一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于制造压力容器的阻挡层的方法以及压力容器与流程

2021-10-29 21:40:00 来源:中国专利 TAG:压力容器 阻挡 用于 公开 方法


1.此处公开的技术涉及一种用于制造压力容器的阻挡层的方法以及一种压力容器。


背景技术:

2.已知用于储存在环境条件下为气态的燃料的压力容器。从现有技术此外已知用于化学或电化学产生金属涂层的方法。也已知金属涂层可用作渗透阻挡层,例如以减少氢气渗透。在这种金属涂层施加在压力容器的外侧上时,如果氢气聚集在金属涂层下面,那么可能导致层分离。此外,裂纹会降低金属层的渗透阻挡效果。此类裂纹例如可能通过压力容器的由功能导致的膨胀而产生。


技术实现要素:

3.此处公开的技术的优选任务是,减少或消除先前已知解决方案的至少一个缺点或提出备选解决方案。此处公开的技术的优选任务特别是,改善压力容器的阻挡层及其制造。另外优选的任务可以由此处公开的技术的有利效果产生。该任务通过独立权利要求的技术方案得以解决。从属权利要求形成优选的设计方案。
4.此处公开的技术涉及一种用于机动车(例如轿车、摩托车、商用车)的压力容器。该压力容器用于将环境条件下为气态的燃料储存在压力容器的内部容积中。可以将压力容器例如用于机动车中,该机动车利用压缩天然气(compressed natural gas=cng)或液化天然气(lng)或利用氢气运行。
5.此类压力容器也称为复合包装压力容器(=copv)。该压力容器例如可以是低温压力容器或高压气体容器。
6.高压气体容器构成为,用于在环境温度时在大约350barg(与大气压相比的过压)、此外优选大约700barg或更多的标称运行压力(也称为nominal working pressure或nwp)时持久地储存燃料。低温压力容器适合在先前所述的运行压力时且在明显低于机动车运行温度的温度下储存燃料。
7.此类压力容器例如可以由具有多个储存管的管储存系统构成,所述储存管相应具有的长径比的值在5到40之间、优选地在7到25之间、并且特别优选地在9到15之间。长径比是储存管长度为分子和储存管外径为分母之商。符合目的地,储存管设置为相互平行和/或在它们的端部相互流体连通。典型地,储存管串联连接并且能符合目的地在连续的生产过程中制成。在各储存管之间可以设有流体连接元件。通过在储存管之间的流体连接元件也能实现并联连接和/或并联与串联连接的组合。
8.压力容器可以包括内衬。内衬构成其内储存燃料的空心体或内部容积。内衬优选地是由塑料制成的塑料内衬。同样也可设置无内衬的压力容器。
9.压力容器包括至少一个纤维增强层。该纤维增强层可以至少部分区域地优选完全地包围内衬。纤维增强层经常也被称为叠压层或包覆层或护甲。在下文中,主要使用术语“纤维增强层”。通常,纤维增强塑料(=fvk或fkv或cfrp)、例如碳纤维增强塑料(=cfk)和/
或玻璃纤维增强塑料(=gfk)用作纤维增强层。纤维增强层符合目的地包括嵌入塑料基质中的增强纤维。特别是可以改变基质材料、型式和增强纤维份额及其定向,以便实现期望的机械和/或化学性能。优选地,将连续纤维用作增强纤维,增强纤维可通过缠绕和/或编织施加。纤维增强层通常具有多层。
10.压力容器包括至少一个阻挡层。该阻挡层用于减少且优选地用于避免燃料渗透。阻挡层设置为,至少减少且优选地基本上完全阻止储存在内部容积中的燃料泄露到压力容器壁中和/或到环境中。例如,阻挡层可以设置为,使得三个取决于渗透的分步骤:吸附、渗出和解吸、特别是渗出变得困难。为此,阻挡层可以提供尽可能小的自由容积、例如在聚合物的情况下在分子链之间仅有少量的自由空间。通常适用的是,热塑性塑料的高填料含量或高结晶度以及在弹性体和热固塑料时的高聚合度抑制渗出。符合目的地,阻挡层包围内部容积的至少70%或至少90%或至少99%。有利地,表面涂层可以形成阻挡层。该阻挡层可以构成为金属层、特别是由铝、钢和/或铜及其合金制成。阻挡层备选地可以由阻挡燃料的塑料、例如乙烯乙烯醇共聚物(evoh)制成。优选地,阻挡层具有大约0.001mm至0.2mm的层厚度、并且特别优选地在大约0.005mm至0.1mm之间的层厚度。
11.阻挡层例如可以具有与内衬和/或纤维增强层相同的热膨胀系数。阻挡层可以在内侧或外侧上直接或间接地贴靠在内衬上或者纤维增强层上。阻挡层可以特别优选地设置为相对于纤维增强层和/或相对于内衬处于内侧。符合目的地规定,在阻挡层和内衬或纤维增强层之间设置粘合促进层(也称为底漆)。
12.阻挡层符合目的地在压力容器的无内部压力状态中沿压力容器的轴向方向z和/或沿压力容器的周向方向u压缩或挤压。换言之,阻挡层在无内部压力状态中沿牵拉容器的轴向方向z和/或沿压力容器的周向方向u位于压应力下。无内部压力状态是压力容器的内部压力基本上相应于环境压力或大气压的状态。
13.阻挡层可以设置为,如果在内部容积中的压力超过压力容器的极限内部压力,那么阻挡层从(特别是沿轴向方向或沿周向方向)压缩的状态过渡到延展状态,其中,极限内部压力的值在如下范围内:
14.—压力容器(100)的标称运行压力的1%至150%,或者
15.—压力容器(100)的标称运行压力的20%至140%,或者
16.—压力容器(100)的标称运行压力的50%至130%。
17.在压缩状态中,阻挡层能比在延展状态中更好地禁止渗透。因此,可以改善阻挡效果。此外,形成裂纹的可能性降低。
18.此处公开的技术此外涉及一种用于制造(此处公开的)压力容器的阻挡层的方法,压力容器具有内部容积,该方法包括如下步骤,根据该步骤,在内部容积和内衬或纤维增强层或压力容器的环境之间存在压差期间,将用于减少燃料渗透的阻挡层施加到内衬上和/或纤维增强层上。
19.可以利用任何合适的涂覆方法来施加阻挡层、例如利用电方法、电化学方法和/或电镀方法。符合目的地,可以通过化学气相沉积(英语:chemical vapour deposition,cvd)或通过物理气相沉积(英语:physical vapour deposition,pvd)来制造阻挡层。
20.有利地,压差可以是压力容器(100)标称运行压力的至少1%或至少20%或至少30%或至少40%或至少50%或至少60%或至少70%或至少80%或至少90%或至少100%或
至少110%或至少130%或至少150%。有利地,压差可以选择为,使得压差导致待涂覆的表面的在压力容器(100)标称运行压力时出现的延展量的至少10%或至少50%或至少125%。此外,可以规定,压差为塑料内衬(100)破裂压力的至少10%或至少20%或至少30%或至少40%或至少50%或至少60%或至少70%或至少80%或至少90%。
21.有利地,因此能特别简单、快速且低成本地制造阻挡层,该阻挡层在压力容器无内部压力的状态中沿轴向方向和/或周向方向压缩。此外,在制造期间,在阻挡层处于内侧时,将阻挡层的材料通过压差压入到内衬或纤维增强层的可能的孔隙或缝隙中,从而进一步提高阻挡效果。
22.根据此外公开的技术,方法可以包括如下步骤,根据该步骤,将阻挡层设置为相对于纤维增强层和/或相对于内衬位于内侧。特别优选地,将阻挡层施加到塑料内衬上或者然而直接施加到纤维增强层上。符合目的地可以规定,在阻挡层和内衬或纤维增强层之间设置粘合促进层(也称为底漆)。
23.特别是此处公开的技术涉及一种用于储存在环境条件下为气态的燃料的压力容器或内衬,其根据此处公开的方法之一制成。
24.换言之,此处公开的技术涉及一种用于制造渗透阻挡层的方法。如果在压力容器因处于高内部压力而剧烈膨胀期间施加涂层,那么金属网格的裂纹形成或膨胀得以减少。有利地明显改善渗透阻挡效果。优选地,金属层的化学和/或电化学沉积可以在容器处于膨胀状态期间在容器内面上进行。对此,可以使在涂层期间填充容器的流体保持在相比于容器的环境压力提高的压力下。也可以以这种方式对内衬进行涂层。如果这在施加护甲之前进行,那么符合目的地仅需要相对较小的内部压力来在涂层期间产生足够强的延展。如此产生的层在压力小于层被施加时的压力(“产生压力”)时处于横向压缩状态。如果内部压力小于制造涂层时的产生压力、例如在容器无压力时,那么沿周向方向u和轴向方向z在层中存在压力状态。另一个优点是,通过内部压力能打开裂纹,接下来可以通过涂覆来填充、类似密封裂纹。取而代之,如果根据现有技术在无内部压力的情况下沉积,那么在压力下可能出现裂纹(或裂纹打开),裂纹导致涂层裂开。
附图说明
25.现在借助附图阐述在此公开的技术。其中:
26.图1示出压力容器100沿图2的剖切线b

b的示意性纵向剖视图,并且
27.图2示出压力容器100沿图1的剖切线c

c的示意性横向剖视图。
具体实施方式
28.图1示出根据在此公开的技术的压力容器100。该压力容器100包括塑料内衬110(通常在此也称为内衬),该塑料内衬被纤维增强层120、也称为护甲包围。与压力容器纵轴线a

a同轴地在此设有压力容器出口,在该压力容器出口中置入有储箱阀170。在中间区域m中,压力容器100包括柱形周面,在该柱形周面的两个边缘上分别设有帽状端部p1、p2。压力容器100在此构成为柱形。但这并非必须如此。同样可设想其它形状。在内衬110的内侧上在此设有阻挡层130。该阻挡层130也可称为渗透阻挡层。阻挡层130或内衬110在此包围压力容器100的内部容积i,该内部容积用于储存燃料。阻挡层130在此由金属制成。同时可设想,
阻挡层130由另外的材料制成。在此示出仅一个阻挡层130。同时可设想,多个阻挡层130设置为重叠地或者设置在压力容器100的不同部位上。同样可设想,阻挡层130不施加在内侧,而是施加在压力容器壁内部(例如在塑料内衬110外部)或者施加在压力容器100的外表面上(例如在纤维增强层120的外表面上)。
29.此外,示出内衬110的内径d。如果在制造阻挡层130期间以压力加载内部容积i,那么内衬110膨胀(在此未示出)并且内径d增加。在这种延展状态中施加阻挡层130。在施加阻挡层130后,再次降低内部压力。结果,内径d也减小并且阻挡层130压缩。在一种优选的设计方案中,在将纤维增强层120设置在内衬110上之前施加阻挡层130。有利地,在无压力状态中压缩的阻挡层130能在较小的内部压力时制造。
30.图2示出具有处于内侧的阻挡层130的压力容器100的横剖视图,该阻挡层在此通过(未示出的)促进粘合的底漆粘附到内衬110上。
31.本发明的前述描述仅用于说明目的,且不以限制本发明为目的。在不背离本发明及其等同物的范围的情况下,可以在本发明的范围内进行各种改变和修改。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜