一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种多孔介质复合相变材料及其制备方法和应用与流程

2021-08-13 19:38:00 来源:中国专利 TAG:相变 材料 多孔 介质 制备方法
一种多孔介质复合相变材料及其制备方法和应用与流程

本发明涉及相变材料技术领域,尤其涉及一种多孔介质复合相变材料及其制备方法和应用。



背景技术:

相变材料是一种能随着温度改变其状态以完成热量存储和释放的能量材料,并且此过程是周期性可逆的,因此,相变材料可重复利用。近年来,相变材料已广泛应用于空调存储系统、太阳能、建筑围护结构和调温纺织品中。调温纺织品对外界环境温度具有独特的智能响应性,当外界环境温度升高时,能够从环境中吸收热量并储存于纺织品内部;而当外界环境温度降低时,又可将储存于纺织品内的热量放出,具有双向温度调节的作用,从而能在其周围形成一个温度基本恒定的局部气候,因此这种纺织品又称为空调织物。由于智能调温纺织品的这种独特性质而使其具有很大的实用价值,因此深受广大消费者的欢迎,市场潜力巨大。

目前,相变材料中应用最多的是固-液相变材料,但该类材料在相变过程中易发生泄漏。多孔材料具有较大的比表面积,可以为相变材料提供更大的接触面积,而且多孔材料具有毛细作用,可以将熔融状态的相变材料吸附在其中,在一定程度上减少了相变材料的泄露问题,但是,当多孔材料孔径较大时,相变材料还是存在一定的泄露,因此,目前多孔材料的应用并不能完全解决相变材料的泄露问题。选择孔径较小的纳米级多孔材料可以降低相变材料的泄露,但是目前的制备方法很难实现将相变材料浸渍到小孔径的多孔材料中。且目前现有的多孔材料的受压变形以及定形性较差,限制了相变材料在调温纺织品中的应用。



技术实现要素:

针对现有复合相变材料存在泄漏以及定形性能较差的问题,本发明提供一种多孔介质复合相变材料及其制备方法和应用。

为解决上述技术问题,本发明提供的技术方案是:

一种多孔介质复合相变材料,包括硅基多孔材料,以及吸附在所述硅基多孔材料孔道内的长链有机相变材料;其中,所述硅基多孔材料的孔径为30~400nm。

相对于现有技术,本发明提供的多孔介质复合相变材料,将长链有机相变材料吸附在纳米级孔径的硅基多孔材料的孔道中,显著提高了复合相变材料的潜热能和储能性能;且选择孔径为30~400nm的硅基多孔材料作为载体,可通过毛细作用力和氢键对长链有机相变材料提供更强的吸附力,使长链有机相变材料锚定在硅基多孔材料的孔道中,从而有效避免相变材料泄露问题的出现,且反复相变也不会出现泄露问题,提高了材料的耐久性,在热能储存、建筑节能、调温纺织品等诸多领域具有广阔的应用前景。

优选的,所述硅基多孔材料为硅藻土、埃洛石或介孔二氧化硅中至少一种。

优选的硅基多孔材料对长链有机相变材料具有较强的吸附力,且形稳性好。

优选的,所述长链有机相变材料为正十六烷、正十八烷、正二十烷或正二十四烷中至少一种。

进一步优选的,所述长链有机相变材料为正十八烷。

优选的长链有机相变材料潜热量大,蓄能效果好,且正十八烷的熔点在28℃作用,更接近人体的舒适温度(30℃),将其作为相变材料应用于调温纺织品领域,可以为人体提供更为舒适的温度环境。

本发明还提供了一种多孔介质复合相变材料的制备方法,至少包括以下步骤:

步骤一、将长链有机相变材料加热熔融后,加入混合乳化剂中,混合均匀,得油相;向所述油相中加入去离子水,混合均匀,得微乳液;

其中,所述混合乳化剂为质量比2:3-3:2的司盘类乳化剂和吐温类乳化剂的混合物;所述长链有机相变材料与混合乳化剂的质量比为1:5~5:2;

步骤二、将硅基多孔材料加入所述微乳液中,于真空条件下浸渍吸附,然后加入醇溶剂破乳,过滤,洗涤,干燥,得所述多孔介质复合相变材料。

现有复合相变材料的制备一般是将长链有机相变材料加热熔融后,通过浸渍或真空浸渍将其浸渍到多孔材料的孔道中,但是,对于纳米级孔径的多孔材料而言,长链有机相变材料并不能进入其孔道结构内,而是堆积在孔口处,将孔道口覆盖。

相对于现有技术,本发明提供的多孔介质复合相变材料的制备方法,通过选择特定比例的司盘类乳化剂和吐温类乳化剂配合,将长链有机相变材料包覆,在水相中制成粒径小于200nm的微乳液,在真空状态下将微乳液浸渍到硅基多孔材料的纳米级孔道结构中,然后加入醇溶剂使微乳液破乳,将长链有机相变材料禁锢在硅基多孔材料的孔道内,制备得到了无相泄露的复合相变材料。

优选的,步骤一中,所述去离子水与油相的质量比为4:1~1.3:7。

优选的,步骤一中,所述司盘类乳化剂为司盘65、司盘80或司盘85中至少一种;所述吐温类乳化剂为吐温60或吐温80中的一种或两种。

进一步优选的,步骤一中,所述司盘类乳化剂为司盘80;所述吐温类乳化剂为吐温80。

通过选择特定的乳化剂种类,并控制乳化剂之间的比例,可以得到稳定极好的微乳液,且控制混合乳化剂与长链有机相变材料的比例,可以有效控制微乳液的粒径,得到粒径小于200nm的微乳液。改变乳化剂的比例,以及混合乳化剂与长链有机相变材料的比例,均无法得到稳定性好且粒径小于200nm的微乳液。

优选的,步骤二中,所述微乳液与硅基多孔材料的质量比为9:1~3:2。

优选的,步骤二中,真空度为-0.1~-0.3kpa,浸渍吸附时间为30~60min。

优选的,步骤二中,在-0.1~-0.3kpa条件下,以100-150r/min搅拌浸渍30-60min。

优选的微乳液与硅基多孔材料的比例,以及浸渍条件,可使长链有机相变材料在多孔材料中具有合适的浸渍量,兼顾潜热能和相泄露问题。

优选的,步骤二中,所述醇溶剂与所述微乳液的质量比为1:1~1:2.5。

优选的,所述醇溶剂为无水乙醇、甲醇或丙二醇。

优选的醇溶剂以及醇溶剂的加入量,可以使微乳液充分破乳,将长链有机相变材料从微乳液中释放,通过毛细作用力和氢键锚定在多孔材料的孔道内,避免相变过程出现相泄露。

可选的,步骤二中,加入醇溶剂后搅拌2~5min,再用35~40℃热水冲洗2~4次,室温放置5h以上自然晾干。

本发明提供的复合相变材料的制备方法,不仅操作便捷、技术实用,而且在操作过程不需特殊的设备,对操作者的技术专业性及劳动强度要求不高,制备的相变材料无相泄露问题,且热稳定性好,适合工业化生产应用。

本发明还提供一种由上述多孔介质复合相变材料在调温纺织品中的应用。

由上述方法制备得到的多孔介质复合相变材料,形稳性优异,不会出现相泄露,且热稳定性好,在调温纺织品领域具有较高的应用前景。

附图说明

图1为本发明实施例1制备的正十八烷微乳液的粒径分布图;

图2为本发明实施例1和对比例1制备的复合相变材料的差热分析图;

图3为本发明实施例1制备的复合相变材料的测试泄露和形稳性结果图片;

图4为本发明对比例2制备的复合相变材料的测试泄露和形稳性结果图片;

图5为本发明对比例6制备的复合相变材料的测试泄露和形稳性结果图片。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

一种多孔介质复合相变材料的制备方法:

步骤一、取4.3g司盘80和5.7g吐温80,250r/min搅拌15min,得混合乳化剂;将所述混合乳化剂加热至35℃,滴加10g熔融的正十八烷,滴加结束后继续恒温搅拌10min,然后滴加80g去离子水,同时将转速提升至450r/min,滴加结束后继续恒温搅拌30min,得正十八烷微乳液;

步骤二、取所述正十八烷微乳液4g和硅藻土0.6g置于三颈烧瓶中,抽真空,在-0.1kpa条件下以150r/min搅拌浸渍30min,解除真空,向三颈烧瓶中加入2g无水乙醇,继续搅拌3min,抽滤,用35℃热水冲洗4次,室温下放置5h以上干燥,得所述多孔介质复合相变材料。

性能测试:

微乳液粒径测试:取适量步骤一所得微乳液在6000r/min,超声功率40%条件下,通过激光粒度分析仪(topsizer,omcc,china)测量微乳液粒径,每个样品测量5次,取平均值。测试所得微乳液的粒径分布如图1所示。

潜热能测试:取3.5g制备所得的复合相变材料,在温度区间0-60℃,温度变化速率为10℃/min的条件下通过差热分析仪(dsc-24,netzsch,germany)测试样品的潜热能。测得其差热分析图如图2所示。

泄漏和形稳性测试:称取适量的制备所得的复合相变材料制成规整的立方体形状,置于45℃恒温加热台上加热10min,观察样品的形状变化以及是否出现相泄露。测试结果如图3所示。

经上述测试结果可知,本实施例制备的微乳液的主粒径为182nm,经测试无相泄露和形变问题,测得其潜热能为34.7j/g,且对其按照上述方法进行150次dsc热循环,潜热能基本不变。

实施例2

一种多孔介质复合相变材料的制备方法:

步骤一、取2.0g司盘85和3.0g吐温80,200r/min搅拌20min,得混合乳化剂;将所述混合乳化剂加热至35℃,滴加12.5g熔融的正十六烷,同时将转速提升至500r/min,滴加结束后继续恒温搅拌10min,然后滴加35g去离子水,滴加结束后继续恒温搅拌30min,得正十六烷微乳液;

步骤二、取所述正十六烷微乳液3g和硅藻土2g置于三颈烧瓶中,抽真空,在-0.3kpa条件下以100r/min搅拌浸渍60min,解除真空,向三颈烧瓶中加入1.5g无水乙醇,继续搅拌2min,抽滤,用40℃热水冲洗2次,室温下放置5h以上干燥,得所述多孔介质复合相变材料。

经测试无相泄露和形变问题,测得其潜热能为22.8j/g,且对其按照上述方法进行150次dsc热循环,潜热能基本不变。

实施例3

一种多孔介质复合相变材料的制备方法:

步骤一、取6.0g司盘65和4.0g吐温60,300r/min搅拌10min,得混合乳化剂;将所述混合乳化剂加热至35℃,滴加2g熔融的正二十烷,滴加结束后继续恒温搅拌10min,然后滴加2.5g去离子水,同时将转速提升至400r/min,滴加结束后继续恒温搅拌30min,得正二十烷微乳液;

步骤二、取所述正二十烷微乳液9g和埃洛石1g置于三颈烧瓶中,抽真空,在-0.2kpa条件下以130r/min搅拌浸渍40min,解除真空,向三颈烧瓶中加入3.6g无水乙醇,继续搅拌5min,抽滤,用38℃热水冲洗3次,室温下放置5h以上干燥,得所述多孔介质复合相变材料。

经测试无相泄露和形变问题,测得其潜热能为54.7j/g,且对其按照上述方法进行150次dsc热循环,潜热能基本不变。

对比例1

本对比例提供一种多孔介质复合相变材料的制备方法,其制备方法与实施例1完全相同,不同的仅是步骤二中不加入醇溶剂进行破乳,具体步骤如下:

步骤一、取4.3g司盘80和5.7g吐温80,250r/min搅拌15min,得混合乳化剂;将所述混合乳化剂加热至35℃,滴加10g熔融的正十八烷,滴加结束后继续恒温搅拌10min,然后滴加80g去离子水,滴加结束后继续恒温搅拌30min,得正十八烷微乳液;

步骤二、取所述正十八烷微乳液2g和硅藻土0.8g置于三颈烧瓶中,抽真空,在-0.1kpa条件下以150r/min搅拌浸渍30min,解除真空,抽滤,用35℃热水冲洗4次,室温下放置5h以上干燥,得所述多孔介质复合相变材料。

将本对比例制备的复合相变材料按照实施例1的方法进行进行差热分析测试,测试结果如图2所示,从图中可以看出,本对比例制备的复合相变材料无储热效果,说明不进行破乳过程,长链有机相变材料根本无法吸附到硅藻土的孔道结构中。

对比例2

本对比例提供一种多孔介质复合相变材料的制备方法,采用真空熔融浸渍法,具体步骤如下:

取8g正十八烷加入三颈烧瓶中,60℃水浴加热10min,使正十八烷熔融,加入12g硅藻土,抽真空,在-0.1kpa条件下以150r/min搅拌浸渍30min,解除真空,冷却,得所述多孔介质复合相变材料。

将本对比例制备的复合相变材料按照实施例1的方法进行泄漏和形稳性测试,测试结果如图4所示,从图中可以看出,本对比例制备的复合相变材料加热后出现了明显的相泄露,但是无明显形变。

对比例3

本对比例提供一种多孔介质复合相变材料的制备方法,其制备方法与实施例1完全相同,不同的仅是将步骤一中的司盘80替换为等量的烷基酚与环氧乙烷缩合物(op-40)。

将本对比例制备的复合相变材料按照实施例1的方法进行差热分析测试,测试结果证明本对比例制备的复合相变材料无储热效果,说明替换乳化剂的种类后,长链有机相变材料根本无法吸附到硅藻土的孔道结构中。

对比例4

本对比例提供一种多孔介质复合相变材料的制备方法,其制备方法与实施例1完全相同,不同的仅是将步骤一中的吐温80替换为等量的脂肪醇聚氧乙烯醚(百乳灵)。

将本对比例制备的复合相变材料按照实施例1的方法进行差热分析测试,测试结果证明本对比例制备的复合相变材料无储热效果,说明替换乳化剂的种类后,长链有机相变材料根本无法吸附到硅藻土的孔道结构中。

对比例5

本对比例提供一种多孔介质复合相变材料的制备方法,其制备方法与实施例1完全相同,不同的仅是将步骤一中司盘80的加入量改为8g,吐温80的加入量改为2g,即司盘80和吐温80的质量比为4:1。

将本对比例制备的复合相变材料按照实施例1的方法进行差热分析测试,测试结果证明本对比例制备的复合相变材料无储热效果,说明更改司盘乳化剂和吐温乳化剂的比例后,长链有机相变材料根本无法吸附到硅藻土的孔道结构中。

对比例6

本对比例提供一种多孔介质复合相变材料的制备方法,其制备方法与对比例2完全相同,不同的仅是将硅藻土替换为等量的碳纳米管。

将本对比例制备的复合相变材料按照实施例1的方法进行泄露和形稳性测试,测试结果如图5所示,从图中可以看出,本对比例制备的复合相变材料出现了明显的形变和相泄露。

上述实施例1-3以及对比例1-5中的多孔材料的孔径为30-400nm。

实施例1-3中的长链有机相变材料还可以替换为本发明限定的其他长链有机相变材料,如正二十四烷等,破乳溶剂也可以替换为本发明限定的其他醇溶剂,如甲醇或丙二醇,制备得到的复合相变材料均无相泄露问题。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜