一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种识别蒸汽热网爆管位置的方法和系统与流程

2021-08-13 19:23:00 来源:中国专利 TAG:供热 蒸汽 识别 位置 方法
一种识别蒸汽热网爆管位置的方法和系统与流程

本发明属于供热安全领域,涉及一种识别蒸汽热网爆管位置的方法和系统。



背景技术:

供热管道往往位于郊区或者埋于市区地下,一旦发生爆管事故,运行检修人员很难及时发现爆管事故发生,无法快速定位爆管发生位置。如果不能及时报警和定位位置,管道中的蒸汽会持续的大量涌出,对周围环境和下游生活和生产设施造成难以估量的损害,同时造成大量能源浪费。



技术实现要素:

本发明的目的在于克服上述现有技术的缺点,提供一种识别蒸汽热网爆管位置的方法和系统,判断管网的蒸汽状态,从而实现及时告警与定位。

为达到上述目的,本发明采用以下技术方案予以实现:

一种识别蒸汽热网爆管位置的方法,包括以下步骤;

步骤一,水力平衡方程、热力平衡方程、基尔霍夫第一定律和基尔霍夫第二定律建立蒸汽热网的机理模型;

步骤二,设定蒸汽热网爆管的判定条件,判定条件为时间阈值内的压力阈值;

步骤三,使用蒸汽热网的机理模型计算蒸汽热网的管道中各节点的蒸汽压力;

步骤四,监测各节点的蒸汽实际压力,对比蒸汽计算压力和蒸汽实际压力是否符合爆管的判定条件;

步骤五,若判断发生爆管,爆管事故的位置为蒸汽热网中机理模型计算压力值和实测压力值的差值大于设定值的区域。

优选的,步骤一中,蒸汽热网的机理模型的建立过程为:

由基尔霍夫第一定律建立蒸汽热网各节点处的流量守恒方程:

lr=q

l为节点管道关联矩阵;r为各个管道内的流量向量,r=[r1,r2,...,rm]t;q为各节点净质量流量的向量,q=[q1,q2,…,ql],取流入该节点为正值,流出该节点为负值;

由基尔霍夫第二定律:

bδh=0

bδh=0

b为闭合回路关联矩阵;δh为闭合回路的管段压降矩阵,δh=[δh1,δh2,...,δhm]t;δt为闭合回路的温度降矩阵δt=[δt1,δt2,...,δtm]t

由流体力学方程求得管线段的压力降:

δh=ε|r|r δz-p

p为闭合回路中管网水泵的压力降矩阵,水泵数量为零时,取p=0;ε为管线段的阻力修正系数;δz为管线段地理标高最大值与最小值的差值;

管线段的温降与该管线段的焓降和散热量有关,焓降的计算式为:

hin,hout为管段进、出口焓值;vin,vout为管段进、出口流速;ql为管线段的热损失;q为管线段的质量流量;

单位长度管线段的热损失q1的计算式为:

ql=kπdo(tm-ta)

上式中,管线段的外径do与换热系数k计算式分别为:

do=dm2δp 2δisu1 2δisu2

tm为蒸汽温度;ta为环境温度;dm为管道内径;δp为管壁厚度;δisu1,δisu2分别为内、外层保温层厚度;λp,λisu1,λisu2分别为管道管壁导热系数、内层保温层导热系数与外层保温层导热系数;hm为蒸汽和管壁的对流换热表面传热系数;ha为管道外保温层和外界环境的对流换热表面传热系数;hr为管道外保温层与外界环境的辐射传热系数。

优选的,步骤四中,在蒸汽热网中管道的节点处或间隔一定距离设置一个压力传感器,对管道各部位压力进行监测。

优选的,步骤二中,蒸汽热网爆管的判定条件为:2min内管道实测压力值降低到蒸汽热网中机理模型计算压力值60%及以下。

进一步,满足爆管判定条件后,对爆管节点两侧相邻节点进行计算压力值和实测压力值对比,当相邻节点压力值低于计算值的40%,继续判断相邻节点处附近节点的压力值,直到连续3个相邻节点的压力值低于计算值的40%,进一步判定蒸汽热网发生爆管。

优选的,步骤三中,根据热网运行的实时数据,使用机理模型计算管道各节点的蒸汽压力,实时数据包括热源处的实测蒸汽参数和末端用户处的实测蒸汽参数,蒸汽参数包括蒸汽的温度、压力和流量。

一种识别蒸汽热网爆管位置的系统,包括:

蒸汽热网的机理模型建立模块,用于水力平衡方程、热力平衡方程、基尔霍夫第一定律和基尔霍夫第二定律建立蒸汽热网的机理模型;

判定条件设定模块,用于设定蒸汽热网爆管的判定条件,判定条件为时间阈值内的压力阈值;

蒸汽压力计算模块,用于使用蒸汽热网的机理模型计算蒸汽热网的管道中各节点的蒸汽压力;

爆管条件判定模块,用于监测各节点的蒸汽实际压力,对比蒸汽计算压力和蒸汽实际压力是否符合爆管的判定条件;

蒸汽热网爆管位置识别模块,用于若判断发生爆管,爆管事故的位置为蒸汽热网中机理模型计算压力值和实测压力值的差值大于设定值的区域。

一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任意一项所述识别蒸汽热网爆管位置的方法的步骤。

一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述任意一项所述识别蒸汽热网爆管位置的方法的步骤。

与现有技术相比,本发明具有以下有益效果:

本发明中根据蒸汽热网的机理模型计算管网内蒸汽参数,先设定爆管的判断条件,找到爆管的大致位置,并将计算的蒸汽参数与实测蒸汽参数进行比较,从而判断管网的蒸汽状态,找到具体的爆管事故的位置,从而实现及时告警与定位。

附图说明

图1为本发明的方法流程图;

图2为本发明的蒸汽热网系统图。

其中:1-蒸汽管道;2-压力传感器;3-计算终端。

具体实施方式

下面将结合附图及具体以及具体实施例来详细说明本发明,其中的示意性实施例以及说明仅用来解释本发明,但并不作为对本发明的不当限定。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本文中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

如图1所示,为本发明所述的识别蒸汽热网爆管位置的方法,包括以下步骤:

s1,建立供热管网的机理模型。

s2,设立管网爆管判定条件与爆管位置判定条件。

s3,根据热网运行的实时数据,使用步骤s1的模型计算蒸汽热网的管道中各节点的蒸汽参数。

s4,监测各节点的蒸汽实际压力,对比蒸汽计算压力和蒸汽实际压力是否符合爆管的判定条件,根据爆管判定条件判断是否发生管网爆管事故。

s5,判定发生爆管事故的位置。

进一步的:所述步骤s2中的管网爆管判定条件是在时间阈值内的压力阈值。

进一步的:步骤s4中的判断热网是否发生爆管事故的方式如下:通过步骤s1中的模型获取管路内的压力值。通过比较计算的蒸汽压力值与实测值之间的大小关系,从而确定该位置附近的管网状况。

进一步的:所述热网运行的实时数据包括热源处的实测蒸汽参数和末端用户处的实测蒸汽参数。

进一步的:所述蒸汽参数包括蒸汽的温度、压力和流量。

进一步的:蒸汽热网的机理模型包括水力平衡方程和热力平衡方程。

具体判断和计算过程为:

首先,建立蒸汽热网的机理模型;

蒸汽热网的机理模型建包括水力平衡方程和热力平衡方程。具体如下:针对含有l个节点、m条管段、n个闭环回路的蒸汽管网:

由基尔霍夫第一定律建立节点处的流量守恒方程:

lr=q

l为节点管道关联矩阵;r为各个管道内的流量向量,r=[r1,r2,...,rm]t;q为各节点净质量流量的向量,q=[q1,q2,…,ql],取流入该节点为正值,流出该节点为负值。

由基尔霍夫第二定律可知,在闭合回路中的压降和温降等于零:

bδh=0

bδt=0

b为闭合回路关联矩阵;δh为闭合回路的管段压降矩阵,δh=[δh1,δh2,...,δhm]t;δt为闭合回路的温度降矩阵δt=[δt1,δt2,...,δtm]t

由流体力学方程求得管线段的压力降:

δh=ε|r|r δz-p

p为闭合回路中管网水泵的压力降矩阵,水泵数量为零时,取p=0;ε为管线段的阻力修正系数;δz为管线段地理标高最大值与最小值的差值。

管线段的温降与该管线段的焓降和散热量有关,焓降的计算式为:

hin,hout为管段进、出口焓值;vin,vout为管段进、出口流速;ql为管线段的热损失;q为管线段的质量流量。

单位长度管线段的热损失q1的计算式为:

ql=kπdo(tm-ta)

上式中,管线段的外径do与换热系数k计算式分别为:

do=dm2δp 2δisu1 2δisu2

tm为蒸汽温度;ta为环境温度;dm为管道内径;δp为管壁厚度;δisu1,δisu2分别为内、外层保温层厚度;λp,λisu1,λisu2分别为管道管壁导热系数、内层保温层导热系数与外层保温层导热系数;hm为蒸汽和管壁的对流换热表面传热系数;ha为管道外保温层和外界环境的对流换热表面传热系数;hr为管道外保温层与外界环境的辐射传热系数。

通过联立上述水力平衡及热力平衡方程,即可求解多热源联合供热的闭合式蒸汽热网模型。

然后根据使用条件设定爆管判定条件,这里根据压力传感器2监测的压力阈值判断是否发生爆管。

在2min钟内,当某节点的蒸汽压力实测值降低到计算值的60%甚至以下时,触发下一步判定条件。

判断相邻节点的压力,当相邻节点压力值低于计算值的40%,继续判断相邻节点处附近节点的压力值。

当连续3个相邻节点的压力值低于计算值的40%,判断管网发生爆管。

判断爆管发生后,下一步判断爆管发生位置的方法为:

继续对附近节点的蒸汽压力进行比较,当某节点的蒸汽压力实测值与监测值相差小于10%时,停止判定。发生爆管的位置即该节点(实测值与监测值相差小于10%)与下一节点(实测值与监测值相差大于40%)处。

本发明利用水力平衡及热力平衡方程对供热管道进行仿真建模,结合实时数据,计算每一节点(放置压力传感器2)的蒸汽参数(压力),通过设定报警条件,可以实现更加快速准确的识别爆管及报警,并准确定位。

如图2所示,压力阈值通过在节点布置的压力传感器2探测。对长距离输送蒸汽管道1,每隔一定的距离可以布置一个压力传感器2作为节点;对市区内的蒸汽管道1,部分距离埋地管的两端可以作为节点,所有压力传感器2的输出端均连接计算终端3输入端。

本发明所述识别蒸汽热网爆管位置的系统,包括:

蒸汽热网的机理模型建立模块,用于水力平衡方程、热力平衡方程、基尔霍夫第一定律和基尔霍夫第二定律建立蒸汽热网的机理模型。

判定条件设定模块,用于设定蒸汽热网爆管的判定条件,判定条件为时间阈值内的压力阈值。

蒸汽压力计算模块,用于使用步骤蒸汽热网的机理模型计算蒸汽热网的管道中各节点的蒸汽压力。

爆管条件判定模块,用于监测各节点的蒸汽实际压力,对比蒸汽计算压力和蒸汽实际压力是否符合爆管的判定条件。

蒸汽热网爆管位置识别模块,用于若判断发生爆管,爆管事故的位置为蒸汽热网中机理模型计算压力值和实测压力值的差值大于设定值的区域。

本发明所述计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任意一项所述识别蒸汽热网爆管位置的方法的步骤。

本发明所述计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述任意一项所述识别蒸汽热网爆管位置的方法的步骤。

以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜