一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

增材制造系统和方法与流程

2021-10-29 22:36:00 来源:中国专利 TAG:

增材制造系统和方法
1.本技术是申请日为2016年10月27日,申请号为201680067983.8,发明名称为“增材制造系统和方法”的申请的分案申请。
2.相关专利申请的交叉引用
3.本公开是要求下列申请的优先权权益的非临时专利申请的一部分:
4.2015年10月30日提交的美国专利申请号62/248,758,
5.2015年10月30日提交的美国专利申请号62/248,765,
6.2015年10月30日提交的美国专利申请号62/248,770,
7.2015年10月30日提交的美国专利申请号62/248,776,
8.2015年10月30日提交的美国专利申请号62/248,783,
9.2015年10月30日提交的美国专利申请号62/248,791,
10.2015年10月30日提交的美国专利申请号62/248,799,
11.2015年10月30日提交的美国专利申请号62/248,966,
12.2015年10月30日提交的美国专利申请号62/248,968,
13.2015年10月30日提交的美国专利申请号62/248,969,
14.2015年10月30日提交的美国专利申请号62/248,980,
15.2015年10月30日提交的美国专利申请号62/248,989,
16.2015年10月30日提交的美国专利申请号62/248,780,
17.2015年10月30日提交的美国专利申请号62/248,787,
18.2015年10月30日提交的美国专利申请号62/248,795,
19.2015年10月30日提交的美国专利申请号62/248,821,
20.2015年10月30日提交的美国专利申请号62/248,829,
21.2015年10月30日提交的美国专利申请号62/248,833,
22.2015年10月30日提交的美国专利申请号62/248,835,
23.2015年10月30日提交的美国专利申请号62/248,839,
24.2015年10月30日提交的美国专利申请号62/248,841,
25.2015年10月30日提交的美国专利申请号62/248,847,以及
26.2015年10月30日提交的美国专利申请号62/248,848,上述美国专利申请通过引用以其整体并入。
技术领域
27.本公开总体上涉及用于增材制造的系统和方法。在一个实施例中描述了具有二维能量图案化和能量束再利用的粉末床熔融制造。
28.背景
29.传统的部件加工通常依靠通过钻孔、切割或磨削移除材料来形成零件。相反,增材制造(也被称为3d打印)通常涉及通过材料的顺序的逐层添加来构建零件。从3d计算机模型开始,可以使用增材制造系统来从各种各样的材料中创建复杂的零件。
30.一种被称为粉末床熔融(pbf)的增材制造技术使用一种或更多种聚焦能量源(例如激光或电子束),来通过熔化粉末并将其粘合到下面的层来在薄层粉末中绘制图案。粉末可以是塑料、金属或陶瓷。这种技术是高度精确的,通常可以实现小至150

300微米的特征尺寸。然而,粉末床熔融增材制造机器制造商努力创造能够产生超过1kg/hr的打印材料的机器。由于这种粉末到固体的转换速度很慢,机器尺寸由于打印较大的零件需要时间长度而相对较小。今天最大的机器的可打印零件体积通常小于64l(40cm)3。虽然这些打印机能够打印几乎任意几何形状的零件,但由于机器成本高和粉末转换率低,机器的摊销成本以非常高而告终,导致昂贵的零件。
31.不幸的是,通过简单地放大机器来增加零件尺寸或降低制造成本并不是一个可接受的解决方案。作为最低限度,为了熔化给定体积的材料,激光必须提供足够的能量以使其达到熔化温度,并且提供熔化所需的相变能量。如果在这个过程中没有热能耗散,那么随着时间的推移沉积的激光能量(激光功率)与材料生产率之间存在线性缩放。如果粉末床熔融增材制造机器制造商想要提高材料生产率,他们就必须增加激光功率。不幸的是,激光器功率的增加与激光器的成本的增加成比例,并且规模的增大大大增加了当今已经昂贵的机器的成本。
32.即使激光成本不是一个因素,缩放激光的功率也会产生其他不利影响。每种粉末化材料都具有最佳的熔化属性,这取决于功率通量。如果功率太低,粉末不会熔化,如果太高,激光会钻入材料(穿孔(key

holing))。增加已经在这些最佳点之一运行的机器的激光功率导致必然需要增加激光面积(光斑尺寸)以保持最佳的功率通量。简单地增加光斑尺寸会降低可打印的分辨率,同时将激光分成多个射束会增加系统的复杂性。
33.实际上,目前可用的粉末床增材制造机器可能受限于零件尺寸、零件制造成本、零件细节分辨率和零件制造产量。


技术实现要素:

34.本技术提供了以下内容:
35.1)一种用于增材制造的射束组合系统,包括:
36.第一激光器,所述第一激光器以第一波长发射光束;
37.第二激光器,所述第二激光器以不同于所述第一波长的第二波长发射光束;
38.射束成形光学器件,其形成单射束,所述射束成形光学器件包括至少一个波长滤波器以在公共射束中使所述第一波长的光通过并且反射所述第二波长的光;和
39.光图案化单元,其用于接收所述公共射束并形成二维图案化射束。
40.2)根据1)所述的射束组合系统,其中,所述射束成形光学器件还包括透射光学器件。
41.3)根据1)所述的射束组合系统,其中,所述射束成形光学器件还包括反射光学器件和衍射光学器件中的至少一个。
42.4)根据1)所述的射束组合系统,其中,所述射束成形光学器件还包括三个以上的激光器,并且组合至少三个波长的光。
43.5)一种增材制造系统,包括:
44.高能量光子源,以产生射束;
45.反射图案化单元,其用于接收所述射束并反射二维图案化射束;和
46.图像中继器,其用于接收所述二维图案化射束并将其作为二维图像聚焦在粉末床上。
47.6)根据5)所述的增材制造系统,其中,所述反射图案化单元是光学寻址的。
48.7)根据5)所述的增材制造系统,其中,所述高能量光子源还包括多个半导体激光器。
49.8)根据5)所述的增材制造系统,其中,所述反射光图案化单元还包括高透射层、扭曲向列(tn)液晶层和光电导体层。
50.9)根据5)所述的增材制造系统,其中所述反射图案化单元被冷却。
51.10)一种增材制造装置,包括:
52.第一光学组件,其被配置为从一个或更多个光源接收至少包括一个或更多个光束的多个光束,所述第一光学组件还被配置为对所述多个光束进行多路复用;
53.光学设备,其被配置为对所述多个光束进行再成形和混合以提供第一光束;
54.空间偏振阀,其被配置为在所述第一光束上施加空间偏振图案以提供可指向粉末床的第二光束,其中,所述空间偏振阀是光学可寻址的以形成二维图案;
55.偏振器,其被配置为分离所述第二光束的偏振态以反射第三光束;和
56.第二光学组件,所述第二光学组件被配置为将所述第三光束再成形为第四光束,将其偏振态旋转至所述第一光束的偏振态,所述第二光学组件还被配置用于将所述第四光束作为所述多个光束中的一个引导至所述第一光学组件,以产生透过所述偏振器并且不被所述偏振器反射的第五光束。
57.11)一种增材制造方法,包括:
58.发射一个或更多个光束,所述一个或更多个光束中的每一个被偏振;
59.将两个或更多个光束中的每一个分离成两个分离射束,所述两个分离射束中的每一个分别对应于多数偏振态或少数偏振态;
60.在空间上堆叠所述两个或更多个光束中的每一个的对应于所述多数偏振态的分离射束以提供对应于所述多数偏振态的第一光束;
61.在空间上堆叠所述两个或更多个光束中的每一个的对应于所述少数偏振态的分离射束以提供对应于所述少数偏振态的第二光束;
62.在所述第一光束上施加多数偏振图案;
63.在所述第二光束上施加少数偏振图案;
64.组合图案化的第一光束和第二光束以提供单光束;和
65.将所述单光束导向粉末床。
66.12)一种装置,包括:
67.多个透镜组件,其包括可交换部分,所述透镜组件被配置为提供多个放大率,所述放大率成比例地增加或减小入射光的图像的尺寸;和
68.机械组件,所述机械组件能够选择所述透镜组件中的一个以提供所述放大率中的一个,以根据所述放大率中的所述一个将所述入射光的第一图像转换成所述入射光的第二图像。
69.13)根据1)所述的装置,还包括:
70.构建平台机架;和
71.最终射束调向设备,其安装在所述构建平台机架上并且能够引导从一个或更多个所述透镜组件发出的所述入射光,使得所述光的第二图像在保持粉末化材料的粉末床的位置形成,所述粉末床由所述构建平台机架支撑。
72.14)一种三维打印作业的方法,包括:
73.在三维(3d)打印作业期间获得关于与粉末床的顶部表面的位置上的入射光的强度和像素尺寸相关的放大率和图像距离的信息;
74.配置多个透镜组件中的一个以提供具有所述放大率的入射光,其中,所述透镜组件包括多个第一组光学透镜和多个第二组光学透镜,并且其中,所述第二组光学透镜是从所述透镜组件中可交换的;
75.对安装在一组或更多组补偿机架上的一组或更多组反射镜以及安装在构建平台机架上的最后一组反射镜执行多个旋转,以将来自前体图像的入射光引导到在所述粉末床的顶部表面上的最终图像平面的位置上;和
76.对所述构建平台机架和所述一组或更多组补偿机架执行多个平移运动,以控制所述入射光从初始图像位置到所述粉末床的顶部表面的位置的距离,以基本上保持在期望的位置处的图像分辨率。
77.15)一种增材制造系统,包括:
78.能量束;
79.光学可寻址光图案化单元,其用于接收所述能量束并发射光作为二维图案化射束,其中所述光学可寻址光图案化单元拒绝形成所述二维图案化射束所不需要的能量;
80.图像中继器,其用于接收所述二维图案化射束并将其作为二维图像聚焦在粉末床上;以及
81.拒绝的能量处理单元,其再利用被拒绝的能量。
82.16)根据15)所述的增材制造系统,其中,所述能量束是光。
83.17)根据15)所述的增材制造系统,其中,所述被拒绝的能量被重新图案化并且被引导对准所述粉末床。
84.18)根据15)所述的增材制造系统,其中,所述能量束是光,并且所述增材制造系统还包括
85.第一激光器,所述第一激光器以第一波长发射光束;
86.第二激光器,所述第二激光器以不同于所述第一波长的第二波长发射光束;
87.射束成形光学器件,其形成单射束,所述射束成形光学器件包括至少一个波长滤波器以在公共射束中使所述第一波长的光通过并且反射所述第二波长的光;和
88.光图案化单元,其用于接收所述公共射束并形成二维图案化射束。
89.19)根据15)所述的增材制造系统,其中,所述光学可寻址光图案化单元反射所述光以形成所述二维图案化射束。
90.20)根据15)所述的增材制造系统,其中,所述能量束是光,并且所述增材制造系统还包括:
91.第一光学组件,其被配置为从一个或更多个光源接收至少包括一个或更多个光束的多个光束,所述第一光学组件还被配置为对所述多个光束进行多路复用;
92.光学设备,其被配置为对所述多个光束进行再成形和混合以提供第一光束;
93.光图案化单元,其包括空间偏振阀,所述空间偏振阀被配置为在所述第一光束上施加空间偏振图案以提供可指向粉末床的第二光束,其中,所述空间偏振阀是光学可寻址的以形成二维图案;
94.偏振器,其被配置为分离所述第二光束的偏振态以反射第三光束;和
95.第二光学组件,所述第二光学组件被配置为将所述第三光束再成形为第四光束,将其偏振态旋转至所述第一光束的偏振态,所述第二光学组件还被配置用于将所述第四光束作为所述多个光束中的一个引导至所述第一光学组件,以产生透过所述偏振器并且不被所述偏振器反射的第五光束。
96.21)根据15)所述的增材制造系统,其中,所述能量束是光,并且所述增材制造系统还包括:
97.多个透镜组件,其包括可交换部分,所述透镜组件被配置为提供多个放大率,所述放大率成比例地增加或减小入射光的图像的尺寸;和
98.机械组件,所述机械组件能够选择所述透镜组件中的一个以提供所述放大率中的一个,以根据所述放大率中的所述一个将所述入射光的第一图像转换成所述入射光的第二图像。
99.22)根据15)所述的增材制造系统,其中,所述能量束是光,并且所述增材制造系统还包括:
100.构建平台机架;和
101.最终射束调向设备,其安装在所述构建平台机架上并且能够引导从一个或更多个所述透镜组件发出的所述入射光,使得所述第二光束在保持粉末化材料的粉末床的位置形成,所述粉末床由所述构建平台机架支撑。
102.23)一种增材制造方法,包括以下步骤:
103.提供能量束;
104.定位光学可寻址光图案化单元以接收所述能量束并发射光作为二维图案化射束,其中所述光学可寻址光图案化单元拒绝形成所述二维图案化射束所不需要的能量;
105.中继所述二维图案化射束并将其作为二维图像聚焦在粉末床上;和
106.利用拒绝的能量处理单元再利用被拒绝的能量。
107.24)根据23)所述的增材制造方法,其中,所述能量束是光,并且所述增材制造方法还包括以下步骤:
108.发射一个或更多个光束,所述一个或更多个光束中的每一个被偏振;
109.将两个或更多个光束中的每一个分离成两个分离射束,所述两个分离射束中的每一个分别对应于多数偏振态或少数偏振态;
110.在空间上堆叠所述两个或更多个光束中的每一个的对应于所述多数偏振态的分离射束以提供对应于所述多数偏振态的第一光束;
111.在空间上堆叠所述两个或更多个光束中的每一个的对应于所述少数偏振态的分离射束以提供对应于所述少数偏振态的第二光束;
112.在所述第一光束上施加多数偏振图案;
113.在所述第二光束上施加少数偏振图案;
114.组合图案化的第一光束和第二光束以提供单光束;和
115.将所述单光束导向粉末床。
116.附图简述
117.参考以下附图,描述了本公开的非限制性和非穷尽的实施例,其中,除非以其它方式说明,在所有的各个附图中相似的参考数字指代相似的部分。
118.图1a示出了增材制造系统;
119.图1b是在增材制造系统上形成的结构的俯视图;
120.图2示出了增材制造方法;
121.图3a是示出包括激光器的增材制造系统的底图;
122.图3b是图3a所示的光图案化单元的详细描述;
123.图3c是具有“开关站”的增材制造系统的一个实施例,该“开关站”用于使用多个图像中继器引导和重新图案化光;
124.图3d示出了简单的镜像图像像素重映射;
125.图3e示出用于像素重映射的一系列图像变换图像中继;和
126.图3f示出了可图案化的电子能量束增材制造系统;
127.图3g示出了图3f中所示的电子束图案化单元的详细描述;
128.图4a

4c示出了各种射束组合实施例;
129.图5a

5b示出了反射光图案化单元实施例;
130.图6示出了光回收;
131.图7是偏振射束系统;
132.图8是放大倍数变化和机架运动的流程图;
133.图9a

9b分别示出了粉末床系统和热管理系统;
134.图10是示出容纳粉末的临时壁的增材形成的流程图;
135.图11a

11b示出了粉末移除的实施例;
136.图12a

12b示出了具有多个区的长零件制造;
137.图13a

13c示出了操纵点处的零件的处理;
138.图14是具有增材限定的操纵点的代表零件;
139.图15是示出粉末样品测试和表征的流程图;
140.图16是封闭的增材制造设施的图示;
141.图17是具有多个工作区域的增材制造设施的图示。
142.详细描述
143.在以下描述中,参考了形成说明书的一部分的随附附图,并且其中以通过说明其中可实践本公开的具体示例性实施例的方式示出。对这些实施例进行足够详细的描述,以使本领域技术人员能够实践本文公开的概念,并且应当理解,可以对各种公开的实施例进行修改,并且可以利用其他实施例,而不脱离本公开的范围。因此,以下详细描述不被认为是限制性的意义。
144.具有一个或更多个能量源(在一个实施例中包括一个或更多个激光束或电子束)的增材制造系统被定位成发射一个或更多个能量束。射束成形光学器件可以接收来自能量源的一个或更多个能量束并形成单射束。能量图案化单元接收或生成单射束并将二维图案
传送到射束,并且可以拒绝不在图案中的未使用的能量。图像中继器接收二维图案化射束并将其作为二维图像聚焦到高度固定或可移动构建平台(例如粉末床)上的期望位置。在某些实施例中,来自能量图案化单元的任何被拒绝能量中的一些或全部被再利用。
145.在一些实施例中,来自激光阵列的多个射束使用射束均质器来组合。该组合射束可以被引导至能量图案化单元,该能量图案化单元包括透射或反射像素可寻址光阀。在一个实施例中,像素可寻址光阀包括具有偏振元件的液晶模块和提供二维输入图案的光投射单元。由图像中继器聚焦的二维图像可以顺序地被导向粉末床上的多个位置以构建3d结构。
146.如图1所示,增材制造系统100具有能量图案化系统110,该能量图案化系统110具有能量源112,能量源112可以将一个或更多个连续或间歇的能量束导向射束成形光学器件114。在成形之后,如果需要,则通过能量图案化单元116对光束进行图案化,通常将一些能量引导至拒绝的能量处理单元118。图案化的能量通过图像中继器120朝物品处理单元140中继,典型地作为聚集在床146附近的二维图像122。床146(与可选的壁148)可以形成容纳由材料分配器142分配的材料144的腔室。由图像中继器120引导的图案化能量可以熔化、熔融、烧结、合并、改变晶体结构,影响应力图案,或以其他方式化学或物理地改变分配的材料144以形成具有期望性质的结构。
147.能量源112产生能够被引导、成形和图案化的光子(光)、电子、离子或其他合适的能量束或通量。多种能量源可以组合使用。能量源112可以包括激光器、白炽灯、集中的太阳能、其他光源、电子束或离子束。可能的激光类型包括但不限于:气体激光器、化学激光器、染料激光器、金属蒸气激光器、固态激光器(例如光纤)、半导体(例如二极管)激光器、自由电子激光器、气动激光器、“镍样”钐激光器、拉曼激光器或核泵浦激光器。
148.气体激光器可以包括诸如氦氖激光器、氩激光器、氪激光器、氙离子激光器、氮激光器、二氧化碳激光器、一氧化碳激光器或准分子激光器等激光器。
149.化学激光器可以包括诸如氟化氢激光器、氟化氘激光器、coil(化学氧碘激光器)或agil(全气相碘激光器)等激光器。
150.金属蒸气激光器可以包括诸如氦镉(hecd)金属蒸气激光器、氦汞(hehg)金属蒸气激光器、氦硒(hese)金属蒸气激光器、氦银(heag)金属激光器、锶蒸气激光器、氖铜(necu)金属蒸气激光器、铜蒸气激光器、金蒸气激光器或锰(mn/mncl2)蒸气激光器。
151.固态激光器可以包括诸如红宝石激光器、nd:yag激光器、ndcryag激光器、er:yag激光器、钕ylf(nd:ylf)固态激光器、钕掺杂的原钒酸钇(nd:yvo 4
)激光器、钕掺杂的羟基硼酸钇钙nd:yca4o(bo3)3或者简称为nd:ycob、钕玻璃(nd:玻璃)激光器、钛蓝宝石(ti:蓝宝石)激光器、铥yag(tm:yag)激光器、镱yag(yb:yag)激光器、镱:2o3(玻璃或陶瓷)激光器、掺镱玻璃激光器(棒、片/芯片和纤维)、钬yag(ho:yag)激光器、铬znse(cr:znse)激光器、铈掺杂锂锶(或钙)氟化铝(ce:lisaf,ce:licaf)、钷147掺杂磷酸盐玻璃(147pm
3
:玻璃)固态激光器、铬掺杂金绿宝石(翠绿宝石)激光器、铒掺杂和铒镱共掺杂玻璃激光器、三价铀掺杂氟化钙(u:caf2)固态激光器、二价钐掺杂氟化钙(sm:caf2)激光器或f

中心激光器。
152.半导体激光器可以包括诸如gan、ingan、algainp、algaas、ingaasp、gainp、ingaas、ingaaso、gainassb、铅盐、垂直腔面发射激光器(vcsel)、量子级联激光器、混合硅激光器或其组合。
153.例如,在一个实施例中,单个nd:yag q开关激光器可以与多个半导体激光器结合使用。在另一个实施例中,电子束可以与紫外半导体激光器阵列结合使用。在其他实施例中,可以使用激光器二维阵列。在具有多个能量源的一些实施例中,能量束的预图案化可以通过选择性地激活和去激活能量源来完成。
154.射束成形单元114可以包括各种各样的成像光学器件,以将从能量源112接收的一个或更多个能量束组合、聚焦、发散、反射、折射、均匀化、调整强度、调整频率或以其他方式将一个或更多个能量束成形和引导朝向能量图案化单元116。在一个实施例中,可使用波长选择反射镜(例如二向色镜)或衍射元件来组合各自具有不同光波长的多个光束。在其他实施例中,可以使用多面反射镜、微透镜和折射或衍射光学元件使多个射束均匀化或组合。
155.能量图案化单元116可以包括静态或动态能量图案化元件。例如,光子、电子或离子束可以被具有固定或可移动元件的掩模阻挡。为了增加图像图案化的灵活性和易用性,可以使用像素可寻址掩蔽、图像生成或透射。在一些实施例中,能量图案化单元包括可寻址光阀、单独或与其他图案化机构一起提供图案化。光阀可以是透射式的、反射式的,或者使用透射式和反射式元件的组合。可以使用电子或光学寻址动态修改图案。在一个实施例中,透射式光学寻址光阀用于旋转通过阀的光的偏振,其中,光学寻址像素形成由光投射源限定的图案。在另一个实施例中,反射式光学寻址光阀包括用于修改读取射束的偏振的写入射束。在又一个实施例中,电子图案化装置从电或光子激发源接收地址图案并且生成电子的图案化发射。
156.拒绝的能量处理单元118被用于分散、重定向或利用未被图案化并通过能量图案图像中继器120的能量。在一个实施例中,拒绝的能量处理单元118可以包括从能量图案化单元116移除热量的无源或有源冷却元件。在其他实施例中,拒绝的能量处理单元可以包括“射束收集器”以对未在定义能量图案时使用的任何射束能量进行吸收并转换成热。在其他实施例中,可以使用射束成形光学器件114来回收拒绝的射束能量。可替代地或另外地,被拒绝的射束能量可以被引导至物品处理单元140以进行加热或进一步图案化。在某些实施例中,被拒绝的射束能量可被引导至附加的能量图案化系统或物品处理单元。
157.图像中继器120从能量图案化单元116接收图案化的图像(典型地为二维),并将其引导向物品处理单元140。以类似于射束成形光学器件114的方式,图像中继器120可以包括用于组合、聚焦、发散、反射、折射、调整强度、调整频率或以其他方式成形和引导图案化图像的光学器件。
158.物品处理单元140可以包括壁式腔室148和床144以及用于分配材料的材料分配器142。材料分配器142可以分配、移除、混合、提供材料类型或粒度的渐变或变化,或调整材料的层厚度。该材料可以包括金属、陶瓷、玻璃、聚合物粉末、能够经历从固体到液体的热诱导相变以及再次返回的其他可熔化材料,或其组合。该材料可以进一步包括可熔化材料和不可熔化材料的复合材料,其中任一或两种组分可以被成像中继系统选择性地靶向以熔化可熔化组分,同时沿着不可熔化材料离开或使其经历汽化/破坏/燃烧或其他破坏性过程。在某些实施例中,可以使用浆料、喷雾、涂料、线材、条或片材。通过使用鼓风机、真空系统、清扫、振动、摇动、翻转或床146的倒转,可以移除不想要的材料以便一次性使用或回收。
159.除了材料处理部件之外,物品处理单元140可以包括用于保持和支撑3d结构的部件、用于加热或冷却腔室的机构、辅助或支撑光学器件以及用于监测或调整材料或环境条
件的传感器和控制机构。物品处理单元可全部或部分支持真空或惰性气体气氛以减少不需要的化学相互作用,并减轻火灾或爆炸(尤其是与活性金属)的风险。
160.控制处理器150可以被连接以控制增材制造系统100的任何部件。控制处理器150可以连接到各种传感器、致动器、加热或冷却系统、监测器和控制器以协调操作。包括成像器、光强度监测器、热量、压力或气体传感器在内的各种传感器可用于提供用于控制或监测的信息。控制处理器可以是单个中央控制器,或者可以包括一个或更多个独立的控制系统。控制器处理器150设置有用于允许输入制造指令的接口。使用各种传感器允许各种反馈控制机制,该机制提高质量、生产量和能源效率。
161.图1b是示出支撑材料144的床146的底图。使用一系列顺序施加的二维图案化的能量束图像(虚线轮廓124中的正方形),增材地制造结构149。如将理解的,可以使用具有非正方形边界的图像图案,可以使用重叠或互穿图像,并且图像可以由两个或更多个能量图案化系统提供。在其他实施例中,可以结合定向电子束或离子束或者结合打印或选择性喷射系统来形成图像。
162.图2是示出由所述光学和机械部件支持的增材制造过程的一个实施例的流程图。在步骤202中,将材料放置在床、腔室或其他合适的支撑物上。该材料可以是能够熔化、熔融、烧结、诱导以改变晶体结构、使应力模式受影响,或以其他方式化学或物理修改以形成具有所需性质的结构的粉末。
163.在步骤204中,未图案化的能量由一个或更多个能量发射器发射,包括但不限于固态或半导体激光器,或使电子沿着导线流动的电源。在步骤206中,未图案化的能量被成形和修改(例如强度调制或聚焦)。在步骤208中,这种未图案化的能量被图案化,其中在步骤210中,不形成图案的一部分的能量被处理(这可以包括转换成废热,或者作为图案化或未图案化的能量回收)。在步骤212中,现在形成二维图像的图案化能量被朝着材料中继。在步骤214中,将图像应用于材料,构建3d结构的一部分。这些步骤可以重复(循环218),直到图像(或不同的和随后的图像)已经被施加到材料顶层的所有必要区域。当完成能量施加到材料的顶层时,可以应用新的层(循环216)以继续构建3d结构。这些过程循环一直持续到3d结构完成,这时,剩余的多余材料可以被移除或回收。
164.图3a是使用多个半导体激光器作为能量图案化系统310的一部分的增材制造系统300的一个实施例。控制处理器350可以连接到各种传感器、致动器、加热或冷却系统、监测器和控制器,以协调多个激光器312、光图案化单元316和图像中继器320以及系统300的任何其他部件的操作。这些连接通常由围绕系统300的部件的虚线轮廓351表示。如将理解的,连接可以是有线或无线的、连续的或间歇的,并且包括用于反馈的能力(例如,可以响应于感测到的温度来调节热量加热)。多个激光器312可以发射例如宽度为90mm
×
高度为20mm的1000nm波长的光束301。射束301由成像光学器件370调整大小以产生射束303。射束303宽6mm
×
高6mm,并入射到光均匀化设备372,光均匀化设备372将光混合在一起以产生混合射束305。然后射束305入射在成像组件374上,成像组件374将光再成形为射束307,然后入射到热冷反射镜376上。反射镜376允许1000nm的光通过,但反射450nm的光。能够投射1080p像素分辨率和450nm的低功率光的光投射器378发射射束309,射束309然后入射到热冷反射镜376上。射束307和射束309覆盖在射束311中,并且二者都以20mm宽、20mm高的图像成像到光学寻址光阀380上。从均质器372和投射器378形成的图像被重新创建并覆盖在光阀380上。
165.光学寻址光阀380被光(典型地从400

500nm的范围)激发并且在入射到偏振器382上的透射射束313中印制偏振旋转图案。偏振器382分离两种偏振态,将p偏振透射到射束317中并将s偏振反射到射束315中,然后将射束315发送到处理被拒绝的能量的射束收集器318。如将理解的,在其他实施例中,偏振可以被反转,其中s偏振形成为射束317并且将p偏振反射到射束315中。射束317进入包括光学器件384的最终成像组件320,光学器件384重新调整图案化的光的大小。该射束从可移动反射镜386反射到射束319,射束319终止于施加到物品处理单元340中的材料床344上的聚焦图像。图像中的景深被选择以跨越多个层,在几层误差或偏移范围内提供最佳焦点。
166.床390可在容纳由材料分配器342分配的材料344的腔室壁388内升高或降低(垂直转位(indexed))。在某些实施例中,床390可保持固定,并且最终成像组件320的光学器件可垂直升高或降低。材料分配由扫掠机构392提供,其可以均匀地散布保持在料斗394中的粉末,能够根据需要提供新的材料层。6mm宽
×
6mm高的图像可以在床的不同位置依次被可移动反射镜386引导。
167.当在这种增材制造系统300中使用粉末陶瓷或金属材料时,随着部件的构建,粉末可以在基础衬底(和随后的层)的顶部上散布成大约1

3个粒子厚的薄层。当粉末被图案化射束319熔化、烧结或熔融时,它与下面的层结合,产生固体结构。图案化射束319可以以40hz的脉冲方式操作,以10ms至0.5ms的间隔(期望3至0.1ms)移动至随后的6mm
×
6mm的图像位置,直到粉末的选定的图案化区域已熔化。然后床390将自身降低对应于一层的厚度,并且扫掠机构392散布新的粉末材料层。重复该过程直到2d层建立了所需的3d结构。在特定实施例中,物品处理单元340可以具有受控气氛。这允许反应性材料在惰性气体或真空环境中制造,而没有氧化或化学反应或火灾或爆炸(如果使用反应性金属)的风险。
168.图3b图示了图3a的光图案化单元316的更详细的操作。如在图3b中所见,代表性输入图案333(这里看到的是数字“9”)被定义在射束309朝向反射镜376时投射的8x12像素阵列的光中。每个灰色像素代表光填充的像素,而白色像素不被点亮。实际上,每个像素可以具有不同的光水平,包括无光、部分光强度或最大光强度。形成射束307的未图案化的光331被引导并穿过热/冷反射镜376,射束307与图案化的射束309在其中结合。在通过热/冷反射镜376反射之后,由射束311中的射束307和309的重叠形成的图案化的光束311以及两者都成像到光学寻址的光阀380上。将旋转未图案化的光331的偏振态的光学寻址光阀380由图案化射束309、311激发,以选择性地不将数字“9”的图案中偏振光307、311的偏振态旋转为射束313。代表射束313中的图案333的未旋转的光然后被允许穿过偏振器反射镜382,导致射束317和图案335。处于第二旋转状态的偏振光被偏振器反射镜382拒绝,进入承载由无光数字“9”组成的负像素图案337的射束315中。
169.其他类型的光阀可以替代或与所描述的光阀结合使用。也可以使用反射光阀或基于选择性衍射或折射的光阀。在某些实施例中,可以使用非光学寻址的光阀。这些可以包括但不限于电可寻址像素元件、可移动反射镜或微反射镜系统、压电或微驱动光学系统、固定或可移动掩模或屏蔽,或能够提供高强度光图案的任何其他常规系统。对于电子束图案化,这些阀可以基于地址位置选择性地发射电子,从而在离开阀的电子束上注入图案。
170.图3c是包括使能再利用图案化的二维能量的开关站系统的增材制造系统的一个实施例。类似于关于图1讨论的实施例,增材制造系统220具有带有能量源112的能量图案化
系统,该能量源112将一个或更多个连续或间歇的能量束导向射束成形光学器件114。在成形之后,通过能量图案化单元230对该射束进行二维图案化,通常将一些能量引导至拒绝的能量处理单元222。图案化的能量通过多个图像中继器232中的一个朝着一个或更多个物品处理单元234a、234b、234c或234d中继,典型地作为聚焦在可移动或固定高度床附近的二维图像。床(与可选的壁)可以形成容纳由材料分配器分配的材料的腔室。由图像中继器232引导的图案化能量可以熔化、熔融、烧结、合并、改变晶体结构,影响应力图案,或以其他方式化学或物理地改变分配的材料以形成具有期望性质的结构。
171.在该实施例中,拒绝的能量处理单元具有多个部件以允许再利用被拒绝的图案化的能量。中继器228a、228b和22c可以分别将能量传送到发电机224、加热/冷却热管理系统225或能量收集器226。可选地,中继器228c可以将图案化的能量引导到图像中继器232中用于进一步处理。在其他实施例中,图案化的能量可以由中继器228c引导至中继器228b和228a以插入由能量源112提供的能量束。使用图像中继器232也可以再利用图案化的图像。图像可以被重定向、倒置、镜像、子图案化或以其他方式转换以分配到一个或更多个物品处理单元234a

234d。有利的是,图案化的光的再利用可以提高增材制造过程的能量效率,并且在一些情况下改善针对床的能量强度,或者减少制造时间。
172.图3d是示出了被拒绝的能量束的简单几何变换以供再利用的底图235。输入图案236被引导到能够提供镜像像素图案238的图像中继器237中。如将认识到的,更复杂的像素变换是可能的,包括几何变换,或单个像素和像素组的图案重新映射。这种重新映射的图案可以直接引导至物品处理单元,以提高生产量或射束强度,而不是浪费在射束收集器中。
173.图3e是示出了对拒绝的能量束的多次转换以供再利用的底图235。输入图案236被引导到能够提供像素图案238的一系列图像中继器237b

237e中。
174.图3f和3g图示了基于非光的能量束系统240,其包括能够产生例如“p”形像素图像的图案化电子束241。高电压电力系统243连接到光学可寻址的图案化阴极单元245。响应于通过投影仪244应用二维图案化图像,阴极单元245被激发以在图案化图像被光学寻址的任何地方发射电子。电子束图案的聚焦由包括成像线圈246a和246b的图像中继系统247提供。图案化图像的最终定位由偏转线圈248提供,偏转线圈248能够将图案化图像移动到增材制造部件249的床上的期望位置。
175.在支持光回收和再利用的另一个实施例中,提供了来自一个或更多个光源的多路传输的多个光束。多个光束可以被重新成形和混合以提供第一光束。空间偏振图案可以施加在第一光束上以提供第二光束。第二光束的偏振态可以被分离以反射第三光束,第三光束可以被重新成形为第四光束。第四光束可以作为多个光束中的一个被引入以产生第五光束。实际上,这个或类似的系统可以降低与增材制造系统相关的能量成本。通过收集、射束组合、均匀化和再引入由在偏振修改模式下操作的空间偏振阀或光阀拒绝的不需要的光,总体透射光功率可能不受光阀施加的图案的影响。这有利地导致穿过光阀的光有效地重新分布成期望的图案,增加与图案化区域的量成比例的光强度。
176.将来自多个激光器的射束组合成单射束是增加射束强度的一种方法。在一个实施例中,可以使用波长选择反射镜或衍射元件来组合各自具有不同光波长的多个光束。在某些实施例中,可以使用对波长依赖折射效应不敏感的反射光学元件来引导多波长射束。
177.可以使用可移动反射镜、棱镜、衍射光学元件或不需要实质上的物理移动的固态
光学系统来引导图案化的光。在一个实施例中,可以为增材制造的三维(3d)打印作业确定与粉末床的顶部表面的位置上的入射光的强度和像素尺寸相关联的放大率和图像距离。多个透镜组件中的一个可被配置为提供具有放大率的入射光,其中透镜组件既包括第一组光学透镜,又包括第二组光学透镜,并且第二组光学透镜可从透镜组件交换。对安装在补偿机架上的一组或更多组反射镜和安装在构建平台机架上的最终反射镜的旋转可用于将来自前体反射镜的入射光引导到粉末床的顶部表面的位置上。补偿机架和构建平台机架的平移运动也能够确保入射光从前体反射镜到粉末床的顶部表面的位置的距离基本上等于图像距离。实际上,这可以使能跨不同粉末材料的构建区域的位置的光束传递尺寸和强度的快速变化,同时确保系统的高可用性。
178.在某些实施例中,可以将每个具有构建平台以保持粉末床的多个构建腔室结合多个光学机械组件来使用,所述多个光学机械组件被布置成接收并引导一个或更多个入射能量束进入构建腔室。多个腔室允许在一个或更多个构建腔室内的一个或更多个打印作业的同时打印。在其他实施例中,可移除腔室侧壁可以简化从构建腔室移除打印对象,从而允许粉末材料的快速交换。该腔室也可以配备可调节的过程温度控制。
179.在另一个实施例中,一个或更多个构建腔室可具有保持在固定高度的构建腔室,而光学器件是垂直移动的。透镜组件的最终光学器件与粉末床的顶部表面之间的距离可以通过将最终光学器件向上转移相当于粉末层的厚度的距离而被设置为基本上恒定,同时保持构建平台处于固定高度。有利地,由于不需要构建平台的精确的微米级移动,所以与竖直移动构建平台相比,可以更容易地制造大而重的对象。通常,用于金属粉末的体积大于0.1

0.2立方米(即大于100

200升或重于500

1,000千克)的构建腔体将最得益于将构建平台保持在固定高度。
180.在一个实施例中,粉末床的层的一部分可以选择性熔化或熔融以由粉末床的层的熔融部分形成一个或更多个临时壁,以在构建平台容纳粉末床的层的另一部分。在选择的实施例中,可以在一个或更多个第一壁中形成流体通道以实现改进的热管理。
181.改进的粉末处理可以是改进的增材制造系统的另一个方面。支撑粉末床的构建平台能够倾斜、倒置和摇动以将粉末床基本从构建平台分离到料斗中。形成粉末床的粉末材料可被收集在料斗中以在后续的打印作业中再利用。粉末收集过程可以是自动化的,并且真空或气体喷射系统也可用于帮助粉末去除和移除。
182.所公开的增材制造系统的一些实施例可以被配置为容易处理比可用腔室更长的零件。连续(长)零件可以沿纵向从第一区顺序前进到第二区。在第一区中,颗粒材料的选定颗粒可以被合并。在第二区中,可以移除颗粒材料的未合并的颗粒。连续零件的第一部分可以从第二区前进到第三区,同时连续零件的最后部分形成在第一区内,并且第一部分在侧向(lateral)和横向(transverse)方向上保持在第一部分在第一区和第二区内被占据的相同位置。实际上,可以在零件输送机上的不同位置或区处并行(即同时)进行增材制造和清理(例如分离和/或回收未使用或未合并的颗粒材料),而无需停止来移除颗粒材料和/或零件。
183.在另一个实施例中,通过使用限制外壳内部与外壳外部之间的气体物质交换的外壳,可以提高增材制造能力。气闸在内部和外部之间提供接口;内部具有多个增材制造腔室,包括支撑动力床熔融的那些。气体管理系统将内部的气态氧维持在限制性的氧浓度或
低于限制性的氧浓度,从而增加可用于系统的粉末和加工类型的灵活性。
184.在另一制造实施例中,通过使3d打印机包含在外壳内能够改善性能,打印机能够创建重量大于或等于2,000千克的零件。气体管理系统可以将外壳内的气态氧维持在低于大气水平的浓度。在一些实施例中,轮式车辆可通过气闸(由于气闸操作以在外壳内的气体环境和外壳外部的气体环境之间缓冲)从外壳内部运输部件到外壳和气闸两者外部的位置。
185.其他制造实施例涉及在粉末床熔融增材制造系统中实时收集粉末样品。采集器系统(ingester system)用于粉末样品的过程中收集和表征。该收集可以定期进行并且表征的结果导致对粉末床熔融过程的调整。采集器系统可以可选地用于审核、过程调整或动作中的一项或更多项,例如修改打印机参数或验证授权粉末材料的正确使用。
186.描述了可以通过使用诸如起重机、提升机架、机器人臂或允许零件的操纵的类似设备的操纵设备来提供对增材制造过程的另一改进,该零件的操纵对于人来说是很难或不可能移动的。操纵器设备可以抓住零件上的各种永久或临时增材制造的操纵点,以能够重新定位或调遣(maneuvering)零件。
187.图4a示出了具有多个波长半导体激光器并使用透射成像光学器件的射束组合系统400。如将理解的那样,所讨论的激光功率和波长是示例性的,由波长滤波器反射或透射的选定波长也是示例性的。随着波长滤波器定位和使用的适当变化,可以使用更多或更少数量的激光器。在某些实施例中,固态激光器可以被半导体激光器替代或与半导体激光器组合使用。在其他实施例中,例如参考图1所讨论的包括气体、化学或金属蒸气激光器的其他激光器类型都可以使用。在一个实施例中,被拒绝的光的回收和再利用可以代替激光器。在增材制造系统中可用的被拒绝的光可被收集、均匀化并重新引入束线。有利地,回收和再使用拒绝的光可增加射束强度并降低与系统相关的能量成本。
188.在图4a中,第一波长(1020nm)的半导体激光器406发射对应波长的33.3kw的光子束407,第二波长(1000nm)的半导体激光器408发射对应波长409的33.3kw的光子束,然后使用透射1020nm光子但反射1000nm光子的波长滤波器410进行组合。这导致66.6kw的组合双波长光束411。第三波长(980nm)的半导体激光器412发射相应波长的33.3kw的光子束413,然后使用波长滤波器414将其与射束411组合。波长滤波器414透射1020和1000nm,但反射980nm光束,产生99.9kw的三波长射束415。第四波长(960nm)的半导体激光器417发射相应波长的33.3kw的光子束418,然后使用透射1020nm、1000nm和980nm光子但反射960nm的波长滤波器416与射束415合并,导致133.2kw的四波长射束419。该射束以例如20mm
×
20mm的射束尺寸和在透镜420处1.1度的发散度进入光学成像系统。透镜420是使用两种材料(c79

79和ule7972)的一系列透镜,每种材料具有不同的折射率,以消除波长变化对成像射束的能力的影响。射束在421离开光学系统,421是一系列利用zerudur、ule 7972和c79

79三种材料的透镜,以消除波长变化对成像射束的能力的影响。由于通过光学系统,422处的射束强度增加,现在为6mm宽
×
6mm高,发散度为3.67度,导致强度为370kw/cm2,足以用于例如粉末的不锈钢金属的增材制造加工。
189.为获得最佳性能,正确选择透镜材料是必要的。诸如透镜420之类的透射式光学器件可以由熔融石英玻璃制成。其由于在1000nm附近的波长处的极低的吸收系数,减少了热膨胀问题,并且由于熔融石英的极低的热膨胀系数减少了透镜的热膨胀。熔融石英的使用
允许光学器件承受更高的强度而不会升温和膨胀,升温和膨胀可能导致断裂、玻璃折射率的变化、玻璃形状的变化以及焦点的随之发生的变化。不需要的光学变化也可以通过使用两种或更多种材料来减少。每种材料可以具有不同的折射率,该折射率随着波长不同地变化。在适当的组合中使用时,折射率和光路长度的变化被抵消,并且焦距随波长的变化没有变化。
190.图4b图示了包括多个波长半导体激光器的组合并且使用反射成像光学器件来减少与透射光学器件相关的前述讨论问题的替代射束组合系统401。像图4a的射束组合系统400一样,可以理解,所讨论的系统401中的激光功率和波长是示例性的,由波长滤波器反射或透射的选定波长也是示例性的。随着波长滤波器定位和使用的适当变化,可以使用更多或更少数量的激光器。可以使用多种类型的激光器,并且在一个实施例中,回收和再利用被拒绝的光可以代替激光器。在增材制造系统中可用的被拒绝的光可被收集、均匀化并重新引入束线。有利地,反射式光学器件在启动瞬变期间和其寿命期间改善与半导体激光器啁啾(波长随时间的移位)有关的问题。反射光学元件的使用防止了由于该效应引起的二极管激光器聚焦的失谐,并且不影响实现的分辨率或成像能力。另外,通过使用反射光学器件,由激光器工作温度变化引起的波长差异不会影响分辨率或成像能力。
191.在图4b中,第一波长(1020nm)的半导体激光器423发射相应波长的33.3kw光子束424,第二波长(1000nm)的半导体激光器425发射相应波长的33.3kw光子束426。这些射束使用透射1020nm光子但反射1000nm光子的波长滤波器427组合,产生66.6kw的双波长射束428。第三波长(980nm)的半导体激光器429发射相应波长的33.3kw光子束430。这些射束使用透射1020和1000nm但反射980nm的波长滤波器431与波束428组合,产生99.9kw的三波长射束432。第四波长(960nm)的半导体激光器433发射相应波长的33.3kw光子束434。这些射束使用透射1020nm、1000nm和980nm光子但反射960nm的波长滤波器435与射束432组合,产生133.2kw的四波长射束436。该射束以例如20mm
×
20mm的射束尺寸和在反射光学器件437处的1.1度的发散度进入光学成像系统。反射光学器件不依赖于波长,也不影响对射束成像的能力。射束在反射光学器件438处离开射束组合光学系统401。由于通过光学系统,射束439的强度已经增加,现在为6mm宽
×
6mm高,发散度为3.67度,导致强度为370kw/cm2,足以用于如粉末的不锈钢的金属的增材制造加工。
192.图4c说明使用衍射成像光学器件444组合来自相同或多个波长激光器442的射束443的射束组合系统440的替代实施例。衍射光学元件可以被成形或图案化以接收射束443,并沿着基本上相同的射束轴反射它们。如将会理解的,虽然在图4c中示出了反射射束的衍射光学元件,在其他实施例中,衍射光学部件可以透射射束,或者使用反射式、透射式或其他合适的射束调向光学组件或部件的组合。
193.图5a是在诸如本文公开的增材制造系统中有用的反射式光学寻址光阀系统500a。反射式光阀不需要通过透明半导体透射光线以进行光图案化,其中在高平均功率水平下,即使少量的吸收也会导致不希望的和灾难性的加热。反射式光阀还可以允许在反射表面上更容易地冷却,同时在写入射束和读取射束入射的相对侧上进行冷却。
194.如在图5a中所见,反射式光学寻址光阀系统500a能够图案化能量束并且由高度透射层501、扭曲向列(tn)液晶层502和光电导体层503组成。该高度透射层对于1000nm和700nm光是光学透明的,由玻璃衬底(c79

79熔凝硅石)501制成,该衬底在504和506两侧都
具有抗反射涂层。在505处将铟锡氧化物(ito)导电涂层施加到高度透射层501。通过锚定衬底507和509将层502锚定到506和510。502的确切间距由限定2.5微米间隙的间隔球508的尺寸给出,该确切间距在双程中传递1000nm的光时被调节用于最大对比率。层503由单晶硅半导体制成,高反射电介质涂层施加在510处,其对700nm透明,但在1000nm处反射。层511是另一层ito,其具有附接的焊点512并且经由交流电压源514通过另一焊点513连接到层505。图案化的写入光束以700nm从投射器源发射并且在透射通过504、501、505、506、507、502、509和510之后入射503。在写入射束撞击503的情况下,电子从价带移动到导带,大大增加了503的局部电导率,允许电流从511通过503、510、509、502、507和506流向505。当电流流过tn液晶502时,它引起液晶502中的旋转,引起透射光中的偏振旋转。“读取”射束516是p偏振的并且在透射通过504、501、505、506、507、502和509之后入射到510上,在509处它反射并透射通过509、502、507、506、505、501和504返回以离开光阀系统500a。该射束然后入射在偏振器517上,偏振器517反射导致反射射束518的s偏振并透射导致透射射束519的p偏振。尽管设备中的吸收非常低,但hr涂层509并不完全反射,并且一些能量被吸收。这种能量通过辐射、导电或对流冷却520被移除。
195.图5b示出了在写入射束和读取射束从不同侧入射的、一侧上具有冷却的替代的反射式光学寻址光阀500b。该阀由高透射层521、扭曲向列(tn)液晶层522和光电导体层523组成。该高度透射层对于1000nm和700nm光是光学透明的,由玻璃衬底(c79

79熔凝硅石)521制成,该衬底在524和526两侧都具有抗反射涂层。在525处将铟锡氧化物(ito)导电涂层施加到521。通过锚定衬底527和259将层522锚定到526和530。522的确切间距由限定2.5微米间隙的间隔球528的尺寸给出,该确切间距在双程中传递1000nm的光时被调节用于最大对比率。层523由单晶硅半导体制成,高反射电介质涂层施加在530处,其在1000nm处反射。层531是ito的另一层,其具有附接的焊点532并且经由交流电压源534通过另一焊点533连接到层525。图案化的写入光束在700nm处从投射器源发射并且在透过任选的对流/导电衬底540并通过ito涂层531后入射到523。在写入射束撞击503的情况下,电子从价带移动到导带,大大增加了523的局部电导率,允许电流从531通过523、530、529、522、527和526流向525。当电流流过tn液晶522时,它引起液晶522中的旋转,引起透射光中的偏振旋转。“读取”射束536是p偏振的并且在透射通过524、521、525、526、527、522和529之后入射到530上,在点529处它反射并透射通过509、522、527、526、525、521和524返回以离开光阀。该光束然后入射在偏振器537上,偏振器517反射导致反射射束538的s偏振并透射导致透射射束539的p偏振。尽管设备中的吸收非常低,但hr涂层529并不完全反射,并且一些能量被吸收。这种能量通过辐射、导电或对流冷却540被移除。
196.为了帮助更好地了解和理解各种系统实施例,包括替代或附加的光学系统、腔室设计、粉末处理系统和方法、结构形成、零件创建和操纵、多种增材制造系统的使用以及适合于自动化或半自动化工厂的高产量制造方法;以下公开内容将有助于了解和理解所公开的系统、方法和结构的各种新颖方面。
197.图6示出了用于增材制造过程中的激光回收的示例性装置400的布局。装置600可以包括一个或更多个光源,例如但不限于光源601、602和603。在一些实施例中,光源601、602和603可以包括激光器。或者,可以使用其他类型的光源,例如固态激光器。在一些实施例中,光源601、602和603中的每一个或至少一个可以以700nm发射11.1kw的p偏振光,尺寸
为7.9cm
×
7.9cm,发散度为7.6mrad。由光源601、602和603发射的光束可以通过第一光学组件604复用在一起,第一光学组件604可以包括一系列反射镜,从而允许射束尽可能地靠近在一起。然后用光学设备605对这些射束进行重新成形和混合,产生33.3kw,4.7cm
×
4.7cm和发散度为70.4mrad的射束6。然后,射束606可入射到空间偏振阀607上,空间偏振阀607可通过将所选像素的偏振从p偏振旋转到s偏振来在射束606上施加空间偏振图案图,以提供射束8。通过适当的修改,可以通过从s偏振旋转到p偏振来形成所选像素以提供射束。在其他实施例中,可以通过部分旋转来创建灰度像素。在与偏振器609相互作用之后,射束608的s偏振态可以被反射到射束610中。精确分数可以作为由空间偏振阀607图案化的光的分数的函数给出。射束10可以进入第二光学组件611,该第二光学组件611可以包括一系列反射镜、再成形透镜、波片或其他光学组件,并且射束10可以被修改为7.9cm
×
7.9cm的射束,然后被重新引入系统,就好像它是光源612,与原始的一个或更多个光源601、602和603一起。
198.用于光回收的过程可以包括多路复用包括来自一个或更多个光源601、602和603的至少一个或更多个光束的多个光束的步骤。多个光束可以被重新成形和混合以提供第一光束。装置600的空间偏振阀607在第一光束上施加空间偏振图案以提供第二光束。装置600的偏振器609分离第二光束608的偏振态以反射第三光束(例如射束610)。装置600的第二光学组件611将第三光束重新成形为第四光束,并且第四光束作为多个光束中的一个被引入到第一光学组件604,以产生第五光束(例如,射束613),其通过偏振器609发射并且不被偏振器609反射。
199.图7示出了根据本公开的偏振组合以达到原始半导体激光强度(极限值)的2倍的示例光学组件700。半导体激光器在一种偏振态下通常偏振至约70

90%。当使用偏振旋转方法来对光进行图案化时,不希望的偏振态中的10

20%的光可能未被使用(被拒绝)。为了避免这种损失,可以使用偏振组合和图案化来提高透射效率或者将合成强度增加2倍,或两者兼而有之。
200.在一个实施例中,提供具有第一强度的两个或更多个光束,两个或更多个光束中的每一个被偏振并且具有多数偏振态和少数偏振态。相应的偏振图案被施加在两个或更多个光束中的每个光束的多数偏振态上,并且两个或更多个光束被组合以提供具有大于第一强度的第二强度的单光束。在第二实施例中,可以使用任意偏振态的多于一个激光器。偏振器用于将射束分离成其各自的偏振态,并且通过空间定位将相应偏振态的射束在空间上堆叠在一起,从而产生两个有效射束,每个偏振态具有一个射束。具有不同偏振态的这两个射束然后被传递通过与它们的透视偏振态相关的光调制器,然后通过在射束中施加偏振态图案,并且随后通过偏振组合进行射束组合。该方法使用该过程中的所有光,这允许更高的激光使用率,实现最小的由于偏振态的变化导致的损失至无损失,并实现更好的系统效率。
201.光学组件700可以包括图7中所示的那些部件中的一些或全部,如下所述。光源701和702各自用作高功率光子源。在一些实施例中,光源701和702可以是每个具有33.3kw功率的半导体激光器阵列,发射1000nm、被成形并混合成20mm宽
×
20mm的方形射束的光子。发射的光可以在多数状态p下被90%偏振,导致光束703和704。发射的光束703和704可以分别入射在偏振器705和706上。偏振器705和706可以反射少数态s

偏振以产生光束709和7010,光束709和7010可以入射在射束收集器7011上。偏振器705和706可以透射p偏振以产生光束706和707,光束706和707可以分别入射到偏振旋转光学寻址光阀712和13上。光阀712和713
中的每一个可以使相同图像施加到光束706和707以创建偏振图案,并且可以将所述“像素”中的20%从期望图案中的p偏振到s偏振在空间上翻转,导致光束714和715。射束714和715可以分别入射在偏振器716和717上。偏振器716和717可以反射s偏振以分别产生光束718和719,光束718和719可以包含20%的能量并且可以被收集到射束收集器720。偏振器716和717可以透射p偏振以产生光束721和722。射束722可以入射到半波片723上,该半波片723将每个光子的偏振旋转半波,由此将p偏振转变为s偏振以产生光束724。射束721和724可分别入射在反射镜725和726上,以产生光束727和728。射束727可以入射在反射镜729上以产生射束730,射束730可以以p偏振入射在偏振器731上。s偏振中的射束728可入射在偏振器731上,偏振器731可反射射束728的s偏振并透射射束730的p偏振以产生光束732。射束732可以是来自光源701或702的单个偏振态的强度的两倍的光束,由于90%的初始偏振,总初始强度为原始的1.8倍,并且因偏振映射图像的20%施加在光阀712和713处,按比例小于该总初始强度。射束732处的总传播强度可以是对于47.52kw发射的总传输功率的初始强度的1.44倍。成像到原始的20x20mm平方,如果发散角保持不变,则最终强度可以是11.88kw/cm2。
202.在粉末床熔融增材制造中,当粉末材料被加工时(利用或不利用化学键合),具有足够能量的光束的源图像被引导到粉末床的顶部表面(打印表面)上的位置以形成整体对象。用于粉末床熔融增材制造的光学系统的分辨率(或像素尺寸)取决于打印表面是否与光学系统中的最终光学器件的焦平面重合,或就成像系统来说,取决于对于给定的透镜配置,执行成像操作的光学器件的透镜和成像平面之间的距离是否保持基本恒定的距离。为了能够在粉末床熔融增材制造中打印大对象,精确控制打印表面上的图像位置以及透镜之间的距离对于维持粉末的顶部表面的每个可能位置处的分辨率或像素尺寸是必要的。不同的粉末材料可能需要不同的光束强度或能量,因为各自的键能阈值不同。如果在改变粉末类型或粉末尺寸分布时需要改变强度,则可能需要关闭光学系统以重新安装和重新对准成像镜头。
203.为了解决与强度和分辨率变化有关的问题,过程描述如下。图8是示出使用可包括图像中继机架的动态光学组件的步骤的流程图800。在步骤810中,获得或以其他方式确定信息以找到在粉末床熔融增材制造系统中待打印的对象的最小分辨率(入射光的像素尺寸)。根据强度和分辨率要求,计算包含图像信息的入射光的放大率和动态光学组件的图像距离。放大率可以将前体图像平面处的图像的第一尺寸转换成打印表面(粉末床的顶部表面)处的图像的第二尺寸。入射光可以源自能量源并且传递通过可以在其处创建图像信息的前体图像平面。过程800可以涉及存储对象的几何数据、动态光学组件的位置和旋转控制数据。
204.在步骤820处,过程800可以包括配置机械组件和一个或更多个透镜组件以实现适合于粉末材料的在810获得的放大率。机械组件和透镜组件之一的配置可涉及机械组件的旋转、第二组光学透镜的交换或第二组光学透镜的移除。
205.在步骤830,可以执行多次旋转,以在粉末床熔融增材制造的每个连续步骤中将来自前体图像平面的入射光在打印表面(例如,粉末床的顶部表面)上的期望位置处引导至打印表面。在步骤840处,动态光学组件可执行多个平移运动以在粉末床熔融增材制造的每个连续步骤中保持从前体图像平面到打印表面(例如,粉末床的顶部表面)的每个位置的恒定图像距离。粉末床或光学组件的垂直运动可以用于保持粉末床相对于最终镜片的固定分
隔。
206.实施过程800的装置可以包括分配在由构建平台支撑的粉末床的顶部表面上的粉末材料层。位于前体图像平面的入射光的源图像入射到镜筒中的透镜组件上。透镜组件可以通过镜筒的旋转来配置,所述镜筒的旋转实现第二组光学透镜的交换、第二组光学透镜的移除,改变形状的动态透镜的使用、电子透镜交换、射束重定向系统、光电控制的折射射束调向装置或其组合,以具有对粉末材料的适当放大率。通过透镜组件后会出现与源图像不同尺寸的对象图像,并且对象图像根据透镜组件的放大率进行修改。包含图像信息的射束入射在前体反射镜上,并被引导到安装在补偿机架上的反射镜上,该射束在反射镜上反射,然后入射到安装在构建平台机架上的最终反射镜上。最终反射镜将包含图像信息的射束引导通过最终透镜朝向粉末床的顶部表面,并且在可能在其上形成的图像平面中再现和放大对象图像。粉末床上的粉末材料可能熔化以形成对象图像的形状。构建平台机架然后移动到下一个位置,直到粉末床顶部表面上的指定位置与该层键合。再次分配新的粉末材料层,并且构建平台可以向下移动等于粉末材料层的厚度的距离,以保持与构建平台机架的恒定距离。针对新层开始循环,以继续增材打印过程。
207.图9a示出了根据本公开的粉末床熔融增材制造打印过程中的中间点的示例场景900。示例场景800示出了构建腔室中的部件的向上移动,同时利用固定的构建平台930控制景深。构建平台930可以具有0.5米
×
1米的面积,粉末可以在打印周期期间分配在该面积上。在一个实施例中,构建平台930移动到机架台905下方的位置并锁定到位。各自处于3米的高度的垂直立柱903(1)

903(4)支撑安装在机架台905上的机架907。粉末分配单元910、压实功能件911和反射镜917可以安装在机架907上以在水平面内平移运动。示出机架台905在高于图8中的粉末床920上方的位置以反映打印可能正在进行中。粉末床920包含粉末层和各个阶段完成时的打印对象。从粉末分配单元910分配新的粉末层925,其包括粉末扩散和压实。从打印头(未示出)入射的射束921可以从反射镜917反射以变成撞击新的粉末层925中的位置923的射束922。打印可以通过熔化、烧结、熔融或以其他方式在位于新的粉末层925中的位置923处合并粉末而发生。反射镜917与新粉末层925中的位置923之间的距离是需要严格控制以满足分辨率要求的景深。箭头970指示机架台905的向上移动,机架台905支撑机架907、粉末分配单元910、反射镜917以及在某些实施例中支撑周围腔室或壁。在此过程期间,构建平台930保持锁定在原位,并且机架907(和/或腔室和腔室壁)相对于构建平台930移动。这种布置对于下面讨论的实施例特别有用,其中构建平台930是大的,并且将需要支撑大量的、不容易以所需的精度在垂直方向上移动的重质材料。
208.在一些实施例中,示例场景900的构建平台930可以具有大于0.25平方米的面积。或者,示例场景900的构建平台930可具有大于0.5平方米的面积。或者,示例场景900的构建平台930可具有大于1平方米的面积。或者,示例场景900的构建平台930可具有大于5平方米的面积。或者,示例场景900的构建平台930可具有大于10平方米的面积。或者,示例场景900的构建平台930可具有大于50平方米的面积。
209.在一些实施例中,包括示例场景900的打印对象的粉末床920可具有大于10千克的质量。或者,包括示例场景900的打印对象的粉末床920可具有大于50千克的质量。或者,包括示例场景900的打印对象的粉末床920可具有大于100千克的质量。或者,包括示例场景900的打印对象的粉末床920可具有大于500千克的质量。或者,包括示例场景900的打印对
象的粉末床920可具有大于1,000千克的质量。或者,包括示例场景900的打印对象的粉末床920可具有大于2,000千克的质量。或者,包括示例场景900的打印对象的粉末床920可具有大于5,000千克的质量。或者,包括示例场景900的打印对象的粉末床920可具有大于10,000千克的质量。
210.在一些实施例中,示例场景900的构建平台930可以具有大于0.25平方米的面积,并且包括示例场景900的打印对象的粉末床920可以具有大于10千克的质量。
211.粉末床熔融技术处理粉末材料,以从金属、陶瓷和塑料粉末中形成整体对象。需要足够的能量使粉末达到相应的熔化/烧结/合金化温度或相变温度。如果粉末材料开始接近其相变温度,则可能需要更少的能量来完成相变。粉末床熔融增材制造可受益于粉末床的预热以减少由激光器或其他能量源输送的能量的量。这可以允许使用较低强度的激光和较少的停留时间来键合粉末,从而提高生产率。
212.一些粉末材料如金属可能需要后加工热处理以减轻应力集中并增加机械强度。后加工热处理可以包括受控温度退火或快速冷却以改善期望的机械或电特性。粉末的预热和后加工热处理可以通过在构建腔室的壁内部/构建平台内部嵌入加热/冷却元件/温度传感器以及利用反馈算法来控制加热/冷却的速率来实现。通过在构建腔室的壁内部使用绝缘材料可以减少热损失。
213.参照图9b讨论适用于与所述粉末床和腔室结合使用的热管理系统。图9b示出了根据本公开的实施例的基于激光的粉末床熔融增材制造系统900b的示例装置。系统900b包括作为打印头910b的一部分的能量源950和能量束调向系统/驱动器955。光学机械组件930(1)

930(n)可以通过系统900b分配用于打印头910b的能量束。处理器901和存储器940启用使用各种传感器的数据输入、监测、控制和反馈控制。这些系统可以包括3d对象数据941、打印头控件942、构建平台控件943、光机械组件控件944和构建腔室控件945的输入。
214.基于激光的粉末床熔融增材制造系统900可以包括一个或更多个构建腔室。为了说明的目的并且没有限制,图9b中示出了系统900的一个或更多个构建腔室作为构建腔室920b(n),其中n是大于或等于1的正整数。构建腔室920b(1)

920b(n)可以包括用于分配粉末材料的粉末分配单元922(1)

922(n)和用于支撑由粉末材料形成的粉末床的构建平台924(1)

924(n)。构建腔室920b(1)

920b(n)中的每一个可以具有不同的尺寸并且可以在粉末床熔融增材制造系统900内彼此交换。构建腔室920b(1)

920b(n)可以具有可移除的门以便于在构建之后从构建腔室920b(1)

920b(n)的一侧移除粉末。在粉末床熔融增材制造期间,可将构建腔室920b(1)

920b(n)密封在气氛中。气氛可以包括但不限于真空、空气、氮气、氩气或氦气。
215.在一些实施例中,构建腔室920b(1)

920b(n)的壁/天花板可嵌入加热/冷却元件926(1)

926(n)和温度传感器928(1)

928(n)以控制构建腔室920b(1)

920b(n)内的热环境。
216.在一些实施例中,加热/冷却元件926(1)

926(n)可以是能够进行热交换的流体通道。流体可以在构建腔室920b(1)

920b(n)的外部被加热或冷却,并且通过使流体移动通过流体通道来与壁/天花板进行热交换。流体可以包括但不限于油、水、蒸汽、空气、氮气、氩气或冷却剂。
217.在一些实施例中,加热/冷却元件926(1)

926(n)可以分别是电阻加热元件和热离
子冷却元件。
218.在一些实施例中,温度传感器928(1)

928(n)可以是嵌入在构建腔室920(1)

920(n)内的壁/天花板内的热电偶。
219.在一些实施例中,温度传感器928(1)

928(n)可以是安装在构建腔室920(1)

920(n)内的壁/天花板上的红外摄像机。
220.在一些实施例中,构建腔室920(1)

920(n)中的每一个可包括构建腔室920(1)

920(n)的壁/天花板上的辐射屏蔽以减少热损失。
221.在一些实施例中,构建腔室920(1)

920(n)可包括低导热材料作为壁/天花板的部分。
222.在一些实施例中,构建平台924(1)

924(n)中的每一个可以能够在粉末床熔融增材制造期间垂直运动或固定在给定高度。构建平台924(1)

924(n)可能具有不同的尺寸并支持不同质量的粉末床。构建平台924(1)

924(n)可以在轨道、轮子或其他装置上从构建腔室920(1)

920(n)移除。
223.图10描述了在构建操作期间使粉末体积需求最小化的方法。根据本公开,可利用过程1000来实现打印用于粉末床熔融增材制造系统中的粉末床熔融的可变打印腔室壁。在1010处,过程1000可涉及分配粉末材料以在构建平台的支撑表面上形成粉末床的第一层。
224.在1020处,过程1000可涉及选择性地熔融粉末床的第一层的一部分以从粉末床的第一层的熔融部分形成一个或更多个第一壁。一个或更多个第一壁可以容纳构建平台上的粉末床的第一层的另一部分。在一些实施例中,一个或更多个第一壁可以包括围绕构建平台内部的区域的多个壁,以创建没有粉末材料的区域。在1030处,过程1000可以涉及分配粉末材料以在粉末床的第一层上形成的粉末床的第二层。在1040处,过程1000可涉及选择性地熔融粉末床的第二层的一部分以从粉末床的第二层的熔融部分形成一个或更多个第二壁。一个或更多个第二壁可以容纳粉末床的第二层的另一部分。
225.在一些实施例中,一个或更多个第一壁可以包括在构建平台的第一区域上方围绕粉末床的第一层的另一部分的多个第一壁。此外,所述一个或更多个第二壁可以包括围绕所述粉末床的所述第一层的第二区域上方的所述粉末床的第二层的另一部分的多个第二壁,其中所述第二区域小于所述第一区域。
226.在一些实施例中,一个或更多个第一壁可以包括沿着构建平台的多个周界中的至少一个周界的至少一个壁。另外,构建平台的多个周界的剩余的一个或更多个周界可以界定(border)一个或更多个结构壁。在一些实施例中,过程1000还可以涉及引起构建平台与一个或更多个结构壁之间在垂直于构建平台的支撑表面的方向上的相对移动。此外,过程1000可以涉及将粉末材料分配在粉末床的第一层和一个或更多个第一壁上以形成粉末床的第二层。此外,过程1000可涉及选择性地熔融粉末床的第二层的一部分以增加一个或更多个第一壁的高度。
227.在另一个实施例中,可以制造临时壁以具有能够支撑流体流动的管道、腔体或多孔部分(在下文中称为“流体通路”)。流体通路可以是开放的或部分封闭的,并且可以形成为与外部管道、软管、喷雾器或其他流体连通系统连接。空气、氮气、水、高温或硅油或其他合适的气体或液体可循环或以其他方式通过流体通道转移以改善热管理。热管理可以包括快速冷却或受控冷却,并且流体可以循环(例如,通过在临时壁中形成的管道),或者喷射、
滴落或飞溅到例如多孔外壁部分。
228.所提出的方案可以在用于打印金属、塑料或陶瓷零件的粉末床熔融增材制造系统中实施。所提出的方案的应用可以更具体地限定为用于在激光器或电子束的接收端上的机器的打印床部分中。在本公开的各种实施例中,可以控制粉末床熔融增材制造系统的打印头的一个或更多个能量源来打印构建腔室的壁。这允许消除腔室的边缘壁,并且可以允许创建子集区域。子集面积/体积/空隙的存在可以帮助最小化粉末的使用,并且能够产生无粉末的体积。当处理金、银和铜等昂贵材料时,此功能特别有用,而且对于超大型对象的处理也非常有用,其中多余的粉末可以包含标准打印体积的很大一部分。根据所提出的方案,粉末可以选择性地分布在增材制造过程期间产生的预定壁区域中的整个构建区域。
229.由于打印床和打印头通常被垂直分离以用于连续层,因此需要打印腔室壁支撑先前由粉末构成的沉积层和打印对象。一个示例可能涉及凸起到紧贴壁。另一个示例可能涉及在每层期间打印周界壁(以及可能用于它的结构支撑)。该壁可能会在每次打印后被切割和回收。
230.在一些实施例中,可以凸起大部分或全部周壁,并且也可以打印壁以减少用于粉末层的粉末床区域,同时使用由周壁形成的“桶”用于捕集掉落在打印壁外部的粉末。
231.在一些实施例中,凸起的壁可以不是完整的周界。例如,当首先将打印床放入打印站时,以及随后将完成的床(粉末和打印对象)抬起时,可能需要叉车或其他材料处理设备的访问点。该区域的有限壁的打印提供了在打印周期期间支撑粉末所需的剩余壁。材料处理设备可能然后“击穿”该打印壁以获得对提升点的访问。在一些实施例中,提升点可以通过先验算法或用户放置来确定,并且构建在关键位置的壁内。
232.打印壁不需要匹配打印台的几何形状,也不需要与前一层打印的壁完全匹配。这可以通过适当的粉末分配设备和逻辑将粉末分散到足以覆盖需要粉末的壁区域之间。有利地,这可以节省大量的时间、重量和/或每层粉末。
233.图11a示出了可以利用示例场景1100,其中,粉末床1120根据本公开在构建平台1130上形成。构建平台1130可以具有0.25平方米的面积并且可以支撑粉末材料的粉末床1120,粉末床1120可以在构建腔室1110内部0.5米深处。场景1100可能处于打印周期的最后或中间。在构建平台1130的下方是具有倾斜壁的料斗1140,该倾斜壁相对于其上布置有构建平台1130的水平表面可以是45

60度。在一些实施例中,料斗1140可以包含螺旋钻1150。
234.图11b示出了另一个示例场景1101,其中描绘了粉末床1121与构建平台1131的分离。场景1101可能处于打印周期的末尾或由于各种原因而中止的中间周期。在构建腔室1111内部,支撑粉末床1121的构建平台1131可以从水平位置倾斜超过90度。由于粉末床1121的重量引起的重力拉动导致嵌入粉末床1121内的粉末材料和打印对象落入下方的料斗1141中。构建腔室1111可以包括真空1160和高压喷射1162,使得大部分粉末可以被收集在料斗1141中。在使构建平台1131倾斜之后,抽吸1160和气体喷射1162可用于去除残留在构建平台1131上的粘性粉末。料斗1141可以具有倾斜的壁以帮助将粉末引导到料斗1141的底部上。料斗1141可以包括螺旋钻1151。
235.加工可涉及控制粉末分配组件以在打印周期期间分配多层粉末材料以形成粉末床。可以控制粉末分配组件的垂直运动以保持与粉末床的恒定分离。在分配的粉末层的一部分键合在一起之后,垂直运动导致粉末分配组件可以转位而远离粉末床(例如,向上)一
段等于分配粉末层的厚度的距离。为了移除残留的粉末,构建平台的运动可以包括旋转、倾斜、翻转、振动、摇动和/或抖动。由于这些运动,构建平台上的粉末床可能由于粉末床的重量而落入构建平台下方的料斗中。可以使用真空系统、机械臂和/或气体喷雾器来进一步去除构建平台上的剩余粉末。因此,粉末状材料的大部分可以被收集在料斗中以供再利用或储存。在一些实施例中,螺旋钻和/或输送机可用于将收集在料斗中的粉末朝向一个或更多个储存腔室输送。在另一个过程实施例中,粉末状材料的大部分可以被密封在一个或更多个储存腔室中适合于粉末状材料的气氛中。气氛可以包括真空、空气、氮气、氩气、氦气、其他惰性气体或稀有气体。
236.图12a和12b示出了用于长零件制造的系统。许多当前的3d打印机在构建腔室必须清空粉末和打印零件并为下一次打印作业复位时具有明显且经常性的停机时间。在以下描述中,定义了统一坐标系统1211。因此,某些系统可以对应于或限定彼此正交的纵向方向、侧向方向和横向(transverse)方向1211a、1211b、1211c。纵向方向1211a可以对应于系统的长轴。因此,在增材制造期间,长零件1210的长轴可以与纵向方向1211a基本对齐。侧向方向1211b可以与纵向方向1211a结合以限定水平面。也就是说,纵向方向和侧向方向都可以在水平面内延伸。横向方向1211b可以与重力对齐地上下延伸。
237.在选定的实施例中,根据本发明的系统和方法可以实现或支持不具有这种停机时间的基本上连续的增材制造。如参照图12a和图12b所见,这可以通过分段制造零件1210来实现。例如,系统可以(1)制造零件1210的第一分段1212a,(2)使零件1210沿输送机1216前进选定距离,(3)制造零件1210的第二分段1212b,(4)使零件1210沿输送机1218前进选定距离,并且(5)重复,直到零件1210的所有分段都已经完成。实际上,可以在输送机上的不同位置或区处并行(即同时)进行增材制造和清理(例如分离和/或收回未使用或未合并的颗粒材料)。因此,根据本发明的增材制造不需要停止以移除颗粒材料和/或零件。
238.系统可以定义或包括多个区1236a

1236c。不同的任务可以在不同的区执行。在所选实施例中,不同的区可对应于沿着输送机的不同位置。相应地,输送机可以使零件前进(例如,沿由箭头1232指示的方向平移)穿过系统的各个区。在某些实施例中,系统可以包括三个区1236a、1236b、1236c。第一区1236a可对应于、包括或跨越发生增材制造的输送机的部分。因此,第一区1236a可以对应于输送机上的各个层的颗粒材料144被铺设并且颗粒材料被保持与零件紧密接触的区域。
239.第二区1236b可以直接跟随第一区1236a。第二区1236b可以由颗粒材料的非合并部分的移动远离零件的很大一部分来表征。例如,在第二区1236b中,一个或更多个壁可以终止或被移除,使得颗粒材料的未合并部分可能不再被完全包含在侧向方向1211b中。结果,颗粒材料的一些未合并部分可能溢出一个或更多个板、输送机等的侧面。溢出的颗粒材料可能落入一个或更多个容器中,在那里它可以被收集和再利用。
240.第三区1236c可以直接跟随第二区1236b。第三区1236c的特征可在于第三区1236c内的零件1210的一部分被暴露于视野(例如,通过移除或移动很大一部分未合并部分的颗粒材料完全地、基本上或部分地暴露于视野),而零件1210在侧向方向和横向方向1211b、1211c上不改变其位置。
241.例如,在某些实施例中,零件1210的前部可以到达第三区1236c,而零件1210的尾部仍然在第一区1236a内制造。因此,在所选择的实施例中,输送机、一个或更多个板、一个
或更多个临时支撑件1223、一个或更多个壁或类似物或其组合或子组合可以协作以将零件1210的前部保持在侧向方向和横向方向1211a、1211c上的与前部在第一区1236a和第二区1236b内占据的位置相同的位置。因此,零件1210的前部的位置不会对发生在第一区1236a中的零件1210的尾部上的增材制造过度干扰、扭曲等等。
242.在所选择的实施例中,可以在第二区1236b中或者在第二区1236b和第三区1236c的一些组合内移除在零件1210外部的颗粒材料的全部未合并部分。然而,在某些替代实施例中,床可以从输送机移除,而四个壁保持完整。因此,颗粒材料的未合并部分的全部或一些剩余部分可以在与第一区1236a间隔开一定距离的站处被移除。
243.在另一个实施例中,斜坡可以用于从较低的分段或区过渡到随后的较高的分段或区。例如,斜坡可以使与较低分段对应的后壁能够通过增材制造的过程被构建得比较低分段的大部分更高,使得后壁可以成为后续更高分段的前壁。当仅仅建立后壁时,构建斜坡比铺设完整的层(例如覆盖整个较低分段的层)快得多。
244.斜坡可以包括多个颗粒材料层,其沿一个或更多个方向(例如,纵向方向1211a)的长度增量地变化。例如,在斜坡内,每个相继的层的长度可以比紧邻的前一层短。由此产生的斜坡相对于水平面的角度可以小于颗粒材料的临界休止角。因此,形成斜坡的颗粒材料可以是稳定的,并且不会由于作用于其上的重力加速度而脱落或移动。
245.在操作中,颗粒材料的第一层颗粒可以被分布并且辐射能量指向形成选定颗粒的一部分的第一层内的所有颗粒。颗粒材料的第二层颗粒分布在第一层的顶部,并且辐射能量指向形成选定颗粒的一部分的第二层内的所有颗粒。第一层可以限定第一平面并且第二层限定平行于第一平面的第二平面。在某些实施例中,第一平面和第二平面都是水平平面。在其它实施例中,第一平面和第二平面都相对于水平面以大于零且小于或等于颗粒材料的临界休止角的一定角度延伸,从而形成斜坡。
246.图13a示出了包括具有粉末床1304的粉末腔室1302的增材制造系统1300。系统1300还可以包括加工平台1320,加工平台1320可以是指定的加工区域、另一粉末腔室、涂布站、输送机、运输容器或任何其他需要的制造系统部件。系统1300还包括机器人臂1310,该机器人臂1310具有能够通过其增材制造的操纵点1332抓握零件1330的操纵器1312。传感器系统1334可以安装在机器人臂1310上,或者替代地,安装在粉末腔室1302上、粉末腔室1302中或粉末腔室1302附近。
247.尽管具有夹持抓握器的六自由度单个机器人臂是图中所示的操纵设备,但可以采用其他自动化、机械或手动实施例。例如,可以使用起重机、升降机、液压臂、夹具、轨道或道轨、锁定机构或任何其他类型的手动或自动可控的操纵设备。操纵设备可以安装在粉末腔室1302的旁边、上面、附近或内部。或者,操作设备可以可移动地安装在粉末腔室上方、附近或定位在粉末腔室内的道轨上。在一些实施例中可以使用多个操纵设备。
248.操纵设备可以包括位置、深度、激光扫描或类似的传感器系统1314。传感器可以安装在操纵器上或附近、机器人臂上的其他位置,或者在粉末腔室或加工平台1320上、附近或内部。在某些实施例中,传感器可以是可移动的,具有铰链、道轨、液压活塞或用于旋转、升高、压下、振荡或侧向扫描传感器的其他合适的致动机构。在某些实施例中,可以单独或组合专门的深度传感器或光学边缘跟踪感测系统来使用传统的rgb cmos或ccd传感器。可以选择实施例来改善零件的3d定位,包括识别和使用指南、标记或其他可检测的定位标记。
249.图13b图示了关于图13a描述的系统,其中,机器人臂1310通过其增材制造的操纵点1332之一提升并重新定向零件1330。在一些实施例中,零件1330可以被提升、旋转、线性平移并且返回到粉末床1304上用于进一步处理。
250.图13c图示了关于图13a描述的系统,其中,机器人臂1310通过其增材制造的操纵点1332之一提升并重新定向零件1330。在该实施例中,零件1330被提升、旋转并设置到加工平台1320上以进行进一步处理。
251.图14示出了包括各种可能的增材制造的机器人操纵点的零件1400。零件1400支撑各种突出结构(即1402、1404、1406、1408和1414)以及能够充当机器人操纵点的内部结构或腔体(即1410、1412和1416)。在该图中,结构1402是具有至零件1400的两个窄连接点的月牙突片。突片部分允许与具有夹紧或箍缩抓握器的操纵器容易接合,而窄的连接点通过机械剪裁、锯切、冲压或钻孔或通过定向能量束简化了结构1402的移除。类似地,销1404是能够通过夹紧或箍缩抓握器或者通过围绕和收缩以保持销1402的“位”保持型接合系统来接合的小突出结构。矩形突片1406附接在单个窄点处,允许操纵器的一些实施例在零件已经移动到期望的区域/位置之后扭曲并断开(break free)突片。再次附接在两点以简化随后通过机械剪裁或能量束移除的板1408相对较长且较宽,以简化通过操纵器的接合。
252.零件1400的增材制造可以被设计为包括不会大大影响零件功能但是提高与机器人臂接合的可靠性的凹陷、平台、腔体、孔或其他内部限定的结构。例如,棱柱形锁定腔体1410可引导销或夹紧系统与腔体接合。或者,可以使用展开夹具来接合在零件1400中限定的凹口1412。如果需要的话,腔体或开口1416也可以被限定在可移除的突出突片1414中。在一些实施例中,可通过减蚀加工、钻孔、冲压或移除蚀刻的材料或定向能量束来限定基本上增材制造的零件中的腔体或开口。在某些其他实施例中,在使用之后,可以使用增材制造技术,通过使用热固塑料或任何其他合适的填充技术来填充腔体。
253.在一些实施例中,零件1400的二维或三维定位可以通过使用成像或其他光学传感器来改进,所述成像或其他光学传感器使用突出突片或腔体位置来识别零件的精确位置。在其他实施例中,标记光导或标记1420可以增材地形成或者机械地或激光刻印在突出结构或零件本身上,以改善移动之后接合3d定位的引导。
254.在一个实施例中,加工可以通过以下步骤进行。在第一步中,将材料放置在粉末腔室中的粉末床上。然后,使用二维图案化能量的定向射束,制造包括一个或更多个操纵点的零件。操纵器可以接合操纵点,并将零件从粉末床上抬离。零件可以重新定位在粉末床上进行进一步处理,或者可选地移动到远离粉末床和腔室的新加工区域。在可选的步骤中,操纵点可以被移除(例如,突出的突片被机械地剪裁)或被填充(例如增材定义的孔或填充有环氧树脂的腔体)。
255.图15示出了在打印过程期间收集粉末材料的粉末样品并对其进行表征的示例过程1500。过程1500可以用来从粉末床或粉末分配组件收集粉末样品,并且根据本公开在测试套件中实时表征粉末样品。在1510处,过程1500可以涉及在打印循环期间控制采集器以在形成打印对象时收集粉末材料的多个粉末样品。粉末材料可以包括金属、陶瓷、塑料粉末或能够在经受热能时键合在一起的其他合适的粉末。采集器可以以预定的间隔或随机地或在打印过程中的预定阶段周期性地收集粉末样品。例如,粉末样品可以每隔10分钟收集一次,或者仅在打印过程的1/5和4/5完成时收集。采集器可能有从粉末床或粉末分配组件转
移进入粉末的机构。根据需要进行多少次测试以用于分析,采集器也可以控制粉末的转移的量。在1520处,过程1500可以涉及控制测试套件以执行测试的一个或更多个测试。在一些实施例中,粉末材料的一个或更多个特定性质可能需要严格控制在一定范围内以保证打印对象的机械、电学或光学特性。在其他实施例中,为了审核目的,可能需要保留打印过程期间粉末的特性。测试套件可能包括能够执行一个或更多个测试的仪器。为了说明目的而没有限制,一个测试可以通过粒度尺寸分析仪测量粉末尺寸的分布;第二测试可以通过比重计测量粉末样品的密度;第三测试可以通过气相色谱质谱法鉴定粉末样品内的物质。在1530处,过程1500可以涉及确定是否修改用于打印过程的一组打印参数或者是否根据来自测试的结果特征来中止打印过程。该确定可以包括基于使用表征的结果作为输入的一组模型的计算机仿真。未经认证或加工条件不充分的粉末样品可能会经历不希望有的粉末变化。测试可以提供在打印过程期间的粉末性质的实时反馈。根据测试结果可以修改一个或更多个打印参数。例如,当气体比重计测量到可能影响熔化或烧结粉末所需单位体积能量的特定粉末密度的偏差时,入射射束强度可能增加或减少。也可以控制由打印头提供的入射射束的停留时间或由粉末分配组件分配的粉末层的厚度以针对能量需求变化进行调节。如果单位体积的能量偏离指定的粉末密度太大,打印过程可能会停止或中止,因为打印头内部的能源可能不符合粉末熔化的要求。在另一个示例中,粉末样品内的污染可以通过气相色谱质谱法检测,这可能影响打印对象的一个或更多个电学、机械和光学性质。在其他实施例中,如果表征结果指示使用未许可粉末或危险粉末(包括可能导致较差的增材制造结果的未许可粉末),则可以停止打印过程。
256.在一些实施例中,基于粉末样品的过程中(实时或原位)表征的结果预测最终的打印质量可以通过使用一组模型进行仿真来执行。例如,打印对象的尺寸控制可以依赖于入射射束的分辨率和熔化区域边界上的粉末的温度梯度。如果温度没有在边界上下降得足够快并导致超出尺寸要求的公差,则熔化的区域可能扩展超出预期的边界。温度梯度可以通过传热模型来仿真,所述传热模型基于粉末的性质(例如基于粉末的组成和尺寸)计算热传导率。如果仿真模型预测的打印对象的尺寸超出尺寸要求的公差,则可以中止打印过程。
257.在1540处,过程5100可以涉及将粉末样品存储在多个样品罐中。样品罐可以存储用于分析,这些分析可能不适合过程中表征,或用于稍后的审核目的。储存容器可能能够在与样品罐内部的过程中(实时或原位)气氛基本相同的气氛下包装粉末样品。气氛可以是真空、空气或诸如氮气、二氧化碳、氩气、氦气或其他稀有气体的惰性气体。
258.参考图16,根据本发明的制造设施1624可以包括容纳在外壳1626内的一个或更多个机器1610。这样的外壳1626可根据需要或必要控制一个或更多个环境条件。例如,外壳1626可保护打印或待打印材料免受不希望的热、化学、光子、辐射或电子反应或相互作用等或其组合或子组合。外壳1626还可以保护人类操作员或其他附近人员免受机器和机器粉末1610的潜在有害方面,例如热、紫外光、化学反应、放射性衰变产物和激光曝光。
259.包含在特定外壳1626内的一个或更多个机器1610可以全部具有相同尺寸或不同尺寸。类似地,包含在特定外壳1626内的一个或更多个机器1610可以全部是相同类型或不同类型。例如,在所选择的实施例中,外壳1626内的一个或更多个机器1610中的每一个可以在批处理中合并(例如,联合、键合、熔融、烧结、熔化等)特定的颗粒材料。在其他实施例中,外壳1626内的一个或更多个机器1610中的每一个可以以连续过程合并特定的颗粒材料。在
其他实施例中,外壳1626内的一个或更多个机器1610可在批处理中合并特定的颗粒材料,而外壳1626内的一个或更多个其他机器1610可以以连续过程合并特定的颗粒材料。
260.在某些实施例中,制造设施1624可以包括形成用于相应外壳1626的一个或更多个前室的一个或更多个气闸1628。气闸1628可使零件、材料144、人员等能够进入和离开外壳1626,而不损害外壳1626内的环境(例如低氧和惰性气体环境)。气闸1628可以包括至少两个气密(或基本气密)门1630a、1630b。气闸1628的第一门1630a可以使零件、材料144、人员等能够在气闸1628的内部和相应的外壳1626的内部之间通过。第二门1630b可使零件、材料144、人员等能够在气闸1628的内部和围绕相应的外壳1626的外部环境之间通过。气闸1628还可以包括气体交换系统(未示出),该气体交换系统可以按照需要或必要清洁和/或排放(vent)气闸1628,从而有效地将气闸1628内的气体环境在与外壳1626的内部兼容的状态和与外壳1626外部的环境兼容的状态之间过渡。
261.一个或更多个机器1610可以布置在外壳1626中,使得机器1610周围的足够空间被保留以供一个或更多个人类工作人员、机器人等访问机器1610、从中移除零件、真空清除未合并的颗粒材料144以再利用等。替代地或附加地,外壳1626可以包括使得一个或更多个人类工作人员、机器人等能够从上方访问机器1610(例如,视觉访问、物理访问)的各种机架、施工步道等。当外壳1626包含一个或更多个大型机器1610时,其中从其边缘或侧面的访问可能不足以执行某些任务,这可能是有帮助的。
262.在某些实施例中,制造设施1624可以包括一个或更多个气体管理系统1632,其控制外壳1626内的气体物质的构成。气体管理系统1632可将惰性气体或基本惰性气体(例如,真空、氮气、氩气、二氧化碳等或其组合或其子组合)的浓度保持在期望水平以上(例如氩气体积处于或高于约99.9%)。可选地,或者除此之外,气体管理系统可以将氧气和/或水蒸气的浓度保持在低于大气水平。例如,在一个实施例中,气态氧的体积的期望水平可以低于0.05%,并且水蒸气的体积低于0.05%。
263.外壳1626内的气体环境可能与可能需要进入和/或在外壳1626内工作的一个或更多个人的呼吸要求不兼容。因此,为了在根据本发明的某些外壳1626内工作,一个或更多个工作人员可以穿戴个人防护装备(ppe)。此后,当工作人员进入外壳1626时,ppe可以在外壳1626内的工作人员与工作环境之间创建屏障。
264.在选定的实施例中,由一个或更多个工作人员穿戴的ppe可以包括自给式呼吸器(scba)。scba可以是过滤、补充和回收或存储呼出气体的闭路设备(例如换气器)。或者,scba可以是将至少一些呼出气体(例如,氮气、二氧化碳、氧气、水蒸气或其组合或子组合)排放到周围环境中的开路设备。在使用开路设备的实施例中,外壳1626内的一个或更多个工作人员呼出的量相对于外壳1626的过大尺寸可能非常小。因此,氧气、水蒸气等向外壳1626内部的释放可以足够小以至可忽略或至少在可接受的限度内(例如,在气体管理系统1632的整流容量内)。
265.参考图17,在所选实施例中,制造设施可包括通过一个或更多个接口机构1728连接以形成网络1740的多个工作区域1724。形成这样的网络1740的一个或更多个工作区域1724可以被包含在外壳1726内。形成这种网络1740的一个或更多个工作区域1724可能不需要外壳1726,因此可能不包含在一个外壳内。形成这样的网络1740的一个或更多个工作区域1724可以被包含在一个或更多个建筑物内。例如,在所选实施例中,形成网络1740的所有
各种工作区域1724可以被包含在单个建筑物内。在这样的实施例中,包含在外壳1726内的任何工作区域1724可以是需要比建筑物所提供的环境调节的更多环境调节的工作区域1724。
266.网络1740的各种工作区域1724可被定义和/或布置为对应于某些制造相关过程。这样的过程可以包括通过增材制造来创建零件;从创建零件的机器中移除零件;移除未合并的颗粒材料;将零件与基座或床、一个或更多个支撑结构(例如延伸通过零件的一个或更多个行进壁的外部部分,打印成在增材制造期间支撑零件、将不包括在成品零件中的一个或更多个临时结构,等)等分离;热处理;喷丸硬化;粉末涂布、涂漆、阳极氧化等;装运包装;或类似物或其组合或子组合。
267.例如,在所选实施例中,网络1740可以包括用于在由外壳1726提供的惰性环境中进行粉末床熔融的第一工作区域1724a,用于从外壳1726中的构建平台146移除颗粒材料144的第二工作区域1724b,用于喷丸硬化以改善外壳1726中的表面抛光的第三工作区域1724c,用于热处理以退火外壳1726中的金属零件的第四工作区域1724d,用于从外壳1726中的构建平台146中移除零件的第五工作区域1724e,用于包装和运输的第六工作区域1724f等,或其组合或子组合。
268.在第一工作区域1724a中,一个或更多个机器可以被包含在外壳1726内。这些机器可能都是相同的尺寸或不同的尺寸。类似地,这一个或更多个机器可以全部是相同类型或不同类型的。例如,在所选择的实施例中,外壳1726内的一个或更多个机器中的每一个可以在批处理中合并(例如,联合、键合、熔融、烧结、熔化等)特定的颗粒材料。在其他实施例中,外壳内的一个或更多个机器中的每一个可以以连续过程合并特定的颗粒材料。在其他实施例中,外壳内的一个或更多个机器可在批处理中合并特定的颗粒材料,而外壳内的一个或更多个其他机器可以以连续过程合并特定的颗粒材料。
269.第一工作区域1724a中的一个或更多个机器可以被布置为使得机器周围的足够空间被保留以供一个或更多个人类工作人员、机器人等访问机器、从中移除零件、真空清除未合并的颗粒材料以再利用等。替代地或附加地,第一工作区域1724a可以包括使得一个或更多个人类工作人员、机器人等能够从上方访问机器(例如,视觉访问、物理访问)的各种机架、施工步道等。当第一工作区域1724a包含一个或更多个大型机器时,其中从其边缘或侧面的访问可能不足以执行某些任务,这可能是有帮助的。
270.在第二工作区域1724b中,可以通过各种方法从构建平台移除未合并的颗粒材料。例如,具有手动或机器人控制(例如移动)的收集口的真空机构可用于从零件周围、离开构建平台或床等收集未合并的颗粒材料。可替代地或除此之外,可以使用手动或机器人控制(例如瞄准)的一股或更多股加压气体流来将未合并的颗粒材料从某些裂缝去除,将未合并的颗粒材料从构建平台或床扫除,和/或将未合并的颗粒材料移动到可通过真空进入的一个或更多个位置。
271.在所选实施例中,如图所示,第一工作区域1724a和第二工作区域1724b可以被包含在单独的外壳1726内。在其他实施例中,第一工作区域1724a和第二工作区域1724b可以包含在相同的外壳1726内。此外,在某些实施例中,第一工作区域1724a和第二工作区域1724b可以在地理上重叠至少一定程度,但是可以在时间上隔开(例如,对应于一个工作区域1724a的一个或更多个任务可以在与对应于另一个工作区域1724b的一个或更多个任务
不同的时间执行)。
272.可选地,第一和第二工作区域1724a、1724b可以在地理上彼此相邻,但是可以在一定程度上在时间上重叠(例如,与一个工作区域1724a相对应的一个或更多个任务可以在与对应于另一个工作区域1724b的一个或更多个任务相同的时间执行)。在这样的实施例中,机器的第一区可以对应于或者可以是第一工作区域1724a,并且第二区(或第二区和第三区的组合)可以对应于或者是第二工作区域1724b。
273.在第三工作区域1724c中,喷丸过程可以被手动或机器人控制地应用于一个或更多个零件。例如,在选定的实施例中,人工或机器人系统可以使用与喷丸过程中的冲击介质相同的颗粒材料(即,用于创建零件的相同颗粒材料)来改善零件的表面抛光。
274.在第四工作区域1724d中,外壳1726可以是或包括用于热处理一个或更多个零件的烘箱。因此,这样的外壳1726可以被配置为产生、保持和控制大量的热量。确切的热量可以在外壳1726的尺寸、正被热处理的零件的性质等之间变化。
275.在第五工作区域1724e中,一个或更多个构建平台或床可以与它们所支撑的零件分离,延伸穿过零件的一个或更多个行进壁的一个或更多个外部部分可以被移除,被打印以支撑增材制造期间的零件的、将不被包括在成品零件内的一个或更多个临时结构可以被移除等或其组合。在选定的实施例中,这可能涉及线电火花加工(edm)过程。在这样的实施例中,零件可以浸没在部分去离子水的浴缸中,其中离子含量被仔细控制作为edm过程的一部分。根据需要或必要,可以包括或省略用于第五工作区域1724e的外壳。
276.在第六工作区域1724f中,可以准备一个或更多个零件用于装运和/或被装运。例如,在第六工作区域1724f中,一个或更多个零件可被涂漆、包装、用塑料包裹、固定到一个或更多个托板等并且装载在卡车上用于装运。根据需要或必要,可以包括或省略用于第六工作区域1724f的外壳。
277.在所选实施例中,网络1740可以包括由一个或更多个接口机构1728串联连接的多个工作区域1724。这种接口机构1728可以使一个或更多个零件能够平稳有效地从一个工作区域1724流动到下一个。相应地,工作区域1724可以被布置在网络1740中,使得与其相关联的任务可以按要求或期望的顺序执行。
278.所述外壳中的任何一个可将惰性气体或基本惰性气体(例如,真空、氮气、氩气、二氧化碳等或其组合或其子组合)的浓度保持在期望水平以上(例如氩气体积处于或高于约99.9%)。替代地或除此之外,外壳可以将氧气和/或水蒸气的浓度保持在低于大气水平(例如,气态氧的体积低于0.05%,水蒸气的体积低于0.05%)。
279.可以通过滚动或以其它方式在路径(例如,混凝土地板)、输送系统、道轨或使用传统的铁路概念多个道轨的组合上移动,在使用编码器的轨道上线性运动,由滑轮系统提供的线性运动,由磁悬浮轨道提供的运动和/或悬浮,经由输送系统或输送带的运动等或其组合或子组合,来经由接口机构1728使用车辆运输打印床、零件或其他材料。可以运输重量为2,000千克或更多的大型零件。车辆可能具有在支撑表面上滚动的轮子。支撑表面可以是地板(例如,具有施加于其上或嵌入其中的视觉、电子或磁性可检测路径的地板)。支撑表面也可以是一个或更多个道轨。这样的道轨可以位于由车辆携带的零件的下方。或者,这些道轨可以位于由车辆携带的零件的上方。也就是说,道轨可以是高架道轨,并且车辆可以是在高架轨道上滚动同时将零件悬挂在其下方的推车或电车。
280.轮式或其他车辆可以手动、自动、自主或半自主地控制和/或操作。例如,在选定的实施例中,一个或更多个轮式车辆可以由一个或更多个人类操作员推动和/或操纵。在其他实施例中,各种车载或车外控制系统可以感测关于车辆正在发生的事情,并指示车辆何时移动、何时停止、如何驾驶等。
281.受益于前述描述和相关联附图中呈现的教导的本领域技术人员将会想到本发明的许多修改和其他实施例。因此,应当理解的是,本发明的范围不限于所公开的实施例的特定示例,并且修改和实施例旨在被包括在所附技术方案的范围内。还应理解的是,本发明的其他实施例可以在没有在此具体公开的元件/步骤的情况下实施。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜