一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

自适应光源的制作方法

2021-09-25 05:07:00 来源:中国专利 TAG:光源 自适应

自适应光源


背景技术:

1.包括发光二极管(led)、谐振腔发光二极管(rcled)、垂直腔激光二极管(vcsel)和边缘发射激光器的半导体发光器件是当前可用的最有效的光源之一。目前感兴趣的用于制造能够跨可见光谱范围操作的高亮度发光器件的材料系统包括iii

v族半导体,特别是镓、铝、铟和氮的二元、三元和四元合金,也被称为iii族氮化物材料。典型地,通过金属有机化学气相沉积(mocvd)、分子束外延(mbe)或其他外延技术在蓝宝石、碳化硅、iii族氮化物或其他合适的基底上外延生长具有不同组成和掺杂剂浓度的半导体层的堆叠来制备iii族氮化物发光器件。堆叠通常包括形成在基底之上的一个或多个掺杂有例如si的n型层、形成在一个或多个n型层之上的有源区中一个或多个发光层、以及形成在有源区之上的掺杂有例如mg的一个或多个p型层。电接触形成在n型区和p型区上。
2.由于其紧凑的尺寸和低功耗要求,半导体发光器件是诸如手持式由电池供电的设备(诸如照相机和手机)的照相机闪光灯的光源的有吸引力的候选。us8761594b1公开了用于在照相机系统中提供空间动态照明的系统和方法。空间动态照明源使得能够仅照亮照相机视场中的期望的物体,从而减少所需的来自照明源的光量。空间动态照明源可以包括照明元件阵列和控制部件。照明阵列中的每个照明元件可以包括与光学元件组合的发光元件。照相机和空间动态照明源可以组合在照相机和照明系统中。照相机和照明系统可以动态地检测、跟踪和选择性地照亮照相机视场中的期望的物体。ep2128693a1公开了一种空间自适应摄影闪光灯,其中照明强度根据场景中的特征的深度和反射率而变化。


技术实现要素:

3.根据本发明的实施例,提供一种光源,该光源可以例如用作照相机的闪光灯或用于任何其他合适的用途。光源被配置成使得可以改变由光源发射的照明图案。例如,当用作照相机闪光灯时,对于照相机视场中的给定场景,光源可以向场景中未被环境光良好照亮的部分提供较多的光,并且向场景中被环境光良好照亮的部分提供较少的光。
附图说明
4.图1是图示包括至少一个半导体发光器件作为光源的系统的框图。
5.图2a、图2b和图2c图示了使用例如图1的系统照亮场景的方法。
6.图3图示了要照亮的场景。
7.图4图示了图3中所示场景的三维(3d)地图。
8.图5图示了图3中所示场景的闪光强度轮廓。
9.图6是光源的一个实例的截面图。
10.图7是led阵列的俯视图。
11.图8是图7的阵列中的一个led的截面图。
12.图9图示了在下面的图中的实例中照亮的场景。
13.图10a、图11a、图12a、图13a、图14a和图15a图示了图9中所示场景不同的照度轮
廓。
14.图10b、图11b、图12b、图13b、图14b和图15b图示了施加到图7的阵列中的led以生成图10a、图11a、图12a、图13a、图14a和图15a中所示的照度轮廓的电流量。
15.图16和图17图示了施加到图7的阵列中的led以生成用于调焦应用的照度轮廓的电流量。
16.图18图示了施加到图7的阵列中的led以产生用于广角应用的照度轮廓的电流量。
17.图19是具有单独光学器件的led阵列的截面图。
18.图20图示了具有多个led阵列的光源。
19.图21图示了扫描窄光束光源。
20.图22图示了具有矩阵控制元件的光源。
21.图23图示了具有发射不同颜色或色温的光的发光器的光源。
具体实施方式
22.尽管在下面的描述中,本发明的实施例被描述为照相机闪光灯,但是其他用途也被考虑并且在本发明的范围内。
23.所有照相机闪光灯的一个问题是靠近照相机的物体通常曝光过度,而远离照相机的物体没有得到足够的光。本发明的实施例包括例如用于便携式或电池供电的设备、或者用于较大的非电池供电的照相馆闪光灯的诸如照相机闪光灯的光源。根据本发明实施例的光源可以使它们的照度轮廓适应于场景并且向场景中的所有物体传递适量的光。根据本发明的实施例的自适应光源可以包括诸如半导体发光器件的半导体光源,尽管可以使用任何合适的光。
24.图1图示了根据本发明实施例的自适应光源的实例。图1中所示的系统可以被包括在智能手机或任何合适的设备中。图1中所示的系统包括连接到驱动器12的光源10。如下所述,驱动器12向光源10供电。驱动器12连接到微处理器14。微处理器接收来自输入设备18和照相机11的输入。系统还可以包括3d传感器16。输入设备18可以是例如用户激活的输入设备,例如用户按下以拍摄照片的按钮。在一些实施例中,输入设备18可能不需要用户输入,诸如在自动拍摄照片的情况下。在一些实施例中,输入设备18可以被省略。
25.3d传感器16可以是能够在拍摄照片之前制作场景的3d轮廓的任何合适的传感器。在一些实施例中,3d传感器16可以是飞行时间(tof)照相机。tof照相机测量从物体反射的光传输返回到tof照相机所需的时间。该时间可用于计算场景中每个物体的距离。在一些实施例中,3d传感器16可以是结构化光传感器。结构化光传感器包括投影设备,该投影设备在场景上投射特别设计的光图案。同样包括在结构化光传感器中的照相机测量从场景的物体反射的光图案的每个部分的位置,并通过三角测量确定到这些物体的距离。在一些实施例中,3d传感器16可以是在设备的主体中彼此间隔一定距离地定位的一个或多个辅助照相机。通过比较如辅助照相机看到的物体的位置,可以通过三角测量确定到每个物体的距离。在一些实施例中,3d传感器16是设备中的主照相机的自动聚焦信号。在扫描照相机镜头的对焦位置时,系统可以检测出场景的哪些部分在哪些位置处于对焦状态。然后通过将对应的镜头位置转换成到对于这些位置对焦的物体的距离来构建场景的3d轮廓。通过常规方法(例如通过测量对比度或通过利用照相机传感器内的相位检测传感器)导出合适的自动聚
焦信号。当使用相位检测传感器时,在一些实施例中,对于自适应闪光灯的最佳功能,如下所述,各个相位检测传感器的位置可以对应于由光源10的分离段照亮的区域。
26.图2a中图示了使用图1中所示的系统的方法的一个实例。在框20中,生成输入,例如指示拍摄照片。在框22中,照相机11在闪光灯关闭的情况下拍摄场景的第一初步图像(对应于照相机的视场)。在框24中,光源10在低光输出模式(通常称为“手电筒模式”)下开启。此时,光源10的照度轮廓保持均匀,其中“均匀”意味着场景的所有部分都用已知的照明轮廓照亮。在框26中,当光源10以均匀的照度轮廓和低亮度持续开启时捕获第二初步图像。在框27中,系统为场景的所有部分计算最佳亮度以实现最佳曝光。这可以通过从第二图像的各个像素亮度值中减去第一初步图像的像素亮度值并且缩放差异以实现最佳曝光水平来完成。在框28中,照相机11拍摄最终照片,其中根据在框27中计算的照度轮廓激活光源10。
27.在图2b中图示了使用图1所示的系统的方法的另一个实例。在框200中,生成输入,例如指示拍摄照片。在框220中,照相机11在闪光灯关闭的情况下拍摄场景的第一初步图像(对应于照相机的视场)。在框230中,生成场景的3d轮廓。例如,3d传感器16可以生成场景的3d轮廓,或者3d传感器16可以感测关于场景的数据并且将数据传输到微处理器14,微处理器14可以生成场景的3d轮廓。在框270中,系统计算场景的所有部分的最佳亮度以实现最佳曝光。在框280中,基于框270中执行的计算,场景被光源照亮。
28.图2c中图示了使用图1所示的系统的方法的另一个实例。在框2000中,生成输入,例如指示拍摄照片。在框2200中,照相机11在闪光灯关闭的情况下拍摄场景的第一初步图像(对应于照相机的视场)。在框2300中,生成场景的3d轮廓。在框2400中,光源10在低光输出模式(通常称为“手电筒模式”)下开启。此时,光源10的照度轮廓保持均匀,其中“均匀”意味着场景的所有部分都被照亮。在框2600中,光源10在手电筒模式下捕获第二初步图像。在框2700中,系统基于所拍摄的2个图像的输入和如上文伴随图2a和图2b的文本中所描述的3d轮廓来计算场景的所有部分的最佳亮度以实现最佳曝光。在框2800中,照相机11拍摄最终照片,其中光源10根据在框2700中计算的照度轮廓激活。
29.在图2a、2b和2c的每一个中,输入可以是例如诸如用户按下按钮的用户输入、由微处理器14产生的输入(例如,如果微处理器14被编程为在预定时间拍摄照片、或以预定的时间间隔拍摄照片)或任何其他合适的输入。图3图示了当生成输入时要在照片中捕获的场景。图3中所示的场景包括前景中的第一人30以及后景中的第二人32。仅为说明目的选择该场景。具有距照相机各种距离的多个物体或人的其他场景也适用于本发明。
30.图4图示了图3所示的场景的3d轮廓。在图4中,较浅的阴影对应于距照相机较短的距离,较暗的阴影对应于距照相机较大的距离。因此,前景中的人30具有最浅的阴影,表明人30离照相机最近。后景中的人32具有较暗的阴影,表明人32距照相机较远。后景为黑色,表示距照相机最远。
31.定位远离闪光灯的物体可能会接收较高的光强度;定位靠近闪光灯的物体可能会接收较少的光。众所周知,光照度根据距离的平方反比定律而减小(照度

1/距离2)。利用场景的3d轮廓,因此可以计算出分配到场景的哪些部分的所需光量。计算所需强度轮廓的算法还可以考虑场景中的每个物体从环境光接收的照度、捕获第一图像时收集的信息,并且可以相应地调整闪光灯光的量。例如,已经良好照亮的物体30(例如因为它们是浅色或反射的)可以接收较少的光;未被良好照亮的物体(例如因为它们是黑色或不反射的)可以接
收比可以仅基于它们与光源的距离来计算的(如由3d轮廓所确定的)更多的光。
32.数码照相机及其图像处理器通常包括脸部识别算法。在一些实施例中,来自脸部识别算法的信息可以用于(与其他物体相比)更好地照亮脸部。如果没有足够的光来良好地曝光整张照片,则脸部会受益于更多光。如果人太近而且有过度曝光的危险,应关闭此特征,使得不会有更多光定向到脸部。在一些实施例中,来自3d轮廓的相对光的计算可以减少发送到人眼睛的光量以使照片中的“红眼”最小化。
33.在一些实施例中,来自3d轮廓的相对光的计算可以识别离闪光很远并且不能被适当照亮的场景的部分。将最少量的光发送到场景的这些部分,以便将朝场景的有用部分发送的光量最大化,并且因此提供对可用的驱动电流容量的更好的利用。
34.在一些实施例中,用户界面(例如,智能手机上的触摸屏)可以允许用户控制发送到场景的每个部分的相对光量。例如,用户可以开启和关闭闪光灯的自适应特征,可以开启和关闭用于根据3d轮廓(如上所述)计算相对光的算法的各个部分,并且可以在场景上手动创建闪光灯重点。
35.本发明的实施例考虑了几种照明模式。
36.在一些实施例中,在第一组照明模式中,来自光源10的照明横跨场景分布以实现最均匀有用的被照亮照片。具体地,在一些实施例中,过度曝光被最小化:在前景被环境光良好照亮的情况下,来自光源10的所有光都被定向到后景。在一些实施例中,光源充当闪光灯的填补:在后景被环境光良好照亮的情况下,来自光源10的所有光都被定向到前景。在一些实施例中,当前景和后景被环境照明均匀照亮时,来自光源10的光可以大部分发送到后景。在一些实施例中,在前景较暗的情况下,来自光源10的光恰好足够照亮前景以得到良好的照片,并且来自光源10的其余光被发送到背景。
37.在一些实施例中,在第二组照明模式中,被选的物体被照亮。具体地,在一些实施例中,结合脸部识别,脸部可以被最高地加权以获得最佳照明。在一些实施例中,结合脸部识别,脸部(或其他物体)周围的后景可以接收较少的光,例如以增强照亮的脸部和最接近脸部的后景之间的对比度。在一些实施例中,场景的选定区域例如通过用户输入来标识。来自光源10的光可以仅定向到所选择的区域内。所选区域的实例包括放大的图像或场景的其他标识部分。在一些实施例中,对于例如名片的照片,来自光源10的光可以以非常高的均匀水平发射。
38.图5图示了基于图4所示的计算向图3的场景提供的光。在图5中,较浅的阴影对应于来自光源10的更多光,而较暗的阴影对应于来自光源10的较少的光。如图5所示,在与后景人32对应的区域42中提供较多的光,而在与前景人30对应的区域40中提供较少的光。额外的光被提供给后景中的人的脸部52。可以将最少量的光提供给既没有人30也没有人32出现的后景(未示出)。
39.图6、图7和图8图示了可以在图1所示的系统中使用的光源10的一个实例。可以使用任何合适的光源,并且本发明的实施例不限于图6、图7和图8中所示的结构。
40.图7是led 62的正方形阵列60的俯视图。led 62可以整体地生长在单个基底上。可替换地,led 62不必整体地生长在单个基底上,而是可以被切割下来,然后布置在底座上,使得相邻的led非常接近。在一些实施例中,led 62之间的间隙小于单个led 62的尺寸(例如宽度)的1/3。尽管图示了3
×
3正方形阵列,但是可以使用任何合适数量的led,并且阵列
不必是正方形的,它可以是矩形或任何合适的形状。单个led的尺寸可以取决于若干设计参数,例如,包含光学透镜的建造体积(building volume)、照相机的视场和阵列中的led的数量。例如,阵列必须包含足够的led来照亮照相机的总视场(即整个场景)。对于智能手机应用,在一些实施例中,阵列的总宽度可以不大于2mm。对于较大的照相机,在一些实施例中,阵列的宽度可以不大于10mm。尽管单个led是正方形的,但这不是必需的;可以使用矩形的led或任何合适形状的led。
41.图6是光源10的横截面视图。led 62的阵列60被定位成使得从阵列60提取的大部分光朝向光学器件64发射。在所示的实例中,光学器件64与阵列60间隔开。可替换地,光学器件64可以放置在阵列60的顶部。光学器件64可以是使光准直并将光定向到场景的适当区域的任何合适的结构。光学器件64可以是例如透镜、多个透镜、一个或多个菲涅耳透镜、一个或多个折射透镜、一个或多个全内反射透镜元件、一个或多个反射器、一个或多个准直器或任何其他合适的光学器件。在下面的实例中,光学器件64是菲涅耳透镜。光源可以是盒状66的,其中阵列60设置在盒的底部,且光学器件64形成盒的顶部。盒的内侧壁68、未被阵列60占据的底部的任何部分以及未被光学器件64占据的顶部的任何部分都是光学设计的一部分,并且因此视情况可以是反射的或吸收光的。
42.图8是图6和图7所示的阵列中的单个led 62的一个实例的截面图。可以使用任何合适的led,并且本发明的实施例不限于图8所示的结构。在图8的器件中,大部分光通过生长基底从led提取。这样的器件可以被称为倒装芯片器件。如本领域中已知的那样,通过在生长基底70上生长iii族氮化物半导体结构来形成图8的led。生长基底通常是蓝宝石,但可以是诸如例如非iii族氮化物材料、sic、si、gan或复合基底的任何合适的基底。其上生长iii族氮化物半导体结构的生长基底的表面可以在生长之前被图案化、粗糙化或纹理化,这可以改善从器件的光提取。生长基底的与生长表面相对的表面(即在倒装芯片构造中通过其提取大部分光的表面)可以在生长之前或之后被图案化、粗糙化或纹理化,这可以改善从器件的光提取。
43.半导体结构包括夹在n型区和p型区之间的发光区或有源区。n型区72可以首先生长,并且可以包括不同组成和掺杂剂浓度的多个层,包括例如可以是n型或者非有意掺杂的准备层(诸如缓冲层或成核层)、以及设计用于发光区有效发光所需的特定光学、材料或电学性质的n型或甚至p型器件层。在n型区之上生长发光区或有源区74。合适的发光区域的实例包括单个厚或薄的发光层、或包括由阻挡层分隔的多个薄或厚的发光层的多量子阱发光区。然后可以在发光区之上生长p型区76。类似于n型区,p型区可以包括具有不同组成、厚度和掺杂剂浓度的多个层,包括非有意掺杂的层或n型层。
44.在半导体结构生长之后,在p型区的表面上形成反射的p接触78。 p接触78通常包括多个导电层,诸如反射金属和可以防止或减少反射金属的电迁移的防护金属。反射金属通常是银,但可以使用任何合适的一种或多种材料。在形成p接触78之后,去除p接触78、p型区76和有源区74的一部分以暴露其上形成n接触80的n型区72的一部分。n接触80和p接触78通过间隙82彼此电隔离,间隙82可以填充有诸如硅的氧化物或任何其他合适的材料的电介质。可以形成多个n接触通孔;n接触80和p接触78不限于图8所示的布置。如本领域中已知的,可以重新分布n接触和p接触以形成具有电介质/金属堆叠的焊盘(未示出)。
45.如上所述,阵列60中的led 62可以形成在单个晶片上,然后作为阵列60从晶片切
割下来,其中阵列中的各个led 62仍然附接到单个生长基底部分。可替换地,可以在单个晶片上形成许多led 62,然后从晶片切割下来,使得将已经切割下来的各个led布置在底座上以形成阵列60。
46.基底70可以在半导体结构生长之后或在形成各个器件之后变薄。在一些实施例中,从图8的器件移除基底。从图8的器件提取的大部分光通过基底70(或通过移除基底70而暴露的半导体结构的表面)提取。本发明的实施例不限于倒装芯片led

可以使用任何合适的器件。
47.波长转换结构84可以布置在从发光器件提取的光的路径中。波长转换结构包括一种或多种波长转换材料,其可以是例如常规的磷光体、有机磷光体、量子点、有机半导体、ii

vi或iii

v半导体、ii

vi或iii

v半导体量子点或纳米晶、染料、聚合物或发光的其他材料。波长转换材料吸收由led发射的光并发射一个或多个不同波长的光。由led发射的未转换的光通常是从结构中提取的最终光谱的一部分,尽管这不是必需的。从结构中提取的最终光谱可以是白色、多色或单色。常见组合的实例包括与发射黄光的波长转换材料结合的发射蓝光的led、与发射绿光和红光的波长转换材料结合的发射蓝光的led、与发射蓝光和黄光的波长转换材料结合的发射uv的led、以及与发射蓝光、绿光和红光的波长转换材料结合的发射uv的led。可以添加发射其他颜色光的波长转换材料以调整从结构中提取的光谱。波长转换结构84可以包括光散射元件或光漫射元件,诸如tio2。
48.在一些实施例中,波长转换结构84是与led分开制备并且例如通过晶片键合或诸如硅树脂或环氧树脂的合适粘合剂附接到led的结构。这种预制波长转换元件的一个实例是陶瓷磷光体,其通过例如将粉末磷光体或磷光体的前体材料烧结成陶瓷板而形成,然后可以将其切割成单独的波长转换元件。陶瓷磷光体也可以通过例如流延成型(tape casting)形成,这种情况下陶瓷被制造成恰当的形状,而不需要切割或切片。合适的非陶瓷的预形成的波长转换元件的实例包括:分散在诸如硅树脂或玻璃的透明材料中的粉末磷光体,所述透明材料被卷起、铸造或以其他方式形成为片材,然后单个化成单独的波长转换元件;布置在诸如硅树脂的透明材料中并且层压在led晶片或单独的led上的粉末磷光体;以及与硅树脂混合并布置在透明基底上的磷光体。波长转换元件不必预先形成,它可以是例如与透明粘合剂混合的波长转换材料,其被层压、分配、沉积、丝网印刷、电泳沉积或以其他方式定位在由led发射的光的路径中。
49.如图8所示,波长转换结构84不必布置成与led直接接触;在一些实施例中,波长转换结构84与led间隔开。
50.波长转换结构84可以是覆盖阵列中的多个或全部led的整体的元件,或者可以被构造成分离的段,每个段附接到对应的led。波长转换结构84的这些分离的段之间的间隙可以用光学反射材料填充,以将来自每个段的光发射仅限制到该段。
51.诸如例如焊料、柱形凸块(stub bump)、金层或任何其他合适的结构的互连(未示出)可以用于将阵列60中的led 62电连接和物理连接到诸如底座、印刷件电路板或任何其他合适的结构。底座可以被配置成使得各个led 62可以由图1的驱动器12单独控制。由各个led 62发射的光照亮场景的不同部分。通过改变各个led的电流,可以修改提供给场景的对应部分的光。如上所述计算出的场景的最佳照度轮廓可以通过向每个led 62提供适当的电流水平来获得。
52.在诸如移动设备或由电池供电的设备的一些设备中,图1的自适应光源可用的最大电流量通常受设备电池的容量限制。当为所有led 62定义驱动电流水平时,系统通常考虑最大可用电流预算,并且由此为每个led 62定义驱动电流水平,使得总驱动电流不超过最大值,同时保持led之间的恰当的强度比例并且使总的光输出最大化。
53.图9图示了在以下图10a、图11a、图12a、图13a、图14a和图15a中所示的实例中要照亮的场景。对于每个实例,提供给每个led的电流量在图10b、图11b、图12b、图13b、图14b和图15b中图示。根据依据上述3d轮廓的计算,由图9中的虚线标识的目标88需要比场景的其余部分更多的光。在图10a、图11a、图12a、图13a、图14a和图15a的每一个中,提供给区域的光量随着阴影的暗度增加而减小。每幅图中所示的光分布可以是相对的。
54.图10a图示了当所有led 62被供应如图10b所示的相同的电流量时,场景如何被照亮。场景的中心被明亮地照亮,而场景的外边缘则较少被照亮。因此,靠近场景中心的目标部分比靠近场景边缘的目标部分更多地被照亮。
55.图11a图示了当仅有三个led被供应电流时场景如何被照亮,三个led中的每一个接收相同的电流量,而其他六个led不接收电流。如图11b所示,被供应电流的三个led 91、92和93是中心led、以及在最左列中的两个底部led。如图11a所示,场景的右侧(大致对应于目标)比场景的其余部分被更明亮地照亮。图11b中的led 91、92和93的电流密度可以比图10b中所示的情况(其中所有的led都被供应相同的电流)高三倍。图11a中的目标的照度比图10a中的目标的照度高大约1.6倍。
56.为了获得更高的照度,可以打开更少的段,如图12a、图12b、图13a和图13b所示的两个实例所图示。
57.图12a图示了当仅有两个led被供应电流时场景如何被照亮,每个led接收相同的电流量,而其他七个led不接收电流。如图12b所示,被供应电流的两个led 94和95是最左列中的两个底部led。如图12a所示,场景的右侧(大致对应于目标)比场景的其余部分更明亮地照亮。图12a中的目标的照度比图11a中的目标的照度大。
58.图13a图示了当仅有单个led被供应电流而其他八个led不接收电流时场景如何被照亮。如图13b所示,被供应电流的led 96是最左列中的中心led。如图13a所示,场景的右侧(大致对应于目标)比场景的其余部分被更明亮地照亮,然而高度照亮的点比图12a和图11a中的小。图13a中的目标的照度大于图11a中的目标的照度。
59.为了改善横跨整个目标的照度均匀性,供应给不同led的电流可以变化,如图14a、图14b、图15a和图15b所示的两个实例所图示。
60.图14a图示了当六个led被供应不同的电流水平并且三个led不接收电流时场景如何被照亮。左列中的中心led 96被供应的电流是围绕led 96的五个led 97、98、99、100和101的五倍。如图14b所示,右列中的三个led不接收电流。如图14a所示,场景的右侧(大致对应于目标)比场景的其余部分被更明亮地照亮。目标的照度比例如图13a中更均匀。
61.图15a图示了当四个led被供应不同的电流水平并且五个led不接收电流时场景如何被照亮。左列中的中心led 102被供应的电流比中间列中的底部led 105多四倍,并且是中心led 104和左列中的底部led 103的两倍。如图15b所示,顶行的led和右列中的led不接收电流。如图15a所示,场景的右侧(大致对应于目标)比场景的其余部分被更明亮地照亮。目标的照度比例如图13a中更均匀。
62.图16、17b和18b图示了如何将电流施加到图6中的led 62的阵列60,以用于调焦和广角应用。当接收到拉近(zoom in)照相机镜头的命令时,阵列中心附近的led接收更多电流,如图16和图17b所示。图17a图示了当led被供应如图17b所示的不同的电流水平时场景如何被照亮。
63.当接收到拉远(zoom out)照相机镜头的命令时,阵列边缘附近的led接收更多电流,如图18b所示。图18a图示了当led被供应如图18b所示的不同的电流水平时场景如何被照亮。
64.在图16中,对于调焦应用,仅中心led 110被供应电流,而围绕中心led的八个led不接收电流。场景的中心将被明亮地照亮,而场景的边缘将接收较少的光。场景的中心的照度可以比图10a中的场景(其中所有九个led都接收相等的电流)的中心增加2.2倍。
65.在图17b中,对于调焦应用,中心led 111被供应的电流是led 112的两倍,并且是led 114的四倍。场景的中心比场景的边缘更亮。场景的中心的照度可以比图10a中的场景(其中所有9个led都接收相等的电流)的中心增加1.15倍。
66.在图18b中,对于广角应用,阵列边缘处的八个led118接收相等的电流,而中心led116不接收电流。场景的中心的照度可以降低到图10a中场景(其中所有9个led都接收相等的电流)的中心照度的0.85倍。
67.自适应光源可以用于通过仅向对应于每个目标的led提供电流,或者通过向对应于每个目标的led提供更多电流来照亮多个目标。自适应闪光灯可以用于通过仅向对应于远离照相机的元素的led提供电流,或者通过向对应于远离照相机的元素的led提供更多电流来减少包含靠近照相机和远离照相机的元素的场景的过度曝光。
68.针对上述实例给出的照度值是针对具有单个菲涅耳透镜的图示的3
×
3阵列进行计算的。上述实例中的每个led的光输出可以通过led的驱动电流或通过具有固定电流的脉冲持续时间来控制。
69.图19、图20、图21、图22和图23图示了了可替换的光源。
70.在图19的光源中,阵列中的每个led 62具有单独的光学器件122,而不是用于整个阵列的单个光学器件,如图6所示。每个光学器件122将来自其led的光定向到场景的特定部分。光学器件122可以是任何合适的光学器件,包括例如透镜、圆顶透镜、菲涅耳透镜、反射器、全内反射透镜或任何其他合适的结构。光学器件122不必相同;不同的光学器件可以用于阵列中的不同led 62。
71.图20的光源包括具有多个光学元件的多个led阵列。例如,图20图示了两个3
×
3阵列,每个阵列具有单个对应的菲涅耳透镜。可以使用更多或更少的阵列,并且阵列不限于所示的设备。在一些实施例中,每个阵列照亮场景的一部分。图20中的阵列124照亮场景的顶部128,而阵列126照亮场景的底部130。在一些实施例中,阵列照亮场景的重叠部分,以便向重叠部分提供更多光。例如,阵列可能在场景的中心重叠,场景的中心可能是通常比边缘需要更多的光的场景的部分。
72.图21的光源使用窄光束的发光器件,诸如例如激光器。图21的光源包括具有波长转换元件142的激光器140,该波长转换元件142布置在来自激光器的光的路径中。聚焦光学器件144可以创建期望尺寸的光束。在入射到场景150上之前,光束入射到第一扫描镜146和第二扫描镜148。扫描镜可以移动,使得光束扫描整个场景,而驱动器控制光源的强度,使得
场景的不同部分可以接收不同的光量。当光束扫描需要较高强度的场景部分时,供应给激光器的电流增加;当光束扫描需要较低强度的场景的部分时,供应给激光器的电流减小。
73.图22的光源包括矩阵控制元件,诸如数字微镜切换器件或多段液晶显示器。来自led或激光器152的光照亮矩阵控制元件154。反射或透射光的强度根据所计算的照度轮廓而被修改。来自矩阵切换元件154的反射或透射光被投影到场景156上。矩阵切换元件154可以具有许多小反射镜作为像素。每个反射镜的取向可以改变,以调整每个像素处的强度。反射镜的取向也可用于通过使来自不同反射镜的光束重叠来创建更亮的区域。
74.图23的光源是颜色可调的。图23的光源包括两个阵列160和162,它们被布置成分别发射光束166和光束168,当它们照亮场景164时,光束166和光束168重叠。尽管图示了如图6所示的阵列那样的两个阵列,但可以使用其他合适的光发射器。该系统可以包括3个或更多个具有不同发射光谱的阵列。阵列160和阵列162发射不同颜色的光。例如,阵列160和阵列162可以都发射白光,尽管阵列160可以发射具有与阵列162不同的色温的白光

即,阵列160和阵列162中的一个发射暖白光。例如,发射暖白光的阵列可以发射具有低至1700k的色温的光,并且发射冷白光的阵列可以发射具有高达10000k的色温的光。两个阵列的色温上的差异可以是在一些实施例中至少1000k,在一些实施例中至少2000k,在一些实施例中至少3000k,并且在一些实施例中至少4000k。可替换地,阵列160和阵列162可以发射不同的单色光。供应给每个阵列中的每个led的适当电流被计算,使得来自阵列160和阵列162的光的总和具有对于场景的每个部分的适当照度和色温。可添加发射额外的颜色或色温的光的阵列(或其他光发射器)。
75.在一些实施例中,发射多个光谱的led可以以单个交错阵列与如图6所示的单个光学器件或者如图19所示的各个光学器件组合。不同颜色的led可以布置在多个组中,每个组照亮场景的一部分,每个组包括每种不同颜色的至少一个led。
76.上面描述的颜色可调光源可以用于利用不同相关色温(cct)的光来照亮场景的不同部分。例如,可以使用颜色可调光源来均衡不同环境发光体的cct。具有低cct环境光的场景部分可以用较高cct的光照亮,而具有高cct环境光的场景部分可以用较低cct的光照亮。
77.在一些实施例中,光源10可以与不同的照相机一起使用。例如,智能手机可能有多个照相机,或者不同的智能手机型号可能使用不同的照相机。每个照相机可以具有特定的视场,为此调整该照相机闪光灯(例如,调整成在视场的角落提供最小照度水平)。因此,对于常规的闪光灯,每个照相机需要调整至该照相机的视场的单独的闪光灯。利用根据本发明的实施例的自适应光源,当选择照相机时,可以定义和选择每个照相机的默认电流分布,使得单个光源可以用于多个照相机。如以上实施例中所述,每个照相机的默认设置可以根据正在拍摄的场景进行修改。
78.尽管在上述实例中,半导体发光器件是发射蓝光或uv光的iii族氮化物led,但可以使用除了led之外的半导体发光器件(诸如激光二极管)和由其他材料系统(诸如其他iii

v族材料、 iii族磷化物、iii族砷化物、ii

vi族材料、zno或si基材料)制成的半导体发光器件。
79.已经详细描述了本发明,本领域技术人员将认识到,给定本公开的情况下,可以对本发明进行修改而不脱离本文描述的发明构思的精神。特别地,来自不同实例或实施例的不同元件可以被组合。并不意在将本发明的范围限于所示出和描述的特定实施例。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜