一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种原油双管并联多区催化转化制化学品的方法与流程

2021-10-04 09:37:00 来源:中国专利 TAG:
一种原油双管并联多区催化转化制化学品的方法与流程

本发明涉及石油加工技术领域,特别是涉及一种原油双管并联多区催化转化制化学品的方法。

背景技术

乙烯、丙烯等低碳烯烃是石油化工的基本有机合成原料,随着世界经济的快速发展,其市场需求量也逐年增长,其中丙烯需求的增长速度已经超过了乙烯。目前全球超过90%的乙烯和近70%的丙烯均来源于以乙烷、石脑油、轻柴油等轻质石油烃为原料的蒸气裂解工艺。但蒸汽裂解的反应苛刻度高,反应温度甚至超过1100℃,而停留时间也缩短到0.2秒以下,技术进步空间已经很小,且受制于该工艺的反应机理,作为其主要副产品的丙烯的产率难以大幅度提高。由于蒸汽裂解工艺反应温度高,需要对裂解产物进行深冷分离,此外由于产物中小分子的氢气、甲烷含量高,使得压缩过程能耗高、能量利用率低,这些因素都使得蒸汽裂解工艺需要消耗大量的能量,其能耗占到整个石油化工企业的40%。随着石油资源的日益重质化,石脑油产量不断下降,轻烃原料短缺问题对蒸汽裂解装置而言日益突出,而加工重质原料又会导致炉管结焦严重。因此,近年来开发以重油原料直接生产低碳烯烃的催化裂化技术受到普遍关注。

芳烃(苯、甲苯、二甲苯,简称BTX)是产量和规模仅次于乙烯和丙烯的重要有机化工原料,其衍生物广泛用于生产合成纤维、合成树脂、合成橡胶等化工产品和各种精细化学品。随着石油化工及纺织工业的不断发展,世界上对芳烃的需求量不断增长。最初芳烃生产是以煤焦油为原料,随着炼油工业和石油化学工业的发展,芳烃生产已经转向以催化重整油和裂解汽油为主要原料的石油化工路线。催化重整在芳烃生产中具有十分重要的地位和作用,全世界所需的BTX有近70%来自催化重整。但是催化重整装置的原料主要是石脑油,且对原料中的杂质含量有严格的限制,通常需要先经过预处理,包括预分馏、预脱砷、预加氢三部分。由于我国石脑油资源有限,如果要通过增加催化重整来提高芳烃产量,势必会与乙烯生产装置争夺原料。

专利CN1031834A,US3541179,US3647682等是通过改进催化剂配方来增产低碳烯烃,与本发明存在较大差异。专利CN101462916A披露了一种石油烃催化裂解生产低碳烯烃的方法,将石油烃在进行催化裂解反应前先与脱氢催化剂接触进行脱氢反应,可以降低反应温度,从而节约能耗,但该方法只适用于轻质石油烃如石脑油或轻柴油。专利CN101684057A披露了一种对裂解原料进行预分离的方法,与本发明存在较大差异。专利CN1504542A披露了一种将有机含氧化合物与石油烃类进行耦合催化裂解制取低碳烯烃的方法,与本发明存在较大差异。

专利CN1234426A(DCC工艺)是通过在常规提升管反应器上增加密相流化床,采用较高的反应温度(500-600℃)和专门设计的催化剂,促进重质石油烃的催化裂解和轻质石油烃的催化芳构化,从而可以增产一定量的低碳烯烃并提高汽油中的芳烃含量。但是密相流化床的存在会促进氢转移反应,进而降低低碳烯烃的选择性。专利CN1218786A(CPP工艺)是在DCC工艺基础上通过催化剂配方的改进并将反应温度提高到600-750℃,以进一步提高乙烯和丙烯的产率。专利CN1069016A(HCC工艺)披露了一种将重质烃类在流化床或活塞流反应器内直接转化,以生产乙烯为主,兼产丙烯、丁烯和轻质芳烃的方法,该方法采用了较高的反应温度650-900℃和较大的剂油比促进重质烃类的转化并采用较短的反应时间抑制二次反应提高烯烃产率。专利CN1083092A披露了一种制取乙烯和丙烯的催化热裂解方法,该发明使用了含层柱粘土分子筛和/或含稀土的五元环高硅沸石的酸性分子筛催化剂,推荐采用较高的反应温度700-750℃和较大的水油比(40%以上)。以上发明在以重质石油烃为原料直接生产低碳烯烃领域取得了突破性进展,但采取的主要方法都是大幅提高反应苛刻度和采用烯烃选择性更高的催化剂,在工艺过程的优化上所做的工作并不多,而且都存在低价物产率较高的问题。对于重油高苛刻度下的快速催化裂解反应过程,如果可以通过装置本身不同反应性能物料之间的优化组合,抑制裂解气中甲烷、乙烷等低价物的生成,不仅可以提高低碳烯烃的产率,还可以优化氢分配,更高效的利用好每一滴油。

中国石油大学(华东)开发的两段提升管催化裂化技术(专利CN2380297Y、CN1302843A),将传统的单根长提升管分为两段,形成油气两段串联,催化剂两路接力,提高了催化剂的平均活性。通过将裂化性能差异较大的新鲜进料和循环油分段进料,排除了两者的竞争吸附反应,并通过控制不同的反应苛刻度,强化重油的催化裂化反应,提高原料转化深度,降低不利的二次反应。专利CN1438296A在两段提升管催化裂化工艺的基础上,增设了第三段提升管,可以有效对汽油进行改质或裂解生产低碳烯烃,但由于装置结构较为复杂,目前还未见工业应用。专利CN101074392A披露了一种利用两段催化裂解生产丙烯和高品质汽柴油的方法,该方法充分利用了两段提升管催化裂化技术的优势;采用富含择形分子筛的催化剂;针对不同性质的反应物料进行进料方式的优化组合;并控制不同物料适宜的反应条件,一段反应温度480-520℃,二段反应温度520-550℃,停留时间1-2秒。该方法可在不大幅提高提升管出口温度的前提下增大反应的剂油比,促进催化裂化反应,抑制干气、焦炭的生成。但是采用该方法,只可增产一定量的丙烯,乙烯产率较低,且汽油中芳烃含量较低。专利CN1557915A,CN1069054A,CN1237477A,WO99/57230,US7261807,US4980053,US6569316,MAXOFIN工艺,PetroFCC工艺,LOCC工艺,NEXCC工艺,MILOS工艺,HS-FCC工艺等也都存在低碳烯烃产率较低,汽油芳烃含量不高的问题。



技术实现要素:

本发明的目的是提供一种原油双管并联多区催化转化制化学品的方法,以解决上述现有技术存在的问题,提供低碳烯烃产率,提高裂解汽油中芳烃的含量,并抑制低价产物的生成。

为实现上述目的,本发明提供了如下方案:

本发明提供一种原油双管并联多区催化转化制化学品的方法,包括以下步骤:

(1)第一原料在第一反应管的进气端进料,在高温再生催化剂作用下,在低碳烷烃反应区进行裂解反应;

(2)预热的第二原料在第一反应管的中部进料,与来自所述低碳烷烃反应区的物料接触混合,进入第一重油反应区,进行裂解反应,反应后的第一油气和待生催化剂进入气固分离设备进行分离,所述第一油气再经分馏系统进行低碳烷烃、低碳烯烃、汽油、循环油和油浆的分离,所述汽油进入芳烃抽提装置分离为芳烃和芳烃抽余油;所述待生催化剂经汽提后进入再生反应器与氧化剂发生再生反应;

(3)第三原料在第二反应管的进气端进料,在高温再生催化剂作用下,在汽油反应区进行裂解反应;所述第三原料为轻质烃类或醇类原料;

(4)步骤(2)分离得到的循环油或加氢处理后的循环油在第二反应管的中部进料,与来自所述汽油反应区的物料接触混合,进入第二重油反应区,进行裂解反应,反应后得到第二油气和待生催化剂,所述第二油气与第一油气混合后进入分馏系统,进行低碳烷烃、低碳烯烃、汽油、循环油和油浆的分离,所述汽油进入芳烃抽提装置分离为芳烃和芳烃抽余油;所述待生催化剂经汽提后进入再生反应器与氧化剂发生再生反应。

进一步地,所述低碳烷烃反应区的反应条件为:反应温度600-800℃,优选650-750℃;所述第一原料预热温度40-200℃;剂油质量比5-30;反应时间0.1-5.0s,优选0.2-1.0s;

所述第一重油反应区的反应条件为:反应温度500-700℃,优选550-650℃;所述第二原料预热温度150-250℃;剂油质量比5-30;反应时间0.1-5.0s,优选0.5-1.0s;

所述汽油反应区的反应条件为:反应温度600-800℃,优选650-750℃;所述第三原料预热温度40-200℃;剂油质量比5-30;反应时间0.1-5.0s,优选0.2-1.0s;

所述第二重油反应区的反应条件为:反应温度500-700℃,优选550-650℃;所述循环油预热温度200-350℃;剂油质量比5-30;反应时间0.1-5.0s,优选0.5-1.0s;所述再生反应器反应温度为600-950℃。

进一步地,所述第一反应管和所述第二反应管为带有旋流进料结构的下行管、提升管或复合床反应器;所述第一原料和所述第三原料采用旋流进料。

进一步地,所述第二原料包括:原油、原油重组分、常压蜡油、减压蜡油、焦化蜡油、常压渣油、减压渣油、脱沥青油、油砂沥青、页岩油、煤焦油、石蜡、塑料、橡胶、橡胶油、合成油和富含碳氢化合物的动植物油类中的一种或多种。

进一步地,步骤(1)和步骤(3)中,所述高温再生催化剂包括来自再生器或再生剂冷却设备的再生催化剂或催化剂混合罐的温度或活性改变的催化剂。

进一步地,所述第一原料和第三原料包括:低碳烷烃、醇类、原油轻组分、汽油芳烃抽余油、直馏汽油、凝析油、催化裂化汽油、热裂化汽油、焦化汽油、减粘汽油和裂解制乙烯汽油中的一种或多种。

进一步地,所述高温再生催化剂包括负载碱金属和/或碱土金属的微球、铝酸钙、铁酸钙、镁铝尖晶石、硅铝酸盐、硅酸钙、硅酸镁、氧化铝和半焦中的一种或多种。

进一步地,所述氧化剂为氧气、空气、富氧空气、水蒸气、二氧化碳、甲烷中的一种或多种。

进一步地,所述再生反应器为提升管再生器、湍动流化床再生器、鼓泡流化床再生器中的一种或多种的组合。

进一步地,所述气固分离设备包括惯性分离器、卧式旋风分离器、立式旋风分离器中的一种或多种的组合。

本发明公开了以下技术效果:

本发明提供了一种石油化工领域用于催化裂解原油生产低碳烯烃和芳烃等化学品的方法,该方法既可加工轻质原油也可加工重质原油,原油可先经脱盐脱水后进行加工,也可直接加工,该方法主要是利用双反应管并列的反应器,分区反应,强化油气和催化剂的接触反应,采用高烯烃选择性、水热稳定性和抗重金属的催化剂,根据反应物料的不同性质进行进料方式的优化组合,控制不同物料适宜的反应条件,根据轻、重组分裂解特性进行分区控制,强化转化,采用旋流进料结构,强化低碳烷烃和催化剂的接触反应,低碳烷烃高温催化蒸汽裂解解决了小分子烷烃转化难的问题,并为重组分裂解提供临氢环境,提高目的产品收率,降低焦炭产率,多举措最终达到提高低碳烯烃产率、提高裂解汽油中芳烃含量的目的。

与现有技术相比,本发明在多产低碳烯烃的前提下可以得到更佳的产物分布,既很好地抑制了低价物的生成,汽油中芳烃含量也较高。在采用钙基固体碱专用催化剂,以大庆原油为原料,第一和第二反应管反应器出口温度均为620℃的条件下,乙烯和丙烯产率超过50%,汽油芳烃含量超过85%。因此,具有极大的应用和推广前景。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例1的工艺流程及装置示意图;

图2为带有旋流进料结构的提升管结构示意图。

具体实施方式

现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。

应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。

除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。

在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。

关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。

本发明的管式反应区,可以采用带有或不带旋流进料结构的下行管(即下行式反应管)、提升管(即上行式反应管)或复合床反应区;其中第一原料和第三原料可采用旋流进料。本发明带有旋流进料结构的提升管结构示意图如图2,其反应管本体总高度为9.2m,预提升段1直径为16mm,其高度为2.4m;扩径段2直径为32mm,其高度为2m,缩颈段3直径为16mm,其高度为4.6m;渐扩径段4底部锥角为60°,渐缩径段5顶部锥角为5°。进料喷嘴6为管形,喷嘴6射流方向与反应管本体轴向方向夹角为30°,在反应管本体横截面上的投影与切线方向夹角为60°,沿扩径段7周向均匀布置有6个。同理,下行管也可采用该结构,本领域技术人员有能力根据该提升管的改进得到,在此不再赘述。在扩径段进料,并利用多个喷射端增加油剂接触点数,增大油气和催化剂的径向速度和周向速度,促进催化剂径向上的传质、传热,实现油剂的快速、均匀混合,强化催化反应。

本发明所采用的催化裂化反应装置中各具体设备,例如再生器、反应管、气固分离设备、旋风分离器或分馏系统等,均为石油加工领域的常用设备,按照本发明工艺要求进行适当改造和组装即可投入使用,利于工业化实施。

实施例1

该实施例以带有旋流结构的上行式反应管为例,原油先经脱盐、脱水后,经过闪蒸或蒸馏过程,按沸点分成轻组分和重组分,小于200℃馏分为轻组分,大于200℃馏分为重组分。

参见图1所示的工艺流程以及装置示意图,低碳烷烃121从第一提升管反应器102的下部注入,与来自再生器103由再生斜管105输送,预提升蒸汽或提升干气104提升上来的高温再生催化剂进行接触反应,于600-800℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-5.0s后离开低碳烷烃反应区123进入第一重油反应区124,在第一重油反应区的底部与预热至150-250℃的原油重组分101混合,于500-700℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-5.0s后进入气固分离器106和沉降器顶旋107进行油剂的分离,主反应油气108进入分馏塔,进行低碳烷烃、低碳烯烃、汽油、循环油和油浆的分离,汽油进芳烃抽提装置分离为芳烃和芳烃抽余油,待生催化剂经过沉降器109进入汽提段110,经汽提后进入再生器103烧焦再生。分离出的汽油芳烃抽余油和原油轻组分122预热到40-200℃,进入第二提升管反应器112的汽油反应区113,与来自再生器103由再生斜管115输送,预提升蒸汽或提升干气114提升上来的高温再生催化剂进行接触反应,于600-800℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-2.0s后,进入第二重油反应区116,在第二重油反应区的底部与预热到200-350℃的循环油进料111接触反应,在反应温度500-700℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-5.0s后,进入高效气固分离器117和顶旋107进行油剂的分离,反应油气118与主反应油气108在沉降器109内混合后进入分馏塔,进行低碳烷烃、低碳烯烃、汽油、循环油和油浆的分离,汽油进芳烃抽提装置分离为芳烃和芳烃抽余油,待生催化剂经沉降器109进入汽提段110,经汽提后进入再生器103烧焦再生,烟气经旋风分离器119分离固体颗粒后离开该系统。当焦炭产率较高时可增加再生剂外取热器120对再生催化剂进行取热降温。

实施例2

采用带有旋流进料结构的上行式反应管,原油直接进料。

参见图1所示的工艺流程以及装置示意图,低碳烷烃121从第一提升管反应器102的下部注入,与来自再生器103由再生斜管105输送,预提升蒸汽或提升干气104提升上来的高温再生催化剂进行接触反应,于600-800℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-5.0s后离开低碳烷烃反应区123进入第一重油反应区124,在第一重油反应区的底部与预热至150-250℃的原油101混合,于500-700℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-5.0s后进入气固分离器106和沉降器顶旋107进行油剂的分离,主反应油气108进入分馏塔,进行低碳烷烃、低碳烯烃、汽油、循环油和油浆的分离,汽油进芳烃抽提装置分离为芳烃和芳烃抽余油,待生催化剂经过沉降器109进入汽提段110,经汽提后进入再生器103烧焦再生。分离出的汽油芳烃抽余油122预热到40-200℃,进入第二提升管反应器112的汽油反应区113,与来自再生器103由再生斜管115输送,预提升蒸汽或提升干气114提升上来的高温再生催化剂进行接触反应,于600-800℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-2.0s后,进入第二重油反应区116,在第二重油反应区的底部与预热到200-350℃的循环油进料111接触反应,在反应温度500-700℃,剂油比5-30,压力0.1-0.4MPa条件下反应0.1-5.0s后,进入高效气固分离器117和顶旋107进行油剂的分离,反应油气118与主反应油气108在沉降器109内混合后进入分馏塔,进行低碳烷烃、低碳烯烃、汽油、循环油和油浆的分离,汽油进芳烃抽提装置分离为芳烃和芳烃抽余油,待生催化剂经沉降器109进入汽提段110,经汽提后进入再生器103烧焦再生,烟气经旋风分离器119分离固体颗粒后离开该系统。当焦炭产率较高时可增加再生剂外取热器120对再生催化剂进行取热降温。

实施例3

采用带有旋流进料结构的下行式反应管,原油先经脱盐、脱水后,经过闪蒸或蒸馏过程,按沸点分成轻组分和重组分,小于200℃馏分为轻组分,大于200℃馏分为重组分。具体流程参考实施例1。

实施例4

采用带有旋流进料结构的下行式反应管,原油直接进料。具体流程参考实施例2。

对比例1

采用大庆原油为原料,钙基固体碱催化剂,第一反应管进原油,反应温度620℃,反应时间1.5s,第二反应管进循环油,反应温度620℃,反应时间1.8s。

为验证本发明的效果,采用实施例1-4及对比例1的工艺流程,在某催化裂化实验装置上进行试验,试验结果如下表所示。

试验中所采用原油采用大庆原油,原料的性质如表1,采用上述工艺流程,原料如实施例1-4及对比例1所述流程进入催化裂化装置进行反应,各反应区的具体工艺条件如表2,所得产物分布如表3。同对比例1相比较,采用本发明的工艺可以使乙烯和丙烯收率提高约10个百分点,汽油芳烃收率增加约8个百分点,增产低碳烯烃和芳烃效果显著。

表1原油一般性质

表2不同加工方案对比分析

表3主要产品分布

以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜