一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种ALD与CVD配合使用的薄膜材料制备系统及方法与流程

2021-10-16 03:28:00 来源:中国专利 TAG:制备 薄膜 材料 配合 方法

一种ald与cvd配合使用的薄膜材料制备系统及方法
技术领域
1.本发明涉及薄膜材料制备领域,具体涉及一种ald与cvd配合使用的薄膜材料制备系统及方法。


背景技术:

2.化学气相沉积(cvd)是利用一种或多种气态或蒸汽态的前驱体物质在气相或气固界面上分解或者反应生成固态沉积物的技术。原子层沉积(ald)可以认为是化学气相沉积反应的一种,它通过将气态前驱体交替注入反应器,借助两步具有自限制特性的表面化学反应,实现薄膜在基底材料表面的可控生长。
3.目前,原子层沉积(ald)与化学气相沉积(cvd)系统已经广泛应用在研究院校和实验当中。现有技术的ald系统包含用于原子层沉积、cvd生长纳米材料和薄膜材料四通道质子流量计控制系统,大多数用于实验室中物理、化学气相沉积生长各种材料;因此,提出一种ald与cvd配合使用的薄膜材料制备系统及方法。


技术实现要素:

4.针对现有技术的不足,本发明提出了一种ald与cvd配合使用的薄膜材料制备系统。
5.本发明的目的可以通过以下技术方案实现:
6.一种ald与cvd配合使用的薄膜材料制备系统,包括射频单元、反应腔和注入单元;
7.所述射频单元通过产生交变磁场在反应腔内生成感应交变电流;所述反应腔的内部设置有反应座;所述反应腔与所述注入单元连接;所述注入单元包括混合罐和喷头;所述喷头布置在所述反应座的上端;所述喷头与所述混合罐连接;所述混合罐存储有反应物。
8.进一步地,所述反应座包括支撑板和支撑座;所述支撑板对上端均布有连接孔;所述支撑板布置在所述支撑座的上端;所述支撑板与所述支撑座通过螺钉连接;所述支撑座包括上板和下板;所述上板靠近所述支撑板的一侧设有凹槽;所述凹槽与连接管一固定安装;所述下板设置有连接管二;所述下板与所述连接管一固定安装;所述连接管一与所述连接管二连通;所述凹槽设置有加热块;所述连接管一的外侧缠绕有线圈。
9.进一步地,所述反应腔由石英管和法兰组成,所述法兰的底部设置有真空抽口。
10.进一步地,所述喷头为4英寸蒸汽分散喷头,所述喷头设有400个直径为0.5mm的喷孔。
11.进一步地,所述反应腔连接有真空泵;所述真空泵连接有冷阱。
12.进一步地,所述混合罐内部固定安装有加热环和温控装置;所述混合罐的外部连接有高频ald阀。
13.进一步地,所述反应腔布置在工作台的上端;所述工作台设置有控制面板。
14.本发明还提供一种ald与cvd配合使用的薄膜材料制备方法,包括以下步骤:
15.将待镀膜材料放置在一个密闭的反应腔中;将反应腔进行抽真空处理;在通过感
应射频电源在反应腔中产生交变电流;通过喷头均匀输送反应气体至待镀膜材料表面;交变电流促使反应气体产生高密度等离子体,高密度等离子体附着于镀膜材料表面生成薄膜。
16.本发明的有益效果:
17.本发明通过在反应腔体外部加上pe功能,利用射频电源产生的交变磁场在反应腔内感应交变电流,使反应气体产生高密度等离子体,从而促进薄膜的沉积和生长;同时喷头采用特殊的流道设计,可使气体或者蒸汽均匀地传递和分散到反应腔体中;反应座设有加热装置,最高温度可达700℃,沉积基地尺寸可到达φ100mm。
附图说明
18.下面结合附图对本发明作进一步的说明。
19.图1为本技术的立体结构示意图;
20.图2为本技术的反应座内部结构示意图;
21.图3为本技术的反应腔内部示意图;
22.图4为本技术的喷头结构示意图。
具体实施方式
23.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
24.在本发明的描述中,需要理解的是,术语“开孔”、“上”、“下”、“厚度”、“顶”、“中”、“长度”、“内”、“四周”等指示方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的组件或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
25.在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
26.一种ald与cvd配合使用的薄膜材料制备系统,其特征在于,包括射频单元3、反应腔2和注入单元;
27.射频单元3通过产生交变磁场在反应腔2内生成感应交变电流;反应腔2的内部设置有反应座4;反应腔2与注入单元连接;注入单元包括混合罐1和喷头10;喷头10布置在反应座4的上端;喷头10与混合罐1连接;混合罐1存储有反应物。
28.下面说明本发明的原理,首先将待镀膜材料放置在密闭的反应腔2中;排出反应腔2内部的气体;通过射频单元如射频电源和匹配器,在反应腔中产生交变电流;通过喷头10均匀输送反应气体至待镀膜材料表面;交变电流促使反应气体产生高密度等离子体,高密度等离子体附着于镀膜材料表面,从而生成薄膜。
29.进一步地,反应座4包括支撑板43和支撑座;支撑板43对上端均布有连接孔;支撑板43布置在支撑座的上端;支撑板43与支撑座通过螺钉连接;支撑座包括上板41和下板45;上板41靠近支撑板43的一侧设有凹槽;凹槽与连接管一固定安装;下板45设置有连接管二;下板45与连接管一固定安装;连接管一与连接管二连通;凹槽设置有加热块44;连接管一的外侧缠绕有线圈。
30.进一步地,反应腔2由石英管21和法兰22组成,法兰的底部设置有真空抽口23。
31.进一步地,喷头10为4英寸蒸汽分散喷头10,喷头10设有400个直径为0.5mm的喷孔,可使气体或者蒸汽均匀的分散到反应腔2。
32.进一步地,反应腔2连接有真空泵7;真空泵7连接有冷阱8;在抽真空的同时,对反应腔2的进行冷却,从而控制反应的进行速度。
33.进一步地,混合罐1内部固定安装有加热环和温控装置;混合罐1的外部连接有高频ald阀9;能够精确控制反应气体的进给量,从而提高精度。
34.进一步地,反应腔2布置在工作台6的上端;工作台6设置有控制面板5。
35.实施一:一种可以制备薄膜的沉积和生长的ald与cvd系统,本系统包括射频单元3、喷头10、反应座4、电路控制单元、冷阱8、抽真空单元、高频ald阀9、工作台6、气液混合罐1和反应腔2;
36.射频单元3采用500w射频电源和匹配器,可在反应腔2的外部加上pe功能,利用射频电源产生的交变磁场在反应腔2内感应交变电流,使反应气体产生高密度等离子体,经过喷头10喷出,喷到反应座4上的材料表面,从而促进薄膜的沉积和生长。
37.喷头10为4英寸气体或者蒸汽分散喷头10,材料采用铝合金和不锈钢;喷头10设有400个直径为0.5mm的喷孔,可使气体或者蒸汽均匀的分散到反应腔2。
38.反应座4为5英寸的可旋转和加热的不锈钢样品台,转速为1

5rpm,最高温度可到达700℃,长期使用温度为500℃,旋转能够使得加热更均匀,沉积基底的最大尺寸为100mm。
39.电路控制单元采用触摸屏控制,所有参数都可以通过触摸屏设置,简单方便又美观。
40.抽真空单元,采用真空泵7对腔体进行抽真空,以达到实验的要求。冷阱8,在反应腔2与真空泵7之间加一个冷阱8,通过真空泵7抽真空时起到达冷却作用。
41.高频ald阀9,系统配置4个高频ald阀9门,对实验通过的气体或者液体进行控制。工作台6,用于放置反应腔2、反应座4、气液混合罐1等组件,保证美观和稳定性。
42.气液混合罐1,配置加热环和温控装置,对实验的气体或者液体进行加热,到达实验的要求。反应腔2,采用石英管21和上下不锈钢法兰22组成,确保腔体真空度达到实验要求,法兰上配有抽真空口23。
43.工作时,通过真空泵7连接冷阱8,将反应腔2里面的真空度抽到的规定数值;然后关闭真空泵7,打开高频ald阀9、2个气液混合罐1的加热阀门和感应射频电源,通过控制电路单元控制感应电源,根据实际情况调整电流的大小,配合射频电源产生的交变磁场在反应腔2室内感应交变电流,同时将气体或者蒸汽通过喷头10喷到反应座4上,使反应气体产生高密度等离子体,等离子作用是促进化学反应,在等离子体中电子的平均能量足以使大多数气体电离或分解,各种薄膜材料都可以在基片上形成,从而促进薄膜的沉积和生长。薄膜生长完成,关闭设备,打开反应腔2的上盖,取出喷头10放置在旁边的支架上,然后再取出
材料。
44.以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜