一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种用于高精度烟雾探测器的光电控制系统的制作方法

2021-10-09 12:15:00 来源:中国专利 TAG:烟雾 探测器 控制系统 探测 光电


1.本发明涉及烟雾探测技术领域,尤其涉及一种用于高精度烟雾探测器的光电控制系统。


背景技术:

2.目前市面上的烟雾探测器大多功能简单,功能增强型的烟雾探测器由分离器件构成的功能系统也越来越复杂,对系统处理器的要求也越来越高,受限于功耗续航的国家标准要求,无法适应如今越来越复杂的应用场景和技术要求。特别是在一些场合需要对温度、湿度等环境参数进行同步检测,分析凝露、水蒸气的复杂情况,同时又要克服环境光干扰的情况下,现有的探测器设计已不能满足产品要求。所以有必要发明一种功耗控制优异、探测精度高的用于高精度烟雾探测器的光电控制系统。


技术实现要素:

3.发明目的:为了克服现有技术中存在的不足,本发明提供一种功耗控制优异、探测精度高的用于高精度烟雾探测器的光电控制系统。
4.技术方案:为实现上述目的,本发明的一种用于高精度烟雾探测器的光电控制系统,包括数字电路单元、发光单元、接收单元和模数转换单元;所述模数转换单元通讯连接设置在所述数字电路单元和所述接收单元之间;所述数字电路单元包括时序状态机、计算单元和内部存储器;所述时序状态机对应控制所述发光单元和接收单元;所述计算单元、所述模数转换器与所述内部存储器通讯连接;所述数字电路单元外接微处理器。
5.进一步地,所述接收单元包括接收通道;所述接收通道包括串联顺次设置的通道放大器和信号调理器;所述信号调理器通过数模转换器与所述数字电路单元通讯连接;所述通道放大器的信号输入端和所述信号调理器之间并联设置有环境光抽取电流型数模转换器;所述接收通道还包括本底电流抽取电流型数模转换器;所述本底电流抽取电流型数模转换器与通道放大器、信号调理器并联设置;所述本底电流抽取电流型数模转换器通讯连接设置在所述通道放大器的信号输入端和所述数字电路单元之间。
6.进一步地,所述信号调理器向所述环境光抽取电流型数模转换器输入的数据包括模拟反馈信号。
7.进一步地,所述数字电路单元向所述环境光抽取电流型数模转换器输入环境光偏置值。
8.进一步地,所述数字电路单元向所述本底电流抽取电流型数模转换器输入本底偏置值和数据反馈信号。
9.进一步地,所述接收通道包括两路并行的通道,其中,两路通道均具备光学数据采集功能,至少一路通道同时具备辅助电学信号采集功能。
10.进一步地,所述辅助电学信号包括一氧化碳浓度参数、温度参数和湿度参数中传感器电学输出的至少一种。
11.进一步地,所述时序状态机呈周期性地唤醒、休眠交替工作状态。
12.进一步地,所述数字电路单元与所述微处理器之间设置有阈值检测、迟滞和计数的功能单元。
13.有益效果:本发明的一种用于高精度烟雾探测器的光电控制系统,包括数字电路单元、发光单元和接收单元;所述数字电路单元包括时序状态机、计算单元和内部存储器;所述时序状态机对应控制所述发光单元;所述计算单元与所述时序状态机通讯连接;所述计算单元与所述接收单元通讯控制连接;所述数字电路单元外接微处理器。利用具备低功耗处理能力的数字电路单元有效减少了对于微处理器部分的唤醒,在保证功能的前提下极大提升了烟雾探测器的续航能力。同时,在接收单元中引入了多路通道设置,可以同时接收包括光电信号和一氧化碳浓度、温度、湿度传感器电学输出等辅助参数信号,提升了系统的扩展能力。
附图说明
14.图1为系统架构示意框图;
15.图2为光电控制系统整体架构图;
16.图3为接收单元具体结构示意图;
17.图4为数字时序状态机工作示意图;
18.图5为环境光消除工作示意图。
具体实施方式
19.下面结合附图对本发明作更进一步的说明。
20.一种用于高精度烟雾探测器的光电控制系统,包括数字电路单元11、发光单元a1、接收单元a2和模数转换单元8;所述模数转换单元8通讯连接设置在所述数字电路单元11和所述接收单元a2之间;所述数字电路单元11包括时序状态机、计算单元和内部存储器;所述时序状态机对应控制所述发光单元a1和接收单元a2;所述计算单元、所述模数转换器8与所述内部存储器通讯连接;所述数字电路单元11外接微处理器。
21.所述接收单元a2包括接收通道;所述接收通道包括串联顺次设置的通道放大器51和信号调理器52;所述信号调理器52通过数模转换器8与所述数字电路单元11通讯连接;所述通道放大器51的信号输入端和所述信号调理器52之间并联设置有环境光抽取电流型数模转换器53;所述接收通道还包括本底电流抽取电流型数模转换器54;所述本底电流抽取电流型数模转换器54与通道放大器51、信号调理器52并联设置;所述本底电流抽取电流型数模转换器54通讯连接设置在所述通道放大器51的信号输入端和所述数字电路单元11之间。
22.所述信号调理器52向所述环境光抽取电流型数模转换器53输入的数据包括模拟反馈信号。
23.所述数字电路单元11向所述环境光抽取电流型数模转换器53输入环境光偏置值。
24.所述数字电路单元11向所述本底电流抽取电流型数模转换器54输入本底偏置值和数据反馈信号。
25.所述接收通道包括两路并行的通道,其中,两路通道均具备光学数据采集功能,至
少一路通道同时具备辅助电学信号采集功能。
26.所述辅助电学信号包括一氧化碳浓度参数、温度参数和湿度参数传感器电学输出的至少一种。
27.所述时序状态机呈周期性地唤醒、休眠交替工作状态。
28.所述数字电路单元11与所述微处理器之间设置有阈值检测、迟滞和计数的功能单元。
29.对于该光电控制系统的详细阐述如下:
30.一个典型的烟雾探测器的电路如图1所示。这是精简的系统框图,一个烟雾报警器最核心的三大电路模块是光电模块、信号处理和控制模块以及微处理器。光电模块与信号处理及控制模块之间的接口主要是发射管的驱动以及接收管的光电流信号接口,信号处理和控制模块与微处理器之间的接口是通用的串行总线如i2c或spi,主要用于微处理器读取数据,微处理器与光电模块之间的接口也是通用的串行接口。
31.信号处理及控制模块的目的在于减少对外部微处理器的依赖,一方面可以减少系统分离器件的数量,有利于简化设计,减少生产组装成本;另一方面可以把相当部分的数据处理工作通过信号处理及控制模块来完成,减少微处理器的唤醒,兼顾烟雾探测设备的续航能力。其中,信号处理及控制模块就是本方案中的数字电路单元11,而外部的光电模块或者器件连接本方案中的发光单元a1和接收单元a2;接收单元a2如图2所示具体包括第一通道5和第二通道6;该光电控制系统外接光电模块或者器件,可以将光电信号输入、信号调理和控制模块集成在一起后再与微处理器配合,也可以同微处理器一同集成到一起。
32.图2是控制电路系统的整体架构示意图。控制电路主要包括发光管输出选择开关1、发光管驱动2,发光管时序控制3、输入选择开关4、模拟转换器输入选择开关7、数模转换器8、内部时钟9、电源管理10,数字电路单元11等部分,下面将对各部分逐一解释。
33.发光管驱动2是一个发光管驱动电路,具备至少一路发光管驱动,典型的可以是两路驱动,驱动a和驱动b,这里的驱动是指同步驱动即两路发光管同时点亮。典型的4个led驱动引脚,led1到led4,这里默认是共阳极的接法,即发光管的阴极接各路电流驱动,各路驱动引脚经发光管输出选择开关1接内部发光管驱动2。如果发光管是背对背类型的,控制电路也包括在发光管输出选择开关1中。发光管时序控制3控制发光管驱动2和发光管输出选择开关1,发光管时序控制3可以是单独的时序控制也可以是数字电路单元11的一部分。
34.接收单元a2由输入选择开关4和信号调理通道组成,至少应包含一个具体通道,典型地包含两个信号调理第一通道5和第二通道6。第一通道5和第二通道6的输出接至模数转换器输入选择开关7,然后送至模数转换器8,其将模拟数据转换为数字信号后送至数字电路单元11部分。该部分对应的输入引脚为接收管接收部分和通用输入部分,至少包括一个接收管的两个引脚,pd1_a和pd1_c分别表示接第一收管的阳极和阴极,pd2_a和pd2_c分别表示第二接收管的阳极和阴极,可以通过输入选择开关4接至第一通道5和第二通道6的输入。ext_v1和ext_v2可用于外部通用的电压信号采集,并经输入选择开关4接至第一通道5和第二通道6的输入端。
35.数字电路单元11包括数字时序状态机、计算单元、内部存储单元等电路部分。数字时序状态机是整个电路的逻辑驱动流程,决定电路完成各个动作的顺序以及在什么时间点完成什么动作,具体操作方法将在下面单独章节描述。计算单元是专门为烟感传感器优化
的计算引擎,以减少处理器的运算时间。内部存储一是用来存储状态机寄存器数据,二是暂存数据,避免频繁唤醒处理器,三是用于内部算法的数据缓冲。外部引脚分为两组:一是接口组,可选用的是spi或者i2c接口;二是通用信号线gpio0/int和gpio1/trg。spi接口共四个信号线cs(spi接口片选信号)、sclk(spi接口时钟信号)、mosi(spi接口从片数据输入)和miso(spi接口从片数据输出),i2c接口有两个信号线scl(i2c接口时钟信号)和sda(i2c接口数据信号)。通用信号线gpio0/int和gpio1/trg都可以作为通用io口来使用,gpio0/int还可以作为中断功能,用于中断或唤醒主处理器,gpio/trg还可以作为外部触发功能使用,主处理器可以根据自己的需要来主动触发数据采集。
36.其他内部功能模块如电源模块10和内部时钟模块9等。电源模块10担当整个模块的供电,模块的供电分为三个类型,模拟电路供电avdd、数字电路供电dvdd和io接口供电iovdd,其对应的地为模拟地信号agnd、数字地信号dgnd和io接口地信号iognd。内部时钟9产生内部电路用的时钟信号,电路一般会内置内部的时钟源,也会允许用户使用外部的时钟输入ext_clk。
37.如图3所示是详细的通道信号调理框架图。这是图2控制电路系统的整体架构示意图中的第一通道5的详细框图,增强的自动环境光消除和本底消除也包含在本模块中。第二通道6的结构与第一通道5类似,在此不再赘述。虚线框包括通道放大器51、通道信号调理52、环境光电流抽取/电流型数模转换器53、本底电流抽取/电流型数模转换器54以及针对本底的电流抽取通道选择器56。下面将一一描述各部分的工作原理。
38.通道放大器51有四种工作模式:一是默认的差分输入跨导放大器模式,s11和s12开关闭和,s13、s14和s15开关打开,外部可以接光电接收管的两个引脚如pd1_a和pd1_c引脚;二是单端输入的跨导放大器模式,s12和s15开关闭和,s11、s13和s14开关打开,外部可以接光电接收管的两个引脚如pd1_a和pd1_c引脚,pd1_a对应于通道放大器51的输入b,pd1_c对应于通道放大器51的输入a;三是输入缓冲功能,用于作为外部信号输入与模数转换器8之间的输入缓冲,当工作于缓冲器模式时,s13是闭合的,s11、s12,s14和s15均是打开的。可选择外部引脚ext_v1或者ext_v2输入至通道放大器51的输入a上;四是输入放大功能,放大倍数为1 rf/rb1,此时,s12和s14是闭合的,s11、s13和s15均是打开的。可选择外部引脚ext_v1或者ext_v2输入至通道放大器51的输入a上。因此,通道放大器51既可以用于光电管的信号接收功能也可以用于外部通用电压信号的采集。在实际设计中,rf1和rb1的值都是可编程选择的,与rf1并联的也可以选择并联的低通滤波电容,用于限制输入带宽,限于篇幅,这些细节在此不再赘述。
39.环境光电流抽取电流型数模转换器53,后面简称环境光抑制器。本发明包含两种环境光消除法,一种是这里提到的增强的环境光消除,另一种是基本的环境光消除。增强的环境光消除适用于强环境光环境或者环境光变化较快的场景,典型的如无迷宫环境,传感器会直接暴露于环境光中,因此增强的环境光消除可以理解为硬件集成的快速环境光消除功能。但在传统的有迷宫应用环境中,一般迷宫通过机构设计不拿做到遮光的效果,即使不能完全遮光,迷宫内部的环境光残留量和变化也不会过于激烈,因此增强环境光在有迷宫环境中是可选项,基本的环境光消除也够用。当环境光照射到接收管时会产生一定的电流信号,这会占据输入通道放大器51的输入动态范围,所以需要环境光抑制器53将多余的环境光电流抽取掉,通道信号调理器52会根据通道放大器51的模拟输出提取直流部分或者低
频部分并反相反馈到51的输入端将输入电流抵消掉,这是来自模拟电路的模拟反馈57,具有速度快的特点。另外一种模式是来自于数字电路单元11的环境光偏置值58,这是从模数转换后的数据提取的偏置值或者来自于用户处理器的环境光偏置值。因此,模拟反馈57是自动运行的,也是适时的,而环境光偏置值反馈是半自动的。
40.本底电流抽取电流型数模转换器54,后面简称本底抑制器54。不同于环境光抑制器53,本底抑制器54不需要类似于环境光抑制器53的适时模拟反馈57通路,它的反馈均来自于数字电路11。两个数字反馈分别是本底偏置值59和自动数据反馈50,本底偏置值59是来自于本底值累积,默认可以设置为一段时间内的数据平均值,这是为了应对灰尘累积和器件老化的慢速变化。自动数据反馈50是数字电路11根据根据模数转换器8的输出获得直流或者低频输出并反馈给本底抑制器54。本底偏置值59反馈和自动数据反馈50经通道选择器56后选择反馈给本底抑制器54。
41.如图4所示是数字时序状态机示意图。为了突出数字时序的灵活性,数字时序状态机可以分为三个层次:采样周期t、时间片周期t1以及操作周期s1。采样周期等同于数据率输出率,比如说数据输出率为100hz意味着采样周期为10ms,每一个采样周期分为工作周期t1和低功耗休眠期t2,为了节省功耗,每次电路完成工作周期t1后进入低功耗休眠期t2。工作周期t1又可以分为多个时间片,时间片的个数和操作内容是可以编程的,比如说总共编程两个时间片,时间片1点亮发射管111同时采样接收管21,时间片2点亮发射管121同时采样接收管21。因此,至少得需要两个时间片来满足双发单收的光学设计。每个时间片又可以分为多个操作,操作的个数和内容也是可以编程的,一般是2个或者4个,典型的应用是基本环境光消除功能,将在下面解释。
42.如图5所示是基本的环境光消除示意图。这些操作可以在图4中的一个时间片内完成,共有四个操作op1、op2、op3和op4,对应四个操作的发射管分别为关、开、关和开操作,每个操作都会进行一次adc模数转换,如果四个操作的对应着数学的减、加、减和加操作,最终的数模转换结果为adc=adc2 adc4

adc1

adc3。
43.总体来讲,更多的光学器件意味着更复杂的控制逻辑,单靠微处理器来管理比较复杂而且很难控制功耗。而控制电路可以通过低功耗的芯片组,实现控制光学器件发射管和接收管的时序以及数据采集等基本功能,搭配内置存储单元,减少对为微处理器的唤醒,实现低功耗长续航的目的。
44.内置可编程状态机,用于控制数据采集或者接受外部随机触发工作,非数据采集或者触发工作期间,器件进入超低功耗待机模式;内置数据超限提醒及计数功能,以及唤醒主处理器的机制,减少主处理器的唤醒次数。典型的应用场景是烟雾传感器中的处理器进入休眠状态,而只有光电控制系统持续保持工作状态,它会自动判断每个样本是不是超过设置的阈值或者超过变化量,是否超过累计次数等情况,从而唤醒处理器来读取fifo数据做进一步的判断,此时处理器也可以设置更快的数据数据率以做更精准的判断;
45.内置存储器以缓冲一定数量的数据,减少对处理器的唤醒;内置增强的环境光抑制引擎,用于抑制强环境光或者快速变化的环境光干扰,这对无迷宫应用特别有利;内置基本的环境光抑制引擎,用于有迷宫应用场景的环境光抑制,平衡成本和功耗;内置慢速本底计算逻辑以应对灰尘累积及器件老化问题;内置迷宫本底抑制引擎,提供本底超限提醒,减少处理器干预;内置数据求导法以应对大本底情况下的烟雾处理。
46.以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜