一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于核壳结构SiO2@Graphene量子点的钛合金轧制润滑液及其制备方法与流程

2021-06-08 14:14:00 来源:中国专利 TAG:轧制 量子 制备方法 钛合金 结构

一种基于核壳结构sio2@graphene量子点的钛合金轧制润滑液及其制备方法
技术领域
1.本发明属于机械加工润滑技术领域,具体涉及一种基于核壳结构sio2@graphene量子点的钛合金轧制润滑液及其制备方法。


背景技术:

2.钛合金在轧制变形时,轧辊与轧件之间容易产生大量的摩擦热,从而导致轧件表面发生磨损现象,如果润滑不足,则大大损害轧件表面质量,降低产品质量。
3.石墨烯作为新型二维纳米材料,其碳原子以sp2杂化的单层堆积而成的蜂巢状二维原子晶体,其化学形态类似碳纳米管表面。石墨烯片层间的剪切力较小,拥有比片状石墨更低的摩擦系数,具有优异的导热性能和耐摩擦性能并且具有熔点较高,能够起到一定的润滑作用等优点,在轧制润滑中具有广泛的应用潜力然而,现在市面上常用的石墨烯润滑剂普遍存在高温摩擦系数较高、抗极压性能较差、化学性质比较稳定难以在许多溶剂中分散的缺点。
4.目前,已有研究证明,纳米微粒在高温、高载荷、等润滑条件下表现出优异的摩擦学性能。其中,纳米二氧化硅作为一种常用的纳米材料,具有良好的高温性能,高扩散性,同时它还可以作为添加剂加入油脂中来改善产品的极压抗磨性能,然而,在润滑液中sio2的添加量不宜过多,当超过sio2添加量超过最佳值时,抗磨损性能将会下降。
5.因此,为发挥二氧化硅与石墨烯的协同作用,开发一种以石墨烯量子点为核以纳米二氧化硅为覆膜壳体的核壳结构材料的轧制润滑液,从而全面提高复合颗粒的摩擦学性能就显得尤为重要。


技术实现要素:

6.本发明的第一目的是提供一种sio2@graphene核壳结构量子点及其制备方法;本发明的第二目的是提供sio2@graphene核壳结构量子点的用途;本发明的第三目的是提供一种基于核壳结构sio2@graphene量子点的钛合金轧制润滑液及其制备方法。
7.本发明的第一目的是这样实现的,一种sio2@graphene核壳结构量子点,所述核壳结构量子点的核体为石墨烯,壳体为纳米二氧化硅。
8.所述sio2@graphene核壳结构量子点的制备方法,包括以下步骤:
9.1)氧化石墨烯与聚甲基吡咯烷酮混合并球磨35

45h,球磨得到的产物于2000

3000rpm下离心20

40min,取上清液于10000

12000rpm下离心20

40min,将离心得到的沉淀用去离子水洗涤3

5次,得到氧化石墨烯量子点水溶液;
10.2)将正硅酸乙酯溶解于乙醇中,搅拌2

4h后加入所述氧化石墨烯量子点水溶液,搅拌8

12h后得到反应液,于坩埚中加热蒸干得到粗产物,所述粗产物用去离子水和乙醇洗涤5

8次后干燥即得具有核壳结构的sio2@graphene量子点粉末。
11.本发明的第二目的是这样实现的,所述核壳结构sio2@graphene量子点的用途是
作为基础油添加剂在制备轧制润滑液中的用途。
12.本发明的第三目的是这样实现的,基于核壳结构sio2@graphene量子点的钛合金轧制润滑液,包括以下重量份的组分:1.5

2.5份基础油、1.5

2.5份基础油添加剂、90

96份去离子水、0.3

0.7份表面活性剂、0.8

1.2份分散剂、0.8

1.2份含硫添加剂、0.5

1.4份抗氧化剂以及0.5

1.4份助剂;其中,所述基础油添加剂为所述sio2@graphene量子点粉末。
13.所述基于核壳结构sio2@graphene量子点的钛合金轧制润滑液的制备方法,是将所述sio2@graphene量子点粉末与基础油及去离子水混合搅拌并进行超声处理后,加入分散剂、含硫添加剂、抗氧化剂以及助剂,调节ph值至7

9,得到基于核壳结构sio2@graphene量子点的钛合金轧制润滑液。
14.本发明的有益效果为:
15.1)本发明采用水热法首次制备得到了一种基于核壳结构的sio2@graphene量子点,其以石墨烯为核以纳米二氧化硅为覆膜壳体,具有高温摩擦系数较低、抗极压性能较好的特点。
16.2)本发明针对现有技术润滑液中存在的高温摩擦系数较高、抗极压性能较差、难以在许多溶剂中分散的问题,提供了一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液及其制备方法,本发明以三乙醇胺、甘油、新戊醇、椰子油、蓖麻油混合物的水溶液做为基础油,以具有核壳结构的sio2@graphene量子点粉末代替传统的sio2或氧化石墨烯粉末作为基础油添加剂,采用冰水浴超声 细胞粉碎机超声进行超声分散,并采用化学方法改性,得到均一、稳定的轧制润滑液。经试验检测,本发明制备得到的轧制润滑液较现有技术润滑液具有更为优异的性能及持久的润滑性能,在钛合金超薄板材冷轧加工领域性能表现优异,值得进一步应用推广。
附图说明
17.图1为实施例12制备的具有核壳结构的sio2@graphene量子点示意图;
18.图2为实施例12制备的氧化石墨烯量子点tem图;
19.图3为实施例12、对比例1及对比例2进行摩擦试验后的平均摩擦系数对比图。
20.图4为实施例12、对比例1及对比例2进行摩擦试验后的磨损率对比图。
21.图5不同轧制液轧制钛合金板的表面效果对比图,其中,a为空白组,b为对照组,c、d分别份对比例1及对比例2,e为实施例12。
具体实施方式
22.下面结合实施例对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
23.本发明一种sio2@graphene核壳结构量子点,所述核壳结构量子点的核体为石墨烯,壳体为纳米二氧化硅。
24.本发明所述sio2@graphene核壳结构量子点的制备方法,包括以下步骤:
25.1)氧化石墨烯与聚甲基吡咯烷酮混合并球磨35

45h,球磨得到的产物于2000

3000rpm下离心20

40min,取上清液于10000

12000rpm下离心20

40min,将离心得到的沉淀用去离子水洗涤3

5次,得到氧化石墨烯量子点水溶液;
26.2)将正硅酸乙酯溶解于乙醇中,搅拌2

4h后加入所述氧化石墨烯量子点水溶液,搅拌8

12h后得到反应液,于坩埚中加热蒸干得到粗产物,所述粗产物用去离子水和乙醇洗涤5

8次后干燥即得具有核壳结构的sio2@graphene量子点粉末。
27.所述步骤1中,所述氧化石墨烯与聚甲基吡咯烷酮的质量比为10:1

5:1。
28.所述步骤2中,所述氧化石墨烯量子点水溶液的浓度为0.4

0.6%;正硅酸乙酯、乙醇以及氧化石墨烯量子点水溶液的体积比为9

10:9

10:1

1.05。
29.所述步骤2中,反应液于140

160℃下在坩埚中加热8

10小时,粗产物于55

70℃下干燥10

14h。
30.所述氧化石墨烯通过以下方法制备得到:将0.1

1.5g石墨粉末与3

5ml磷酸和30

50ml浓硫酸混合后置于冰水浴中搅拌15

30min,加入高锰酸钾2

3g继续搅拌15

30min后将系统温度升至65

75℃,继续搅拌15

25h,停止加热,加入20

30ml 30%的过氧化氢溶液,并用5%盐酸(hcl)溶液和过量的水将产物洗涤至ph值为=6.5

7.5,最后将产物离心得到氧化石墨烯(go)。
31.本发明所述核壳结构sio2@graphene量子点的用途是作为基础油添加剂在制备轧制润滑液中的用途。
32.本发明一种基于核壳结构sio2@graphene量子点的钛合金轧制润滑液,包括以下重量份的组分:1.5

2.5份基础油、1.5

2.5份基础油添加剂、90

96份去离子水、0.3

0.7份表面活性剂、0.8

1.2份分散剂、0.8

1.2份含硫添加剂、0.5

1.4份抗氧化剂以及0.5

1.4份助剂;其中,所述基础油添加剂为所述sio2@graphene量子点粉末。
33.所述基础油为三乙醇胺、甘油、新戊醇、椰子油、蓖麻油中的一种或多种;所述表面活性剂为十二烷基磺酸钠、span

80、油酸、山梨醇中的一种或几种;所述分散剂为聚乙烯吡咯烷酮;所述含硫添加剂为硫化烯烃;所述抗氧化剂为胺型抗氧剂,所述助剂为分子量大于400的酚类抗氧剂。
34.所述胺型抗氧剂为n

苯基

α萘胺、二苯胺、萘胺、或对苯二胺中的一种或多种的组合。
35.所述分子量大于400的酚类抗氧剂为苯乙烯化苯酚或双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚或其组合物。
36.本发明所述基于核壳结构sio2@graphene量子点的钛合金轧制润滑液的制备方法,是将所述sio2@graphene量子点粉末与基础油及去离子水混合搅拌并进行超声处理后,加入分散剂、含硫添加剂、抗氧化剂以及助剂,调节ph值至7

9,得到基于核壳结构sio2@graphene量子点的钛合金轧制润滑液。
37.以下结合实施例对本发明做进一步说明。
38.实施例1
39.1)将0.5g石墨粉末与3ml磷酸(h3po4)和30ml浓硫酸(h2so4)混合。将混合物在冰浴中冷却至0℃并搅拌15min。随后,将2g高锰酸钾(kmno4)缓慢倒入上述溶液中,并在0℃下继续搅拌15min。之后,将系统温度升至65℃,并连续搅拌15h。然后将含有20ml 30%过氧化氢(h2o2)的双氧水加入至上述混合物中,并用5%盐酸(hcl)溶液和过量的水洗涤,直到滤液ph=6.5。最终将产物离心得到氧化石墨烯(go)。
40.2)将氧化石墨烯与聚甲基吡咯烷酮(nmp)按10:1的质量比加入至硬质钢球磨罐
中,球磨35h后取出,先将产物在2000rpm离心20分钟后提取上清液,随后将上清液在10000rpm离心20分钟后得到沉淀,反复用去离子水清洗3次,得到浓度为0.5%氧化石墨烯量子点水溶液,如图2所示,从图2中可以看到大部分氧化石墨烯尺寸小于5nm,并均匀分散在水溶液中。
41.(3)将相同体积的正硅酸乙酯(teos)溶解在乙醇中在室温下搅拌2h,然后加入1/10正硅酸乙酯体积的0.4%浓度的氧化石墨烯量子点水溶液,并恒温继续搅拌8h。然后,将混合溶液放置在坩埚中,并在140℃下加热8小时。当坩埚冷却至室温时,取出产物,并将产物用去离子水和乙醇洗涤5次,去除杂质。最后,将样品在55℃下干燥10h,得到具有核壳结构的sio2@graphene粉末,其结构示意图如图1所示。
42.实施例2
43.1)将0.8g石墨粉末与4ml磷酸(h3po4)和40ml浓硫酸(h2so4)混合。将混合物在冰浴中冷却至0℃并搅拌25min。随后,将2.5g高锰酸钾(kmno4)缓慢倒入上述溶液中,并在0℃下继续搅拌25min。之后,将系统温度升至70℃,并连续搅拌20h。然后将含有25ml 30%过氧化氢(h2o2)的双氧水加入至上述混合物中,并用5%盐酸(hcl)溶液和过量的水洗涤,直到滤液几乎为中性。最终,将产物离心并得到氧化石墨烯(go)。
44.2)将氧化石墨烯与聚甲基吡咯烷酮(nmp)按7:1的质量比加入至硬质钢球磨罐中,球磨40h后取出,先将产物在3000rpm离心30分钟后提取上清液,随后将上清液在11000rpm离心30分钟后得到沉淀,反复用去离子水清洗4次,得到浓度为0.5%氧化石墨烯量子点水溶液。
45.(3)将相同体积的正硅酸乙酯(teos)溶解在乙醇中在室温下搅拌3h,然后加入1/10正硅酸乙酯体积的0.5%浓度的氧化石墨烯量子点水溶液,并恒温继续搅拌10h。然后,将混合溶液放置在坩埚中,并在150℃下加热9小时。当坩埚冷却至室温时,取出产物,并将产物用去离子水和乙醇洗涤次6次,去除杂质。最后,将样品在0℃下干燥12h,得到具有核壳结构的sio2@graphene粉末,其结构示意图如图1所示。
46.实施例3
47.1)将1.5g石墨粉末与5ml磷酸(h3po4)和50ml浓硫酸(h2so4)混合。将混合物在冰浴中冷却至0℃并搅拌30min。随后,将3g高锰酸钾(kmno4)缓慢倒入上述溶液中,并在0℃下继续搅拌30min。之后,将系统温度升至75℃,并连续搅拌25h。然后将含有30ml 30%过氧化氢(h2o2)的双氧水加入至上述混合物中,并用5%盐酸(hcl)溶液和过量的水洗涤,直到滤液几乎为中性。最终,将产物离心并得到氧化石墨烯(go)。
48.2)将氧化石墨烯与聚甲基吡咯烷酮(nmp)按5:1的质量比加入至硬质钢球磨罐中,球磨45h后取出,先将产物在3000rpm离心40分钟后提取上清液,随后将上清液在12000rpm离心40分钟后得到沉淀,反复用去离子水清洗5次,得到浓度为0.5%氧化石墨烯量子点水溶液。
49.(3)将相同体积的正硅酸乙酯(teos)溶解在乙醇中在室温下搅拌3h,然后加入1/10正硅酸乙酯体积的0.5%浓度的氧化石墨烯量子点水溶液,并恒温继续搅拌12h。然后,将混合溶液放置在坩埚中,并在160℃下加热10小时。当坩埚冷却至室温时,取出产物,并将产物用去离子水和乙醇洗涤8次6次,去除杂质。最后,将样品在70℃下干燥14h,得到具有核壳结构的sio2@graphene粉末,其结构示意图如图1所示。
50.实施例4
51.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括0.4份三乙醇胺、0.4份甘油、0.3份新戊醇、0.4份椰子油、0.5份蓖麻油、93份去离子水、2份具有核壳结构的sio2@graphene量子点粉末、0.5份十二烷基磺酸钠、1份硫化烯烃、1.2份二苯胺、1份苯乙烯化苯酚及1份聚乙烯吡咯烷酮。
52.实施例5
53.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括0.3份三乙醇胺、0.3份甘油、0.3份新戊醇、0.3份椰子油、0.4份蓖麻油、90份去离子水、1.5份具有核壳结构的sio2@graphene量子点粉末、0.3份十二烷基磺酸钠、0.8份硫化烯烃、1份萘胺、1份双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚及0.8份聚乙烯吡咯烷酮。
54.实施例6
55.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括0.5份三乙醇胺、0.5份甘油、0.5份新戊醇、0.6份椰子油、0.4份蓖麻油、96份去离子水、2.5份具有核壳结构的sio2@graphene量子点粉末、0.7份十二烷基磺酸钠、1.2份硫化烯烃、0.8份萘胺、0.5份苯乙烯化苯酚及1.2份聚乙烯吡咯烷酮。
56.实施例7
57.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括1.5份三乙醇胺油、1.6份sio2@graphene量子点粉末、91份去离子水、0.3份span

80、0.8份硫化烯烃、0.5份n

苯基

α萘胺、0.5份双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚及1份聚乙烯吡咯烷酮。
58.实施例8
59.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括1.5份三乙醇胺油和1份甘油、1.8份sio2@graphene量子点粉末、92份去离子水、0.3份span

80、1.3份硫化烯烃、0.9份吩噻嗪、1.1份双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚及0.9份聚乙烯吡咯烷酮。
60.实施例9
61.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括1份三乙醇胺油和0.7份蓖麻油、2.2份sio2@graphene量子点粉末、94份去离子水、0.4份山梨醇、1.2份硫化烯烃、0.6份对苯二胺、0.3份苯乙烯化苯酚、0.9份双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚及1.1份聚乙烯吡咯烷酮。
62.实施例10
63.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括0.8份新戊醇、0.9份椰子油、1.5份sio2@graphene量子点粉末、95份去离子水、0.3份油酸、0.9份硫化烯烃、0.8份萘胺、0.6份n

苯基

α萘胺、0.6份双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚、0.7份苯乙烯化苯酚及1.2份聚乙烯吡咯烷酮。
64.实施例11
65.一种基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液,包括1.2份新戊醇、1.3份蓖麻油、1.3份sio2@graphene量子点粉末、94份去离子水、0.3份山梨醇、0.9份硫化烯烃、0.6份对苯二胺、0.5份n

苯基

α萘胺、0.7份双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚、0.7份苯乙烯化苯酚及1.2份聚乙烯吡咯烷酮。
66.实施例12
67.按照实施例4中润滑液配方将0.4份三乙醇胺、0.4份甘油、0.3份新戊醇、0.4份椰子油、0.5份蓖麻油进行混合,再加入93份去离子水得到基础油,然后加入2份具有核壳结构的sio2@graphene粉末,搅拌并进行超声处理。加入0.5份十二烷基磺酸钠对初级乳液进行改性,使其分散均匀。最后依次添加1份含硫化烯烃、1.2份二苯胺、1份苯乙烯化苯酚、1份聚乙烯吡咯烷酮,调节ph至7,最终得到基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液。
68.实施例13
69.按照实施例5中润滑液配方将0.3份三乙醇胺、0.3份甘油、0.3份新戊醇、0.3份椰子油、0.4份蓖麻油进行混合,再加入90份去离子水得到基础油,然后加入1.5份具有核壳结构的sio2@graphene粉末,搅拌并进行超声处理。加入0.3份十二烷基磺酸钠对初级乳液进行改性,使其分散均匀。最后依次添加1份含硫化烯烃、1份萘胺、1份双(3,5

二叔丁基
‑4‑
羟基苯基)硫醚、0.8份聚乙烯吡咯烷酮,调节ph至8,最终得到基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液。
70.实施例14
71.按照实施例6中润滑液配方将0.5份三乙醇胺、0.5份甘油、0.5份新戊醇、0.6份椰子油、0.4份蓖麻油进行混合,再加入96份去离子水得到基础油,然后加入2.5份具有核壳结构的sio2@graphene粉末,搅拌并进行超声处理。加入0.7份十二烷基磺酸钠对初级乳液进行改性,使其分散均匀。最后依次添加1.2份含硫化烯烃、1.4份萘胺、1.2份苯乙烯化苯酚及1.2份聚乙烯吡咯烷酮,调节ph至9,最终得到基于核壳结构的sio2@graphene量子点的钛合金轧制润滑液。
72.对比例1
73.一种sio2轧制润滑液,制备方法与实施例12相同,除了基础油添加剂,其他组分均与实施例12相同,本对比例中以sio2颗粒作为基础油添加剂。
74.对比例2
75.一种sio2轧制润滑液,制备方法与实施例12相同,除了基础油添加剂,其他组分均与实施例12相同,本对比例中以无sio2包覆的氧化石墨烯粉末作为基础油添加剂。
76.试验例1:润滑液摩擦性能检测
77.以下以实施例12为例,对实施例12制备的润滑液摩擦性能进行检测,并与对比例1、对比例2进行对比。
78.试验方法:参考国家标准,使用摩擦磨损试验机研究所制备的润滑液的摩擦磨损性能试验对实施例1、对比例1及对比例2进行检测。
79.试验所用钢球材料:gcr15钢,直径4mm。
80.试验条件:主轴转速150r/min,试验力5n,试验时间30分钟,试验温度为20℃。
81.检测结果:
82.如图3及图4所示,实施例12制备的sio2@graphene核壳结构量子点的润滑液,具有优异的、效能持久的润滑性能,运用sio2@graphene核壳结构量子点的润滑液轧制液进行摩擦试验后的摩擦系数较低,平均摩擦系数为0.31,表面磨损量较小,磨损率为40
×
10
‑6mm3/n
·
m。
83.采用对比例1的轧制润滑液进行摩擦试验后的平均摩擦系数为0.44,较实施例1的摩擦系数高,表面磨损量也较实施例12多,磨损率为60
×
10
‑6mm3/n
·
m。
84.采用对比例2的轧制润滑液进行摩擦试验后的平均摩擦系数为0.52,较实施例12的摩擦系数高,表面磨损量也较实施例12多,磨损率为75
×
10
‑6mm3/n
·
m。
85.综上可知,本发明制备的sio2@graphene核壳结构量子点的润滑液摩擦系数及表面磨损量均较现有技术低。
86.试验例2不同润滑油轧制效果对比
87.试验方法:选用退火后的tc4板材作为实验材料,原始尺寸100*30mm,总压下量为50%。采用二辊轧机进行多道次轧制,轧辊的直径为130mm,长度260毫米,轧制速度为13r/min。比较不同润滑液下轧制的钛合金超薄板材的表面质量。
88.以不添加润滑液组为空白组,添加实施例12中基础油组作为对照组,比较实施例12、对比例1、对比例2组及空白组、对照组轧制钛合金板的表面质量情况见图5。
89.结果分析:从图5可知,采用本发明实施例12基于sio2@graphene量子点的轧制润滑液轧制得到的钛合金板材较其他组相比,经过无润滑轧制后,表面开裂严重,有明显的裂纹(图5a);经过基础液润滑轧制,依然有裂纹产生(图5b)经过g0和sio2润滑的板材比表面较裂纹减少,有产生光滑区域(图5c和d);当添加基于sio2@graphene量子点的轧制润滑液时,板材表面基本无裂纹,并且表面平整,趋于光滑(图5e),说明sio2@graphene量子点的轧制润滑液有较好的润滑性,提高了板材的抗磨性能。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜