一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

具有包覆层的硫化物荧光体及制备具有包覆层的硫化物荧光体的磁控溅射法的制作方法

2021-09-29 00:47:00 来源:中国专利 TAG:覆层 硫化物 荧光 磁控溅射 制备


1.本发明属于发光材料领域,具体地,涉及具有包覆层的硫化物荧光体及制备具有包覆层的硫化物荧光体的磁控溅射法。


背景技术:

2.碱土硫化物具有适合的禁带宽度,是优良的发光基质材料之一。通过掺入不同的金属离子,可以获得发射光谱从红外区到紫外区的荧光粉。因此,碱土硫化物发光材料在光致发光、电致发光、阴极射线发光等领域获得了广泛的应用。掺杂稀土离子的碱土硫化物是一类优良的荧光粉,能被紫外光或可见光有效地激发,产生半峰宽较宽的发射峰。因此,稀土离子掺杂碱土硫化物具有吸收太阳光谱成分中的紫外光与部分可见光并发射红光的特性。因此,除了在发光器件上应用之外,近年来,掺杂稀土离子的碱土硫化物荧光粉被用作光转换助剂。将其添加于有机高分子树脂制造农用转光膜,以提高农作物的光能利用率,促进植物光合作用。
3.碱土硫化物的化学稳定性差,容易和空气中的水、氧气以及二氧化碳发生反应。若暴露在空气中,其发光性能会迅速下降,这给碱土硫化物荧光粉的储存与应用带来了很大的困难。另外,未经表面改性处理的荧光粉分散性差。因此,碱土硫化物类荧光粉在应用前都要进行表面改性处理。碱土硫化物的包覆改性主要是以氧化物或惰性材料包覆为主,这层包覆膜是惰性的,能很好地保护荧光粉,提高其化学稳定性。目的主要使用化学气相沉积法和物理蒸汽沉积法,然而其操作复杂,而且由上述方法所形成的包膜均匀度和致密性都较差,难以对碱土硫化物起到长效的保护作用。
4.磁控溅射技术(ms)是指利用了电场和磁场相互垂直的原因对反应室内运动的电子限制,这种限制作用能够有效地束缚溅射沉积薄膜过程中产生的二次电子,使得电子在真空室中的运动路程相对延长,进而增大了电子与真空室中反应气体的碰撞次数和碰撞几率,由于这个频繁的碰撞和能量不断的转移能够产生很多的等离子体,离子会在阴极电场的推进效果下获得很大的能量去打击靶材。与传统的二极溅射对比,磁控溅射技术的粒子离化率更高。ms技术获取的薄膜具备以下特点:沉积速率高,沉积温度低,薄膜损伤小,工作气压较低,沉积制备的薄膜均匀致密、表面光洁度高、纯度高和黏附性能强的特点,适用于高效、大批的工业化生产中。目前,磁控溅射技术广泛应用于平板显示器件、太阳能电池、微波与射频屏蔽装置与器件、传感器等,然而,将磁控溅射技术在发光材料领域中的应用仍存在较大的空白。


技术实现要素:

5.本发明的目的在于提供具有包覆层的硫化物荧光体及制备具有包覆层的硫化物荧光体的磁控溅射法,以有效提高硫化物荧光体的耐候性。
6.根据本发明的一个方面,提供一种具有包覆层的硫化物荧光体,包括:基底,基底
为碱土硫化物发光材料;包覆于基底的表面的包覆层,包覆层为采用磁控溅射法按照以下步骤成型:步骤一,以惰性气体轰击靶材以使靶材溅射靶原子,形成辉光,其中,靶材为单晶硅、金属钛、金属铝或上述物料中的任意组合而形成的合金;步骤二,通入反应气体与在靶原子发生反应形成成膜物质,成膜物质沉积到基底的表面形成包覆层,其中,反应气体选自o2、n2。本发明基于磁控溅射法的成膜特性,将该工艺应用于碱土硫化物发光材料的表面包覆,能够在碱土硫化物发光材料的表面形成均匀致密的包覆层,由此形成的包覆层能够对碱土硫化物发光材料与外界的空气和水分起到有效的隔绝效果,从而对碱土硫化物发光材料的表面起到显著的保护效果,使碱土硫化物发光材料的耐湿热稳定性得到明显的提高。同时基于碱土硫化物发光材料的发光特性以及磁控溅射法的工艺特性选择用于形成包覆膜的成膜物质,采用本发明所采用的靶材以及反应气体,由此将成膜物质的可选种类限定在含硅氮化物、含钛氮化物、含铝氮化物、含硅氧化物、含钛氧化物、含铝氧化物之中,上述物料具有良好的化学稳定性,能够对碱土硫化物发光材料的表面起到良好的钝化作用,同时,利用上述物料所形成的包覆膜不会折损碱土硫化物发光材料的光学性质,由此制得的硫化物荧光体依然能够保有作为其基底的碱土硫化物发光材料应有的发光优势。
7.上述碱土硫化物发光材料指的是以碱土硫化物作为基质的发光材料,可选但不限于mgs:eu
2
、cas:eu
2
、srs:eu
2
、bas:eu
2
等。
8.优选地,成膜物质包括sio2、tio2、tin、ticn、al2o3中的至少一种。
9.优选地,成膜物质包括sio2、tio2、al2o3中的至少一种
10.优选地,包覆层由sio2沉积层和al2o3沉积层复合而成。
11.优选地,基底为粒径介于500nm~6μm的粉状颗粒。
12.优选地,包覆层的厚度为100~2000nm。
13.根据本发明的另一个方面,提供一种制备具有包覆层的硫化物荧光体的磁控溅射法,其特征在于,包括以下步骤:预备步骤:以碱土硫化物发光材料作为基底,将基底置于真空度为10
-4
~10
-3
pa的反应区域内,加热基底至100~300℃;步骤一,以惰性气体轰击靶材以使靶材溅射靶原子,形成辉光,其中,靶材为单晶硅、金属钛、金属铝或上述物料中的任意组合而形成的合金;步骤二,通入反应气体与在靶原子发生反应形成成膜物质,成膜物质沉积到基底的表面形成包覆层,由此制得硫化物荧光体,其中,基底为碱土硫化物发光材料,反应气体选自o2、n2。
14.优选地,靶材为单晶硅、金属铝或上述物料中的任意组合而形成的合金。
15.优选地,在步骤一中,惰性气体的流速为10~100sccm。
16.优选地,在步骤二中,将反应气体的流速控制在1~10sccm,溅射功率为50~200w。
17.可选地,溅射时间为1~4h。
18.通过对磁控溅射工艺进行限定,有利于制备均匀密致的包覆膜,使得所制得的硫化物荧光体具有光滑细腻的表面,有利于硫化物荧光体的分散。
具体实施方式
19.为了使本技术领域的人员更好地理解本发明方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。
20.在下述实施例中所采用的cas:eu
2
红色荧光粉为采用本领域常规方法自制的同批次cas:eu
2
红色荧光粉,粒径为3μm。
21.实施例1
22.本实施例以单晶硅作为靶材,按照以下方法制备表面包覆有sio2包覆层的cas:eu
2
红色荧光粉:
23.(1)抽真空:将cas:eu
2
粉末放入磁控溅射镀膜真空室的振动样品台上,对真空室进行抽真空至10
‑3pa;
24.(2)加热基体:将cas:eu
2
粉末加热至150℃;
25.(3)通入溅射气体氩气:等到温度稳定后,先向真空室内通入氩气,设置氩气的流速为50sccm,并调节真空室内气压为6.5pa;
26.(4)预溅射:打开中频电源,先用小功率进行预溅射,以去除靶材表面的杂质;
27.(5)溅射镀膜:等到辉光稳定后,通入o2,流量为5sccm,并调大溅射功率为60w,打开靶材上的挡板,进行溅射1h,制备500nm的sio2保护层。
28.实施例2
29.本实施例以钛

硅合金作为靶材,按照以下方法制备表面包覆有sio2‑
tio2复合包覆层的cas:eu
2
红色荧光粉:
30.(1)抽真空:将bas:eu
2
粉末放入磁控溅射镀膜真空室的振动样品台上,对真空室进行抽真空至10
‑4pa;
31.(2)加热基体:将bas:eu
2
粉末加热至200℃;
32.(3)通入溅射气体氩气:等到温度稳定后,先向真空室内通入氩气,设置氩气的流速为45sccm,并调节真空室内气压为4pa;
33.(4)预溅射:打开中频电源,先用小功率进行预溅射,以去除靶材表面的杂质;
34.(5)溅射镀膜:等到辉光稳定后,通入o2,流量为7sccm,并调大溅射功率为75w,打开靶材上的挡板,进行溅射3h,制备1100nm的sio2‑
tio2保护层。
35.实施例3
36.本实施例以金属铝作为靶材,按照以下方法制备表面包覆有al2o3包覆层的cas:eu
2
红色荧光粉:
37.(1)抽真空:将mgs:eu
2
粉末放入磁控溅射镀膜真空室的振动样品台上,对真空室进行抽真空至5
×
10
‑4pa;
38.(2)加热基体:将硫化物粉末加热至180℃;
39.(3)通入溅射气体氩气:等到温度稳定后,先向真空室内通入氩气,设置氩气的流速为55sccm,并调节真空室内气压为7.5pa;
40.(4)预溅射:打开中频电源,先用小功率进行预溅射,以去除靶材表面的杂质;
41.(5)溅射镀膜:等到辉光稳定后,通入o2,流量为10sccm,并调大溅射功率为110w,打开靶材上的挡板,进行溅射2.5h,制备2000nm的al2o3保护层。
42.对比实施例1
43.利用溶胶凝胶法制备表面包覆sio2薄膜的cas:eu
2
红色荧光粉,具体操作方法如下:
44.烧杯中加入25ml乙醇和40ml去离子水,以每分钟0.6ml的速率滴入3%、5%或10%
的正硅酸乙酯。往溶液中加入20g cas:eu
2
粉末(500nm),在60℃下搅拌30min后,逐滴滴加少量氨水,调节ph为9

10,继续搅拌45min,然后在80℃下真空干燥2h,并在马弗炉中500℃煅烧1h,得到二氧化硅包覆的cas:eu
2
红色荧光粉。
45.对比实施例2
46.利用溶胶凝胶法制备表面包覆al2o3薄膜的cas:eu
2
红色荧光粉,具体操作方法如下:
47.称取1g硝酸铝溶液5ml乙醇和5ml去离子水,配置成溶液a;称取8g碳酸氢铵,溶液5ml乙醇和5ml去离子水,配置成溶液b;
48.向溶液a中加入20g cas:eu
2
粉末(500nm),常温下搅拌30min,然后逐滴滴加溶液b,继续搅拌30min后清洗,在90℃下干燥1h;最后将上述前驱体放置在马弗炉中1000℃煅烧2h,得到氧化铝包覆的cas:eu
2
红色荧光粉。
49.测试例
50.利用未经包覆的cas:eu
2
红色荧光粉与经过实施例1、实施例2、实施例3、对比实施例1、对比实施例2处理后得到的具有包覆层的cas:eu
2
红色荧光粉开展耐湿劣化实验,具体的实验设置方式如下:
51.正试期为期30天,将参试粉体置于温度为25℃,相对湿度为75%的温箱中进行耐湿劣化实验测试。对包覆完成后得到具有包覆层的cas:eu
2
红色荧光粉马上进行荧光光谱测试,对进入正试期的参试样品进行荧光光谱测试,在激发波长为540nm的测试条件下,测得参试粉体的发射光谱图,记录参试粉体的发射光谱在波长为640nm处的发生强度,以参试粉体的发射强度与进入正试期前、未经包覆的cas:eu
2
红色荧光粉发射强度之比表征参试粉体的发光性能保持率。
52.具体的测试结果如表1所示。分别对应对比实施例1和对比实施例2的发光性能数据表明,利用溶胶凝胶法对cas:eu
2
红色荧光粉进行表面修饰,该工艺本身就会对cas:eu
2
红色荧光粉物质结构造成不利影响,使cas:eu
2
红色荧光粉的发光强度产生明显的下降。随着正试期的推进,未经包覆处理的cas:eu
2
红色荧光粉的发光强度大幅度下降,同时,对比实施例1和对比实施例2的cas:eu
2
红色荧光粉发光强度明显变低。然而,直到正试期结束,经过实施例1、2、3处理得到的具有包覆层的cas:eu
2
红色荧光粉依然能够保持优良的发光效果,具体地,按照发光性能保持率从高到低的次序排列:实施例2>实施例1>实施例3,由此说明,在cas:eu
2
红色荧光粉表面包覆含有sio2的包覆膜,对cas:eu
2
红色荧光粉所能够起到的保护效果最为优越。
53.表1cas:eu
2
红色荧光粉的发光性能保持率
[0054][0055][0056]
以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜