一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于纳米线定向发射结构增强硅片发光的方法与流程

2021-08-17 13:50:00 来源:中国专利 TAG:硅片 定向 纳米 发射 发光
一种基于纳米线定向发射结构增强硅片发光的方法与流程

本发明涉及材料领域,尤其是涉及一种基于纳米线定向发射结构增强硅片发光的方法。



背景技术:

硅是当今电子科技最有代表性的材料,尽管其电学性能优良,但是由于其间接带隙的属性,可以说其本身不发光,在光子学方面的应用是一片空白,所以挖掘与探索其光学性能显得及其重要,如果能有效挖掘其光学性能,那么我们目前的硅电子学芯片可以升级为光子学芯片,将有效推动人类科技的发展与进步。

对于直接带隙的半导体inp来说,导带与价带的电子空穴对可以直接辐射复合,发射荧光,但是对于间接带隙的硅来说,由于导带底与价带顶动量不匹配,不能有效的实现辐射复合,所以想要实现有效的辐射复合,必须有声子辅助,满足动量守恒,带走多余的动量,实现导带热电子与价带空穴动量匹配,才能实现有效的间接带隙的辐射复合。2013年cho使用了ω形状的金属腔,增强了硅纳米线的荧光信号,他们将这一信号的产生机理归功于声子辅助的荧光发射,声子辅助的荧光发射,需要局域态密度最高的声子带走电子多余的动量,实现电子与空穴的动量匹配,从而实现了间接带隙的辐射复合。

但是目前为止,所有的工艺都限制在必须在硅纳米线上完成,这就需要超高的工艺,同时在实用性上大打折扣。所以,如何增强商用硅芯片的荧光信号,是当下最需要解决的问题。



技术实现要素:

本发明的目的在于提供一种基于纳米线定向发射结构增强硅片发光的方法,以增强商用硅芯片的荧光信号。

为了实现上述目的,本发明实施例提供如下技术方案:

根据本发明实施例的第一方面,提供一种基于纳米线定向发射结构增强硅片发光的方法,包括先制备银纳米线,之后将银纳米线滴加在硅质载体上,然后收集带有双根纳米线的硅质载体的荧光信号即可。

进一步的,所述的硅质载体为纯硅或镀有二氧化硅的硅片,其中,二氧化硅的厚度0-300nm。

进一步的,所述双根纳米线的两根纳米线之间相距1-100nm。

进一步的,所述银纳米线的直径为50nm-500nm,长度为1μm-30μm。

进一步的,所述银纳米线的制备方法,包括以下步骤:

步骤一、分别称取agno3、pvp、nacl和乙二醇,备用;

步骤二、将pvp溶于乙二醇中搅拌,待乙二醇完全溶解后加入agno3,当agno3完全溶解后加入nacl,搅拌后倒入反应釜中,之后放入加热箱中加热,

步骤三、加热停止后,将上半部分溶液倒入离心管中保存,然后向反应釜中倒入酒精进行洗涤,将上清液倒入离心管中进行保存。实验时,取离心管中溶液稀释,用酒精丙酮交替洗涤数次,获得所述的银纳米线。

进一步的,步骤一中每10ml乙二醇对应agno31000mg、pvp700mg、nacl5mg。

进一步的,步骤二中加热箱的加热温度为160℃,加热时间90min。

进一步的,所述的步骤三包括在离心管中稀释10倍后用酒精丙酮交替洗涤数次。

根据本发明实施例的第二方面,提供一种半导体材料,包括硅质载体和布设在硅质载体上的双根纳米线。

本发明实施例具有如下优点:本发明实施例提供一种基于纳米线定向发射结构增强硅片发光的方法,利用双根纳米线可以将光局限在纳米线间隙中,突破光的衍射极限,激发双根纳米线间隙等离子体,并且这种间隙等离子体衰减的时候,可以辐射发射其它波长的光,这主要取决于双根纳米线间隙的局域光子态密度,双根纳米线的局域光子态密度决定了纳米线间隙等离子体的共振峰位置,双根纳米线的局域光子态密度,通常从求解格林函数虚部得到。由于局域光子态密度分为辐射局域光子态密度和非辐射局域光子态密度,本申请主要依赖辐射局域光子态密度,纳米线间隙的辐射局域光子态密度可以定向的传播给纳米线下面的物质(双根纳米线的结构形状决定了辐射局域光子态密度的传播方向),从而在珀塞尔(purcell)效应的增强下,极大增强硅片的荧光。从而克服现有技术中所有的工艺都限制在必须在硅纳米线上完成的问题。

附图说明

为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例1提供的双根纳米线的透射电子显微镜图;

图2a为本发明实施例1提供的双根纳米线的扫面电镜截面图;

图2b为本发明实施例1提供的根据图2a实验参数使用有限差分时域方法仿真的双根纳米线的局域光子态分布图;

图2c为本发明实施例1提供的使用有限差分时域法计算的双根纳米线中间间隙处辐射局域光子态密度的辐射方向结果;

图2d为本发明实施例1提供的硅能级图中声子辅助的热载流子间接复合过程示意图;

图3a为本发明实施例1提供的双根纳米线作用下硅的发光示意图之一;

图3b为本发明实施例1提供的双根纳米线作用下硅的发光示意图之二;

图4a为本发明实施例1提供的另一个双根纳米线的光学显微镜图片;

图4b为图4a的的荧光分布图mapping图;

图4c为图4b中硅在双根纳米线作用下测得的荧光光谱;

图4d为图4a和图4b中硅基底的发光寿命示意图;

图5a为本发明实施例1提供的硅片在扫描电镜下选的区域图;

图5b为图5a中所选区域能谱中所探测的元素含量和分布的结果;

图6为本发明实施例1提供的在扫描电镜下纳米线在硅片上的分布情况图。

具体实施方式

下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

本实施例提供一种基于纳米线定向发射结构增强硅片发光的方法,包括先制备银纳米线,之后将银纳米线滴加在硅质载体上,然后收集带有双根纳米线的硅质载体即可。所述的硅质载体为纯硅或镀有二氧化硅的硅片,其中,二氧化硅的厚度0-300nm。

优选的,所述双根纳米线的两根纳米线之间相距1-100nm。

优选的,所述银纳米线的直径为50nm-500nm,长度为1μm-30μm。

优选的,所述银纳米线的制备方法,包括以下步骤:一种纳米线的制备:分别称取agno31000mg、pvp700mg、nacl5mg、乙二醇10ml,首先将700mgpvp溶于10ml乙二醇中搅拌,等乙二醇完全溶解后,在向其中加入1000mgagno3,同理当agno3完全溶解后,在加入3-5mgnacl搅拌五分钟迅速将其倒入反应釜中,然后放入加热箱中加热,温度为160℃,加热时间90分钟。等加热时间停止后,反应釜中上半部分纳米线较少将上班部分溶液倒入离心管中保存,然后向反应釜中倒入酒精进行洗涤,将上清液倒入离心管中进行保存,反复进行多次后结束。实验时,取上述离心管中溶液1ml稀释10倍,用酒精丙酮交替洗涤数次制得银纳米线。

以下结合附图对本发明进行详细说明:

图1为实施例1中双根纳米线的透射电子显微镜图片。图2a为对应图1双根纳米线的扫描电镜横截面图,从图中可以看出纳米线之间的间隙非常的小,下面紧靠纳米线的为硅基底。图2b为根据图2a实验参数有限差分时域方法仿真的双根纳米线的局域光子态分布,可以看到间隙中亮白色部分为高局域光子态密度集中的地方。图2c为双根纳米线中间间隙处局域光子态的辐射方向,可以看到更多的局域光子态是向下辐射作用在硅片基底上。图2d为硅的电子能级以及在强的局域光子态密度中,可以发生的声子辅助的热载流子间接复合过程示意图。

图3a和图3b为两组在双根纳米线的作用下硅的发光mapping图。

图4a和图4b、图4c、图4d对应的是具有代表性的同一个样品的详细数据,图4a表示另一个双根纳米线的光学显微镜图片,图4b是图4a的mapping图,如图本申请从利用双根纳米线增强的硅的信号的第二组荧光mapping数据可以看到,双根纳米线部分的荧光极大增强,从色条中可以看到硅的荧光增强了很多。

图4c是图4b硅在双根纳米线作用下测得的荧光光谱,图4c中可以观测到在633nm处观测到很强的荧光信号。图4d中矮线代表图4a和4b中硅基底本身的发光寿命,高的曲线代表在双根纳米线作用下硅基底寿命的变化,证明了双根纳米线可以通过珀赛尔效应增强硅片的荧光发射。

图5a为所用硅片在扫描电镜下选的区域图,图5b为在图5a所选区域的能谱分析图,从中可以看出本申请所用的基底是高度纯净的硅基底。

图6表示实验室合成的纳米线,从中可以看到纳米线的产量很高。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜