一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于沟槽壁切割机的驱动装置的制作方法

2021-10-20 03:18:00 来源:中国专利 TAG:壳体 装置 驱动 传动 沟槽


1.本发明涉及用于沟槽壁切割机的驱动装置,其具有驱动/传动壳体和压力均衡装置,该驱动/传动壳体包围用于容纳驱动/传动元件的内部空间并包括两个可相对彼此旋转的壳体件,这两个壳体件通过密封装置相互密封,该压力均衡装置用于内部空间和周围环境之间的压力均衡。本发明还涉及具有这种驱动装置的沟槽壁切割机。


背景技术:

2.沟槽壁切割机通常用于特殊土木工程,以在地面、岩石或地基中切割出沟槽,这些沟槽填充含有例如用于形成沟槽壁的混凝土的悬浮液。这种沟槽壁通常是在例如由混凝土、钢筋混凝土等制成的地基中的墙体结构,以便密封、支撑或通常以特定方式影响地基。为了制造这种沟槽壁,使用沟槽壁切割机切割出基本上垂直的、向上开口的沟槽,其中,切割工具从上方下降到地面中并由支撑在地面上且优选为可移动的承载装置(例如,履带式缆索挖掘机)引导。在此,沟槽壁切割机通常包括细长的、竖直的切割框架,该切割框架可垂直移动地悬挂在承载装置上,并在其下端部主要承载多个切割轮,这些切割轮可以围绕每个水平轴线沿相反方向进行驱动。用于旋转地驱动切割轮的驱动器也可以被安装在切割框架的下部分处并例如包括一个或多个液压马达,该液压马达可以通过齿轮级来驱动切割轮。
3.在沟槽通过支撑悬浮液(st
ü
tzsuspension)持续稳定的同时,挖除的土壤材料可以借助于渣土泵泵送到地表,因此沟槽或沟槽壁不会倒塌。在达到所需的深度后,随后通常会对沟槽进行混凝土浇筑。由于有时深度相当大,即也可能达到超过100m或150m的数量级,支撑悬浮液会产生可能为10bar或甚至几十bar(例如,20bar)的数量级的相当大的压力。例如,经常用于支撑悬浮液的膨润土的密度在1.0到1.3t/m3的范围内,这导致了所述相当大的压力。
4.在此,由于驱动装置必须密封以不仅防止受到周围环境以及其中包含的研磨介质的污染,而且还要抵抗由于深度而增加的相当大的外部压力,因此驱动装置的密封是一个巨大的挑战。超过一定的压力水平,这种外部压力会导致驱动器的密封出现问题,其中,特别是污泥和水可能渗入到驱动/传动壳体的内部。
5.为了解决这个问题,已经提出了在壳体内部空间和周围环境之间实现压力均衡。例如,文献de 21 62 314 a提出了一种地面铣刨机,其中,驱动装置壳体具有以可膨胀膜或可移动活塞形式的压力均衡装置,以便均衡壳体中的内部压力与外部压力。然而,由此可以实现的压力均衡是有限的,或者这种压力均衡装置不适用于具有膜钻孔深度的沟槽壁中的巨大压力。
6.文献ep 15 29 924 b1提出了一种沟槽壁切割机,其中,传动壳体的整个内部空间都应被加压,以便使传动壳体中的内部空间压力与环境压力均衡。然而,在此,传动装置中会出现损耗,或需要复杂且笨重的蓄压器或压力泵,以便能够提供所需的压力体积。如果内部空间中的压力是通过施加压缩空气或压缩气体产生的,则在传动壳体以通常的方式只填
充大约一半润滑油时需要大量的压缩空气或压缩气体,因为齿轮内部空间的另一半必须用压缩空气填充。例如,如果应利用压缩空气产生20bar的内部压力,则需要填充大约20倍的压缩空气体积。这种压缩空气或压缩气体必须以气球或压力容器的形式存储在沟槽壁切割机中,或替代地,通过压缩机经由压力管线进入到传动装置中。由于所需的体积,两者都很复杂且笨重。
7.在这方面,已经考虑用润滑油近似完全填充传动壳体的内部空间,以使剩余的空气空间在体积方面尽可能的小。由于润滑油的不可压缩性,所需的压力介质的体积被最小化。然而,这种近似完全的填充润滑油具有显著的缺点在于,发生急剧增大的搅动损失,该搅动损失是由于完全填充的传动壳体中的旋转齿轮、轴承和密封件而急剧增大的并导致效率低下并因此导致温度升高的问题。
8.此外,文献ep 16 66 671 b1说明了一种沟槽壁切割机,其中,切割轮架的滚动轴承由两个密封元件密封。为了向密封元件提供润滑剂并可以说是为了冲洗它们,可以通过入口将润滑剂供应到密封件并通过出口再次排出。即使由此可以在一定程度上延长使用寿命,但在高压差的情况下上述问题仍然存在。


技术实现要素:

9.因此,本发明的目的是提供一种改进的驱动装置和一种改进的所述类型的沟槽壁切割机,它们避免了现有技术的缺点并以有利的方式改进示例了现有技术。特别地,即使在非常高的压差(如在沟槽壁深度很大的情况下产生的非常高压差)的情况下也应实现壳体内部空间的可靠密封,而不必通过高搅动损失或大体积的压力气体装置来换取。
10.根据本发明,所述目的通过根据权利要求1所述的驱动装置和根据权利要求24所述的沟槽壁切割机来实现。本发明的优选实施例是从属权利要求的主题。
11.因此,提出了不对壳体的整个内部空间施加压力,而是只对设置在周围环境的上游的中间空间施加压力,并将该中间空间既相对于内部空间密封,又相对于周围环境密封。根据本发明,压力均衡装置包括至少一个中间室,该中间室由压力源加压并通过内密封件相对于内部空间密封且通过外密封件相对于周围环境密封。壳体内部空间和周围环境之间的这种密封的中间室在体积方面明显小于内部空间,使得施加压力以均衡内部空间和周围环境之间的压力变得显然更容易。特别地,由于压力均衡的体积显著小于在加压整个内部空间时的体积,因此不需要大体积的蓄压器或压力泵。同时,执行的压力均衡使外和内密封件可以适用于它们的任务。
12.特别地,所述内和外密封件可以被设计为不同密封件类型的形式,它们一方面将中间室相对于驱动/传动壳体的内部空间密封,另一方面相对于周围环境密封,以便应对中间室外侧和内侧的不同应力。在此,周围环境是指沟槽壁切割机周围的外部空间,特别是填充悬浮液的地面槽。
13.特别地,用于将中间室相对于周围环境密封的外密封件也可被设计为承受由污染物和磨蚀性介质产生的强机械应力,其中,该密封件仅需承受有限的压力,因为由于对周围环境的压力均衡而只产生有限的压力差。另一方面,用于将中间室相对于壳体内部空间密封的内密封件可以被设计为高压力密封,其中,该密封件在此仅需具有有限的耐磨损性介质和耐污染物的能力。
14.特别地,外密封件可以包括驱动器密封件(laufwerkdichtung),该驱动器密封件对于粗糙和磨蚀性的外部介质具有高耐磨性。这种驱动器密封件可以特别包括两个硬质材料密封环,它们相互滑动并可以通过至少一个弹性和/或弹性体密封环支撑在密封件壳体上。硬质材料密封环特别可以是两个金属密封环,它们安装在两个单独的壳体件中并相互挤压,其中,例如硬质材料密封环的研磨或以其他方式精细加工的工作面可以彼此张紧地相互滑动。弹性和/或弹性体密封环可以例如是将硬质材料密封环居中在密封壳体中的o形环,或具有偏离圆形的横截面的弹性体环。在此,也可以设置两个o形或弹性体环,以用于将两个硬质材料密封环相对于壳体件密封。
15.有利地,用于将中间室相对于壳体内部空间密封的内密封件可以是弹性体密封环,其可以被容纳在密封槽中以承受高压差。
16.有利地,内和/或外密封件可以防尘和/或液密和/或气密地设计,优选地在几bar或几十bar的压力或压差下也为防尘和/或液密和/或气密的。
17.有利地,也可以设置两个以上的中间室,它们被布置在驱动或传动壳体的内部空间和周围环境之间并在此可以相互串联,使得两个可相互旋转的壳体件之间的接口穿过多个中间室或被密封。为了从周围环境到达壳体的内部空间,必须依次穿过多个中间室中的每者。
18.在此,每个所述的中间室可以分别用内密封件相对于内部空间密封并且用外密封件相对于周围环境密封,其中,至少一个或每个中间室的内和外密封件能够以上述方式不同地设计。由于所述中间室相互串联的布置,所述外密封件不必直接相对于周围环境进行密封,且内密封件不必直接相对于内部空间进行密封,因为可以分别插入有位于更外侧的中间室或位于更内侧的中间室。例如,内密封件将外中间室相对于内中间室密封,而外密封件密封将内中间室相对于更外侧的中间室密封。尽管如此,外密封件至少相对于周围环境进行间接密封,而内密封件至少相对于内部空间进行间接密封。
19.在本发明的一有利改进示例中,至少一个中间室可以被设计为围绕旋转轴线同心地延伸的环形室,该旋转轴线是两个壳体件可以相对彼此旋转时所围绕的旋转轴线。
20.根据两个可旋转的壳体件之间的接口的设计和布置,至少一个中间室可以被布置在驱动/传动壳体的端面或周侧上。特别地,中间室可以围绕其中一个壳体件的外周面延伸,其中,中间室可以形成在周侧上延伸的环形室。
21.如果两个壳体件通过滚动轴承或滑动轴承相对彼此可旋转地支撑,则所述中间室可有利地以邻近所述滚动或滑动轴承的方式延伸,特别是以在旋转轴线的方向上相对于滚动或滑动轴承偏移的方式延伸。
22.在本发明的改进示例中,驱动/传动壳体可紧固在轴承壳(lagerschild)上,例如,轴承壳可以紧固在沟槽壁切割机的切割框架上,且/或可以承载驱动马达,其中,驱动/传动壳体可包括紧固在轴承壳上且在旋转轴线的方向上从轴承壳突出的连接支架,该连接支架可以被设计为套筒形并可由碗形齿轮盖(getriebedeckel)封闭,特别是包围,该齿轮盖相对于所述连接支架可旋转地安装。例如,可以在壳体盖的边缘板和套筒形连接支架之间设置用于旋转支撑的滚动和/或滑动轴承,该滚动和/或滑动轴承特别可以被布置在周侧上和/或被设计为径向轴承。
23.在此,至少一个中间室可以被布置在套筒形连接支架和碗形壳体盖的边缘板之间
的周侧上且/或邻近轴承壳。
24.如果设置有多个中间室,则中间室可以被设计为具有不同直径的环形室,其中,中间室可以被布置为至少部分地相互嵌套和/或在从径向方向上看时彼此重叠。特别地,中间室可以被布置在以垂直于壳体件的旋转轴线的方式延伸的公共平面中。
25.有利地,至少一个中间室可以经由压力流体通道从压力源加压,该压力流体通道可以至少部分地延伸穿过上述轴承壳和/或穿过上述连接支架。
26.如果设置有多个中间室,有利的是,为各个中间室设置单独的压力端子,以便能够单独地和/或彼此独立地将压力介质施加到中间室。多个中间室的这种独立加压的优点在于,在一个腔室的密封件磨损或中间室泄漏的情况下,压力均衡仍可经由另一中间室进行并且系统保持运转。
27.为了不必提供较大蓄压器或笨重且大体积的压力泵,至少一个中间室可以具有与壳体的内部空间相比非常小的体积。在本发明的改进示例中,中间室的体积可以小于内部空间的体积的10%,或还小于内部空间的体积的5%。
28.有利地,可以可变地控制至少一个中间室中的压力水平。在此,用于至少一个中间室中的由压力源提供的室压力进行控制的控制装置可以根据环境压力和/或切割深度进行工作,例如使得中间室中的室压力将随着外部或环境压力的增加和/或随着切割深度的增加而升高,以便保持限制外部密封件处的或周围环境与中间室之间的压力差。
29.在本发明的有利改进示例中,可以通过压力监测装置监测至少一个中间室中的室压力,以便能够确定中间室的泄漏和/或不期望的压降,从而确定不足的压力均衡。当室压力在预定范围之外时,显示装置可以有利地根据来自压力监测装置的信号进行显示。替代地或补充地,也可以确定室压力的时间进程,以便例如能够确定由于密封件的磨损而造成的逐渐压降或逐渐失效。例如,如果压力出现持续轻微下降,则可以发出维护信号或压降信号,以便尽早识别磨损。
30.有利地,监测装置还可以包括用于检测驱动/传动壳体中的润滑剂物位的润滑剂物位传感器系统,以便能够检测壳体的内部空间中的润滑剂物位的增加。润滑剂物位的这种增加,特别是结合指示中间室中压降的压降信号,可用于确定是否发生到壳体内部的泄露以及中间室的内密封件是否磨损。
31.在本发明的有利改进示例中,至少一个中间室可以连接到冲洗回路,特别是洗涤油的洗涤液可以经由该冲洗回路冲洗中间室。为此,中间室可以连接到洗涤液入口和洗涤液出口,其中,入口和出口有利地连接到中间室的相同部分或相对的室部分(例如,都在圆周环形通道的顶侧上或相对的中心部分上),以便确保洗涤液冲洗整个中间室。通过冲洗中间室可以清洁和冲洗掉通过外密封件到达中间室中的磨损颗粒。在此,所述冲洗系统可以包括过滤洗涤液或其中包含的颗粒的过滤器。
32.在本发明的有利改进示例中,可以设置冲洗控制器,其能够以预定的时间间隔和/或根据操作时间和/或根据壳体转数周期性地冲洗至少一个中间室。
33.根据驱动装置和/或传动系统的设计,壳体件可以具有不同的功能。在本发明的有利改进示例中,由壳体件包围出的内部空间可以容纳至少一个行星齿轮级。如果在壳体内部空间中设置有这种行星齿轮级,则两个壳体件中的一者可以与太阳轮和/或行星架以不可旋转的方式连接,而另一壳体件可用作齿圈或能够以不可旋转的方式连接到齿圈。
34.独立于齿轮的设计,其中一个壳体件可以形成可旋转驱动的输出元件,沟槽壁切割机的切割轮可以紧固到该输出元件以驱动切割轮旋转。
附图说明
35.下面将参考优选的示例性实施例和相关附图更详细地说明本发明。
36.图1示出了根据本发明的一有利实施例的沟槽壁切割机的示意性立体图。
37.图2示出了用于图1的沟槽壁切割机的切割轮的驱动装置的立体图,其中,驱动马达被安装在轴承壳的上部分上,且传动壳体被布置在轴承壳的紧固有图1的沟槽壁切割机的切割轮的下部分处。
38.图3示出了穿过图2的驱动装置的横截面,其示出了传动壳体的可相互旋转的两个壳体件和用于压力均衡的中间室。
39.图4示出了图2和3的驱动装置的局部侧剖视图,其示出了用于对中间室施加压力的压力通道。
40.图5示出了沿图4中的ee线的剖视图,其示出了壳体件之间的中间室的布置以及它们经由压力通道的压力施加。
41.图6示出了根据本发明的另一有利实施例的驱动装置的类似于图6的图示的侧视图,其中示出了用于多个中间室的独立施加的单独压力通道。
42.图7示出了沿图6中的aa线的剖视图,其示出了多个串联连接的中间室的布置以及它们各自的压力供应。
具体实施方式
43.如图1所示,沟槽壁切割机1可以包括细长的、竖直布置的切割框架2,该切割框架可被设计为格子桁架和/或可包括两个侧向布置的纵向导向型材。在下端部段处,切割框架2可以包括至少两个切割轮3,这些切割轮并排布置并可以以能够围绕各自的水平旋转轴线旋转的方式进行驱动,其中,切割轮3的旋转轴线能够彼此平行地和/或以垂直于切割框架2的平坦侧的方式延伸。
44.在此,可以在彼此相反的方向上驱动切割轮3。切割驱动器4可在切割框架2的下端部段处被布置在切割轮3上方,并包括一个或多个例如液压马达形式的驱动马达8,该驱动马达可通过一个或多个齿轮级9驱动所述切割轮3。
45.如图1所示,承载装置5能够以可升高和可降低的方式保持具有切割轮3的切割框架2,或该切割框架可以悬挂在其上。所述承载装置5直立在应切割出相应沟槽的地面上,并可以有利地被设计为可移动的。特别地,具有底盘(例如,履带底盘6)的缆索挖掘机可以被设置为承载装置5,其中,切割框架2可以通过承载装置5的悬臂7升高和降低。
46.如图2至图5所示,驱动装置4可被布置在轴承壳(lagerschild)10上或包括这种轴承壳10,驱动装置可通过该轴承壳紧固到所述切割框架2上。例如,所述轴承壳10可以是t形梁,其上部分可以紧固到切割框架2,而其下部分可以承载驱动/传动壳体11,所述齿轮级(getriebestufe)9被至少部分地容纳在该驱动/传动壳体中。
47.驱动马达8可以例如紧固到轴承壳10的上端部并经由可在轴承壳10内延伸的驱动轴12驱动地耦合到齿轮级9。在此,所述齿轮级9可以包括一个或多个行星齿轮级,以便驱动
其中一个所述切割轮3。
48.在此,传动壳体11包括两个可相对彼此旋转的壳体件13和14,它们通过密封装置15相对于周围环境密封,并包围用于容纳齿轮级9的内部空间16。所述内部空间可以被设计为至少近似圆柱形,并沿两个壳体件13和14的旋转轴线17延伸(参见图3)。
49.其中一个壳体件13可以有利地被设计为套筒形的连接支架,其可以刚性地紧固到轴承壳10,并从该轴承壳在旋转轴线17的方向上向相反侧突出延伸(参见图3)。另一壳体件14可以被设计为碗形的壳体盖,该壳体盖在端部处封闭连接支架13并与环向的边缘板(randsteg)接合。例如单列或多列滚动轴承形式的枢转轴承18将第二壳体件14可旋转地支撑在第一壳体件13上(参见图3和5)。
50.两个壳体件13和14之间的接口或密封缝隙可以穿过所述枢转轴承18,并沿着套筒形连接支架的圆周侧且在该连接支架的在两个壳体件13和14之间的端面上延伸(参见图3)。
51.压力均衡装置19包括可加压的中间室20,该中间室被布置在内部空间16和周围环境之间并形成两个壳体件13和14之间的密封缝隙或接口的一部分,并将内部空间16相对于外部环境密封。
52.如图2至5所示,套筒形壳体件13在相对的端面上分别由壳体盖14封闭,因此设置有两个密封缝隙和相应的两个中间室20。在这方面,两个中间室20相同,下面将仅对两者中的一者进行说明。
53.如图5所示,所述中间室20被设计为环形室的形式,该环形室相对于旋转轴线17同心地延伸并在两个壳体件13和14之间周向地延伸。特别地,中间室20沿被设计为连接支架的壳体件13的外圆周和/或沿轴承壳10延伸,其中,中间室20可以被布置在枢转轴承18和轴承壳10之间。
54.还如图5所示,中间室20通过内密封件21相对于内部空间16密封并通过外密封件22相对于周围环境密封。内密封件21和外密封件22可以彼此不同地设计,其中,外密封件22可以有利地被设计为驱动器密封件(laufwerkdichtung)的形式。与此无关地,内密封件21可以被设计为弹性体密封件的形式,例如为密封圈的形式,其可以被容纳在槽形的密封凹部中以密封两个壳体件13和14之间的接口。容纳有弹性内密封件21的所述密封槽可以在圆周方向上延伸或被设计在壳体件14的内圆周上和/或壳体件13的外圆周上,使得内密封件21密封两个壳体件13和14之间的周边接口。
55.特别地,被设计为驱动机构密封件的外密封件22可以包括两个金属或硬质材料的密封环,它们的研磨或其他精细加工的工作面(特别在轴向侧的端面)相互挤压并彼此分离。两个金属密封环可以分别用o形环或弹性体环支撑在密封壳体上和/或相对彼此密封,因此一个金属密封环被布置在固定的密封壳体件上,且另一金属密封环被布置在旋转的密封壳体件上(参见图5)。
56.中间室20可以经由压力流体通道23从压力源24施加诸如压力油等压力流体,其中,所述压力介质通道23可以有利地延伸穿过非旋转的壳体件12。特别地,所述压力介质通道23可以延伸穿过轴承壳10和被设计为连接支架的壳体件13,以便与中间室20连通。压力介质通道23在轴承壳10上的开口可以被设计为压力流体端子。
57.为了能够用压力介质冲洗中间室20,两个压力介质通道23也可以与中间室20连
通,有利地被布置在相对侧上或与中间室20的相对部分连通。在此,其中一个压力介质通道23用作入口而另一压力介质通道用作出口,以便能够使压力介质冲洗中间室20并由此可以冲洗掉污染物。
58.图4所示的额外的侧向压力介质通道25可用作服务端子,以便例如能够在冲洗期间供应和排出冲洗介质。然而,在此,压力监测装置26也可以通过这种压力介质通道25连接,以便能够如上所述地监测中间室20中的室压力。
59.然而,替代地或补充地,压力监测装置也可以有利地通过上述压力介质通道23连接,由此可以实现简单的安装。
60.如图6和7所示,两个壳体件13和14之间的接口或密封球也可以分配有两个或可能两个以上的中间室20a和20b,其中,所述中间室20a和20b串联连接,使得想要离开内部空间16的润滑剂将必须挤过两个中间室20a和20b,或者相反地,污染物将必须通过两个中间室20a和20b才能从周围环境进入内部空间16。
61.如图7所示,两个中间室20a和20b可以分别被设计为环形室并具有不同的直径,使得两个中间室20可以有利地相互嵌套地布置。特别地,两个中间室20a和20b可以被布置在以垂直于旋转轴线17的方式延伸的公共平面中,且/或在从径向方向看时,这两个中间室是重叠的。
62.有利地,多个中间室20a和20b可以被彼此独立地加压。为此,每个中间室20a和20b可以与其自己的压力介质通道23a和23b连通,这些压力介质通道23a和23b可以形成两个单独的压力端子(参见图6)。在一个中间室中的压力下降的情况下,通过独立加压仍可以确保通过另一腔室实现压力均衡。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜