个性能指标之间相互独立,根据马尔科夫假设。p(x|y
k
)计算方式如下:
[0024][0025]
进一步的,上述步骤2)中,伺服系统各部件性能优先级分类包括以下步骤:
[0026]
表1伺服系统各部件性能优先级标定表
[0027][0028]
表2伺服电机性能指标加权真值表
[0029][0030]
表2中x1~x5分别对应表1的5个伺服电机性能指标。
[0031]
由于过载能力与转矩系数测量难度较大,因此,将其输入设为未知,用x代替。所以,回溯贝叶斯分类器的输入向量x=(1,x,x,1,1)。根据公式1.2可计算该伺服电机标定为各个等级的概率如下:
[0032]
p(a)=0.25,p(b)=0.5,p(c)=0.25,p(d)=0,p(e)=0。
[0033]
所以y=(0.25,0.5,0.25,0,0),
[0034]
p(a|b)=p(a∩b)/p(b)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1.4)
[0035]
p(a|b)是b发生条件下a发生的概率;p(a∩b)为a和b同时发生的概率;
[0036]
根据公式1.4,该伺服电机标定等级为b。
[0037]
其中,a表示满足五种性能指标要求,b表示满足第一种优先级高的性能指标要求的前提下满足其余四种性能指标中的三种,以此类推,此仅为举例说明,根据需求不同,此方法还可有其他标定规则。
附图说明
[0038]
结合附图,并通过参考下面的详细描述,将会更容易对本发明有更完整的理解并且更容易地理解其伴随的优点和特征,其中:
[0039]
图1为伺服系统器件选型标定回溯流程图;
[0040]
图2为控制器性能指标标定树;
[0041]
图3为伺服电机性能指标标定树;
[0042]
图4为伺服编码器性能指标标定树;
[0043]
图5为伺服系统整体性能指标标定树;
[0044]
图6为汇川is650p伺服系统部件选型过程。
[0045]
具体实施方法
[0046]
下面结合附图以及具体实例对本发明作进一步的说明,需要指出的是,下面仅以一种最优化的技术方案对本发明的技术方案以及设计原理进行详细阐述,但本发明的保护范围不限于此。
[0047]
所述实施例为本发明的优选的实施方式,但是本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
[0048]
本发明提供了一种基于回溯贝叶斯的机器人伺服系统性能指标标定方法。具体该标定方法如下介绍:
[0049]
图1是伺服系统器件选型标定回溯流程图,伺服系统器件选型标定回溯流程包括
选型部分、标定部分、回溯部分组成。
[0050]
首先,按照伺服系统以及伺服系统各部件性能的重要程度,对其性能指标优先级进行标定,具体包括选择伺服系统部件,进而组合伺服系统,采集运行数据并输入需求的性能指标。然后,依据回溯贝叶斯分类算法通过上述的标定的性能指标优先级,对伺服系统及其各个部件建立起性能指标标定树,对伺服系统及其各部件的性能指标进行详细严谨的分类,回溯各部件性能,查找不符合性能要求的部件,最终得出标定能级。各部件及伺服系统整体的性能指标标定树如图2所示。
[0051]
图2是控制器性能指标标定树,其中1~4分别表示表1中的伺服控制器的4项性能指标,若满足性能指标箭头向下,不满足性能指标箭头向右。如下表所示,a~g表示7种性能等级的伺服系统控制器,1表示满足该性能指标要求,0表示不满足该性能指标要求。a代表最高标定等级,性能最优。g代表最低标定等级,性能最差。
[0052]
表3控制器性能指标标定表
[0053][0054]
图3是伺服电机性能指标标定树,其中1~5分别表示表1中的伺服电机的5项性能指标,若满足性能指标箭头向下,不满足性能指标箭头向右。a~g表示11种性能等级的伺服电机,a代表最高标定等级,性能最优。k代表最低标定等级,性能最差。其性能指标标定表与表3形式相同。
[0055]
图4是伺服编码器性能指标标定树,其中1~2分别表示表1中的伺服编码器的前2项性能指标,若满足性能指标箭头向下,不满足性能指标箭头向右。a~b表示2种性能等级的伺服电机,a代表最高标定等级,性能最优。b代表最低标定等级,性能最差。其性能指标标定表与表3形式相同。
[0056]
将伺服系统整体性能指标优先级进行标定,并建立性能指标标定树。可对设计完成的伺服系统进行性能评级,若出现性能不满足需求的情况,可以回溯,找到是具体哪个部件的性能不达标。
[0057]
图5是伺服系统整体性能指标标定树,其中1~10分别表示整个伺服系统的10项性能指标,包括转矩精度、温升、鲁棒性、转矩系数、过载能力、最大转速、尺寸质量、编码器分辨率、控制器精度、功率器件开关频率,若满足性能指标箭头向下,不满足性能指标箭头向右。a~t表示46种性能等级的伺服电机,a代表最高标定等级,性能最优。t代表最低标定等级,性能最差。其性能指标标定表与表3形式相同。
[0058]
以汇川is650p伺服系统作为实际伺服系统各部件性能指标标定的实例,对整套标定系统与伺服系统各部件组合进行说明。表4为is650p的控制器、电机与编码器的可选型号:
[0059]
表4汇川is650p伺服系统各部件可选型号库
[0060][0061]
举例说明用户对伺服系统的具体性能指标为:
[0062]
如图6流程图所示为汇川is650p伺服系统部件选型过程,根据用户需求及上述回溯贝叶斯分类器进行各部件的初步选型,在可选伺服电机、可选控制器、可选编码器中,选择了电机ismg1

95c15cd

a331fa,编码器为ei38,控制器为md290,然后将上述部件组装成伺服系统,通过回溯贝叶斯分类器,得出该伺服系统标定等级,判断得出的系统标定等级是否满足用户的需求,如果满足则得到用户需求的伺服系统,如果不满足用户需求,若不满足,则通过标定树回溯至可选型号库从新进行选型,直至满足用户需求为止。
[0063]
根据图6进行第一次迭代选型时的伺服系统性能指标为:
[0064]
标定优先级从1到7的性能指标分别为转矩精度、转矩系数、过载能力、尺寸、最大转速、输入分辨率、开关频率,其中第一次迭代选型是满足标定的有转矩精度、转矩系数、最大转速、输入分辨率和开关频率,不满足标定的有过载能力、和尺寸。
[0065]
由此可知伺服系统的过载能力与尺寸未达到用户标准,因此要进行第二次迭代选型,第二次迭代的结果如下:
[0066]
标定优先级从1到7的性能指标分别为转矩精度、转矩系数、过载能力、尺寸、最大转速、输入分辨率、开关频率,经过第二次迭代选型,满足标定的性能指标有转矩精度、转矩系数、过载能力、尺寸、最大转速、输入分辨率、开关频率。
[0067]
此时,伺服系统的性能指标已全部满足用户性能指标要求,此时伺服系统各部件的选型为:电机为ismg1

42d15cd

a331fa,编码器为ei38,控制器为md290。由于第一次迭代时仅有过载能力未满足性能指标需求,而此性能指标属于伺服电机的指标。因此第二次算法迭代只有伺服电机进行了更换。
[0068]
最后应说明的是:以上实例仅仅用以说明本发明的技术方案,而非对其限制;尽管本实例仅回溯了一次,本领域的普通技术人员应当理解:其依然可以对前述所记载的技术方案进行修改,或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实例技术方案的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜