一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

四联泵的制作方法

2021-10-27 02:37:22 来源:中国专利 TAG:
专利名称:四联泵的制作方法
技术领域
本发明涉及一种四联泵(four-in pump),其中分别设置在四个容积室中的活塞进行泵送运动,更具体地涉及这样一种四联泵,其中四个偏心轴利用设在第一和第二缸体之间的齿轮箱的传动装置进行偏心转动运动,且分别安装在偏心轴上的活塞在第一和第二缸体中的容积室中以彼此不同的速度进行内接偏心圆周运动。
背景技术
专利申请No.2001-77842(于2001年12月10日提交)公开了“Volumetype pump having a pair of volume chambers and assembling methodthereof(具有一对容积室的容积型泵及其装配方法)”。
根据上述容积型泵,偏心轴的直径可以做得足够大以承受扭应力,且活塞的侧面紧紧贴和到缸的内壁上,从而缸内部的泵送物质(pumpingmaterial)不会流入到活塞内部,且活塞内部的润滑剂不会流入到缸的内部,与此同时活塞在缸内通过一螺母进行内接偏心转动运动,以对安装在偏心轴自由端上的活塞施加压力。
但是,该容积型泵具有一些缺陷,例如由于活塞的内接偏心转动运动产生的脉动和剧烈振动。

发明内容
因此,本发明的目的是提供一种四联泵,其能够通过这样的结构消除脉动和振动,即,四个偏心轴通过设在第一和第二缸体之间的齿轮箱的传动装置进行偏心转动运动,且分别安装在所述偏心轴上的活塞在第一和第二缸体中的容积室中以彼此不同的速度进行内接偏心圆周运动。
通过提供一种四联泵来实现上述和其它的目的和优点,该四联泵包括齿轮箱,其设在第一和第二缸体之间;设在齿轮箱中的传动装置,其与马达的驱动轴连接;分别安装在传动装置上的四个偏心轴,其可以进行偏心转动运动;以及分别安装在偏心轴上的四个活塞,分别设在第一缸体的上、下容积室上和第二缸体的上、下容积室上。
传动装置包括安装在驱动轴上的驱动齿轮和与驱动齿轮配合的第一和第二从动齿轮。
第一从动齿轮具有用于操作第一活塞的第一偏心轴和用于操作第三活塞的第三偏心轴,而第二从动齿轮具有用于操作第二活塞的第二偏心轴和用于操作第四活塞的第四偏心轴。
驱动齿轮的转动中心点从基准中心点沿着垂直轴线的方向偏移预定的长度,且从动齿轮的转动中心点也从基准中心点沿着垂直轴线的方向偏移驱动齿轮的偏心距离。
在驱动齿轮和从动齿轮在它们的中心点偏置的状态相互配合,同时第一和第二活塞进行内部接触缸体容积室的偏心转动运动的情况下,第一偏心轴在第一象限的转动速度比第一活塞的转动速度快,从而第一偏心轴的前部在第一活塞之前首先从上止点向水平轴线转动。
在驱动齿轮和从动齿轮在它们的中心点偏置的状态相互配合,同时第一和第二活塞进行内部接触缸体容积室的偏心转动运动的情况下,第二偏心轴在第二象限的转动比第二活塞的平均速度慢很多。
第一和第三偏心轴装配在第一从动齿轮中,从而它们的每端相互面对,并通过键固定且通过多个螺栓完全固定在第一从动齿轮中。
第二和第四偏心轴装配在第二从动齿轮中,从而它们的每端相互面对,并通过键固定且通过多个螺栓完全固定在第二从动齿轮中。
驱动齿轮和两个从动齿轮为能够互相垂直配合的斜齿轮,用于将动力传递到相对于驱动轴垂直设置的偏心轴。
两个从动齿轮的齿轮齿方向相反。
对于驱动齿轮和从动齿轮,可以使用涡杆和涡轮。
活塞包括偏心轴,可以通过止推轴承和球轴承相对于圆柱体作相对转动运动;圆柱体的外周表面,其涂覆有弹性橡胶;穿过前盖的螺栓,其连接到偏心轴的螺纹孔(tap hole);弹簧,其设在前盖和球轴承之间;设在前盖前部的前密封件,用于密封圆柱体;设在圆柱体后部开口处的后盖;以及圆形的密封件,其设在后盖中。
通过提供根据本发明另一方面的四联泵来实现上述目的,该四联泵具有齿轮箱,其设在第一和第二缸体之间;设在齿轮箱中的传动装置,其与马达的驱动轴连接;分别安装在传动装置上的四个偏心轴,可以进行偏心转动运动;分别安装在偏心轴上的活塞,分别设在第一缸体的上、下容积室上和第二缸体的上、下容积室上;该四联泵包括上活塞,其具有设置在其活塞壳体中的轴承壳体;轴承,其安装在轴承壳体的内部;偏心轴,其装配在轴承中;椭圆形的活塞壳体的内周表面;以及椭圆形的轴承壳体的外周表面,从而在活塞壳体和轴承壳体之间形成间隙。
多个弹性O形圈安装在轴承壳体的外周表面上,用于补偿由间隙隔开的部分。
下活塞的结构和工作情况与上活塞的结构和工作情况相同,而且,第二容积室中的上活塞和下活塞的结构和工作情况也与第一缸体中的上活塞的结构和工作情况相同。
传动装置包括可以绕转动中心轴线无偏心地相互配合的驱动齿轮和从动齿轮,并且偏心轴的转速可以通过由齿轮模数的改变产生的动力传输率的改变而改变。
通过提供根据本发明又一方面的四联泵来实现上述目的,该四联泵包括齿轮箱,其设在第一和第二缸体之间;设在齿轮箱中的传动装置,与马达的驱动轴连接;两个轴,分别安装在传动装置上;以及分别安装在轴上的活塞,分别设在第一缸体的上、下容积室上和第二缸体的上、下容积室上。
传动装置的驱动齿轮和从动齿轮相配合,从而安装在从动齿轮上的轴能够转动,并且在轴的两端形成具有与轴的转动中心轴线相同的转动轴线的锥形部分,且相对于轴的转动中心轴线偏移的偏心活塞安装在该锥形部分上。
所述轴包括锥形部分,偏心活塞安装在所述锥形部分上,从而可以随意调整活塞的偏心位置,且可以随意设定偏心活塞的工作顺序。
在偏心活塞中的活塞壳体的内周表面为椭圆形,且安装在活塞壳体的内周表面上的轴承壳体的外周表面为椭圆形,从而在活塞壳体的内周表面和轴承壳体的外周表面之间形成有间隙。


本发明的上述目的、特征和优点将从以下结合附图的详细描述中变得更加明了,其中图1是显示根据本发明的四联泵的一实施例的立体图;图2是示意性显示沿图1中线A-A剖取的各元件的截面图,以描述根据本发明的四联泵的工作情况;图3是仅显示驱动齿轮和从动齿轮的示意图,以描述在本发明四联泵中的驱动齿轮和从动齿轮的偏心;图4是并排显示从动齿轮和活塞的视图,以描述活塞通过从动齿轮的偏心而工作的原理;图5a和图5b是显示活塞通过齿轮的偏心而工作的示意图;图6是显示在相关技术领域的容积型泵中没有偏心的情况下发生的问题的视图;图7是偏心轴安装在四联泵中的从动齿轮上的局部截面图;图8是显示根据本发明活塞的一个示例的截面图;图9是显示根据本发明活塞的另一个示例的截面图;图10是显示根据本发明另一个实施例的四联泵沿图12的线A-A剖取的截面图;图11是图10的活塞的分解立体图;图12是示意性显示根据本发明另一个实施例的四联泵的侧视截面图;
图13是显示当活塞工作时轴承壳体向活塞壳体的内周表面运动一间隙距离的视图;图14是示意性显示根据本发明又一实施例的四联泵的侧视截面图;以及图15是沿图14的线B-B剖取的显示偏心活塞的截面图。
具体实施例方式
下面将参考附图来描述本发明的优选实施例。
参见图1和图2,根据本发明第一实施例的四联泵包括齿轮箱21,其设在第一缸体100和第二缸体200之间;设在齿轮箱21中的传动装置1,其与马达11的驱动轴13连接;四个偏心轴ES1到ES4,分别安装在传动装置1上;以及分别安装在偏心轴ES1到ES4上的四个活塞120、160、220、260,它们设在第一缸体100的上、下容积室110、150上和第二缸体200的上、下容积室210、250上。
在图1中,附图标记500表示连接到第一缸体100和第二缸体200的吸入口的吸入管,而附图标记600表示连接到第一缸体100和第二缸体200的排出口的排出管。
如图2所示,传动装置包括安装在马达驱动轴13上的驱动齿轮31,以及与驱动齿轮31配合的第一、第二从动齿轮41、51。
第一从动齿轮41具有用于操作第一活塞120的第一偏心轴ES1和用于操作第三活塞220的第三偏心轴ES3,而第二从动齿轮51具有用于操作第二活塞160的第二偏心轴ES2和用于操作第四活塞260的第四偏心轴ES4。
如图2所示,在该结构中,当第一、第二活塞120、160位于下止点时,第三、第四活塞220、260位于上止点。
参见图3,驱动齿轮31的转动中心点O1从基准中心点P1沿着垂直轴线‘y’的方向偏移预定的长度‘d’,且从动齿轮41、51的转动中心点O2、O3也从基准中心点P2、P3沿着垂直轴线‘y’的方向偏移驱动齿轮31的偏心距离‘d’。
下面将参考图4来描述受到从动齿轮41、51的偏心影响的活塞120、160、220、260的工作情况。图4示出了这样的状态,即,第一活塞120到达下止点,从而完成了泵送物质在第一缸体100的上容积室110中的排出,同时第四活塞160到达上止点,从而同时完成了泵送物质在第二缸体200的下容积室250中的排出。此时,第二活塞也到达下止点,从而泵送物质被吸入到第一缸体100的下容积室150中,同时第三活塞220到达上止点,从而泵送物质被吸入到第二缸体200的上容积室210中。
通常,在物体进行圆周运动时,随着物体远离中心点,其切向速度和加速度减小,而随着物体接近中心点,其切向速度和加速度增大。即,第一从动齿轮41通过转动中心O2与驱动齿轮31配合,从而当第一从动齿轮41通过弧段ABC时角加速度增大,而当第一从动齿轮41通过弧段CDA时角加速度减小。因此,当第一从动齿轮41通过弧段ABC时,第一偏心轴ES1的转动速度增大且第一活塞120的转动速度增大,从而泵送物质被快速排出到第一缸体100的排出口115中。相反,当第一从动齿轮41通过弧段ABC时,第二从动齿轮51在弧段GHE处通过转动中心O3与驱动齿轮31啮合,在此处角加速度减小,从而第四偏心轴ES4的转动速度减小且第四活塞260的转动速度减小,因此第四活塞260的角速度变得低于第一活塞120的角速度。结果,排出到第二缸体200的排出口215中的泵送物质比排出到第一缸体100的排出口115中的泵送物质较晚排出。此时,在通过第二、第三活塞160、210的吸入过程中,泵送物质通过第二活塞160的吸入比泵送物质通过第三活塞210的吸入较晚进行。
当第一、第二从动齿轮41、51进一步转动时,泵送物质通过活塞相反地进行吸入和排出。
下面将参考图5a和图5b来描述第一缸体100中的第一、第二活塞120、160由于驱动齿轮31和从动齿轮41、51的偏心的工作原理。在图5a和图5b中,设在第一缸体100中的第一、第二活塞120、160、以及设在第二缸体200中的第三、第四活塞220、260的结构和工作原理相同,区别仅在于它们的相位。因此为了方便,下面将仅介绍设在第一缸体100中的第一、第二活塞120、160与第一、第二偏心轴ES1、ES2之间的工作关系。
如图4所示,在驱动齿轮31和从动齿轮41、51偏移且配合的情况下,当从动齿轮41、51转动时,活塞120和160的总体速度没有改变,但活塞120和160在每点的角速度均改变。
即,当第一、第二活塞120、160进行内部接触第一缸体100的上、下容积室110、150的偏心转动运动时,即从图5a的状态到图5b的状态,第一偏心轴ES1的转动速度变得比第一活塞120在第一象限F1中的转动速度相对较快,从而第一偏心轴ES1的前端在第一活塞120之前首先从上止点向X2轴线转动。因此,当到达在第一象限F1上的45°的点时,第一活塞120不会对第一缸体100的上容积室110的内周表面施加压力,且第一活塞120的速度变得比平均速度快,并对第一象限F1中的泵送物质施加压力。通常,连接到排出口115的排出管(未示出)安装得比吸入口113高,这有利于排出泵送物质,解决了在驱动齿轮31和从动齿轮41、51没有从中心偏移的情况下通常发生的问题。
即,如图6所示,在第一、第二活塞420、430通过连接框架410相互连接的容积型泵中,在驱动齿轮和从动齿轮没有从中心偏移的情况下,当第一、第二活塞420、430通过第一象限F1时,出现这样的现象,即,第一、第二活塞420、430的接合(crease)部进入到上容积室450的第一象限F1和下容积室460的第二象限F2中。因此,当通过上容积室450的第一象限F1和下容积室460的第二象限F2时,第一、第二活塞420、430可能由于由为刚性体的缸体施加的推斥力而损坏或变形。
参见图5a和图5b,当第一、第二活塞120、160进行内部接触第一缸体100的上、下容积室110、150的偏心转动运动时,即从图5a的状态到图5b的状态,第二偏心轴ES2转动得比在第二象限F2中的第二活塞160的平均速度慢,这与上述第一偏心轴ES1转动得比在第一象限F1中的第一活塞120快的效果相同,从而防止了第一活塞120的损坏且不会干扰第一活塞120的排出冲程。
当第一活塞120通过第三象限且第二活塞160通过第四象限时,也是同样的原理。
参见图7,第一、第三偏心轴ES1、ES3装配在第一从动齿轮41中,从而它们的每端都彼此面对,通过键43固定且通过多个螺栓45完全固定在第一从动齿轮41中。
第二、第四偏心轴ES2、ES4也装配合在第二从动齿轮51中,从而它们的每端都彼此面对,通过键53固定且通过多个螺栓55完全固定在第二从动齿轮51中。
驱动齿轮31和两个从动齿轮41、51优选是能够互相垂直配合的斜齿轮(通常,在驱动斜齿轮和从动斜齿轮之间的扭转角形成为45°,从而动力传输角为90°),用于将动力传递到相对于驱动轴13垂直设置的偏心轴ES1、ES2、ES3、ES4。两个从动齿轮41、51的齿轮齿方向相反。驱动齿轮和从动齿轮也可以使用涡杆和涡轮,并不对示于附图中的零件作出限制。
由于根据本发明的第一、第二、第三、第四活塞120、160、220、260的结构和工作情况相同,因此为了方便,以下将参考图8仅描述第一活塞120的结构和工作情况。
根据本发明第一实施例的活塞120包括偏心轴ES1,通过球轴承301和止推轴承302相对于缸体310作相对转动;圆柱体310的外周表面,其涂覆有弹性橡胶320;穿过前盖330的螺栓340,其连接到偏心轴ES1的螺纹孔345;弹簧350,其设在前盖330和球轴承301之间;设在前盖330前部的前密封件360,用于密封圆柱体310;设在圆柱体310后部开口315处的后盖370;圆形的密封件380,其设在后盖370中。
密封件380相对于缸体100的后板105作相对运动,以防止在容积室内部的泵送物质流入到壳体310的内部,并防止在壳体内部的油脂漏出到缸体的容积室。
在具有上述结构的活塞120中,螺栓340具有螺线,使得当偏心轴ES1转动时螺栓340愈发紧固到偏心轴ES1上,从而当偏心轴ES1转动时,前盖330对弹簧350施加压力,由此缸体310通过沿箭头方向390的力而进一步贴和在圆形密封件380和缸体100的后板105上。
参见图9,根据本发明第二实施例的活塞120’适用于大的容积型泵,其缸体的容积室和活塞自身都较大。根据本发明第二实施例的活塞120’与第一实施例的活塞的结构相同,除了用具有单一转动轴线的总轴S来代替偏心轴以及缸体310’以偏心方式设在轴S中。
以下将参考图10和图11来描述根据本发明第二实施例的四联泵。
由于设在第一缸体100中的上、下活塞120、160的结构与在第二缸体200中的上、下活塞220、260的结构相同,因此仅选择描述一个活塞的结构。具体地,在图10中,活塞在圆形中由点划线表示,以强调在活塞壳体121和轴承壳体130之间的间隙‘d’。这里如上所述,上活塞120包括设在活塞壳体121中的轴承壳体130、安装在轴承壳体130中的轴承140、以及装配在轴承140中的偏心轴ES1。
活塞壳体121的内周表面122为椭圆形,且轴承壳体130的外周表面131为椭圆形,从而在活塞壳体121和轴承壳体130之间形成了间隙‘d’。因此,活塞壳体121在其内径中具有的Y轴线长度长于X1轴线的长度,且轴承壳体130在其直径中具有的Y轴线长度短于X轴线长度。
间隙‘d’应根据在缸体中的容积室和活塞的尺寸而变化。即,在上活塞120的转动轴线中心和下活塞160的转动轴线中心之间的垂直长度为96mm的情况下,间隙‘d’应大于1.3242mm,而当在上活塞120的转动轴线中心和下活塞160的转动轴线中心之间的垂直长度为120mm的情况下,间隙‘d’应大于1.062mm,且在垂直长度为144mm的情况下,间隙‘d’应大于0.8862mm。
而且,多个弹性O形圈133安装在轴承壳体130的外周表面上,用于补偿由间隙‘d’互相隔开的部分,以防止外来物质流入到活塞壳体121的内周表面和轴承壳体130之间的间隙‘d’中。而且,当轴承壳体130的外周表面贴和到活塞壳体121的内周表面上时,多个O形圈被压缩。
通过这种结构,在根据本发明第二实施例的四联泵中,如图13所示,当活塞120通过偏心轴ES1在容积室110中进行偏心圆周运动时,轴承壳体130的外周表面131’(由双点划线表示)沿箭头方向运动间隙‘d’的距离,从而轴承壳体130的外周表面131贴和在活塞壳体121的内周表面122上。通过这种效应,在活塞壳体121的外周表面122和容积室110的内周表面之间没有产生应力,从而解决了活塞120结构损坏和发生故障的问题。在图13中,双点划线表示虚拟线,在轴承壳体130的外周表面131’没有向活塞壳体121的内周表面运动的情况下,轴承壳体130的外周表面131’位于该虚拟线上。
因此,根据本发明的四联泵,如图12所示,驱动齿轮G1和从动齿轮G2、G3能够在无偏心的情况下围绕转动中心轴线互相配合,且偏心轴ES1到ES4的转动速度能够通过由齿轮G1、G2、G3模数的改变产生的动力传输率的改变而改变。
尽管以上仅针对上活塞120进行了描述,但下活塞160的结构和工作情况与上活塞120的结构和工作情况相同,此外,第二容积室200中的上活塞220和下活塞260的结构和工作情况与第一缸体100中的上活塞120的结构和工作情况相同。
参见图14,在泵尺寸较大,更具体地,用于转动活塞的轴较大的情况下,加工偏心轴是非常困难的。因此,根据本发明第三实施例的四联泵包括两根无偏心的轴S1和S2,用它们来代替第二实施例的四根偏心轴;通过驱动齿轮G1和从动齿轮G2、G3的配合来转动轴S1和S2;锥形部分501、502、503、504,其设在轴S1和S2的两端,具有与轴S1和S2的转动中心轴线相同的转动轴线。通过这种结构,相对于轴S1、S2的转动中心轴线X2、X3偏移的偏心活塞EP1、EP2、EP3、EP4安装在锥形部分501、502、503、504上。
轴S1和S2具有其上安装有偏心活塞EP1、EP2、EP3、EP4的锥形部分501、502、503、504,从而能够随意调节活塞的偏心位置,并能够随意设定偏心活塞EP1、EP2、EP3、EP4的工作顺序,由此能够随意调节泵送顺序。例如,四个活塞的泵送冲程可以这样的顺序循环,即,安装在第一、第二轴S1、S2的锥形部分501上的第一偏心活塞EP1,首先在第一缸体C1中的第一容积室510中进行吸入冲程,而后设置在第二缸体C2中的第四容积室513中的第四偏心活塞EP4进行吸入冲程,之后设置在第一缸体C1中的第二容积室511中的第二偏心活塞EP2进行吸入冲程,最后设置在第二缸体C2中的第三容积室512中的第三偏心活塞EP3进行吸入冲程。
参见图15,由于四个偏心活塞EP1、EP2、EP3、EP4的结构和工作情况相同,因此仅在图7中示出作为代表的第一偏心活塞EP1。
与第一实施例的上活塞相同,第一偏心活塞EP1中的活塞壳体610的内周表面611为椭圆形,且安装在活塞壳体610的内周表面611上的轴承壳体620的外周表面621为椭圆形,从而在活塞壳体610的内周表面611和轴承壳体620的外周表面621之间形成了间隙‘d’。而且,轴承壳体620相对于中心轴线O1偏移到转动轴线X2,从而当轴S1转动时活塞壳体610进行偏心转动运动。
第一偏心活塞EP1由于间隙‘d’的工作情况与第二实施例的上活塞的情况相同。
工业实用性从以上明显可知,在根据本发明的四联泵中,四个偏心轴通过设在第一和第二缸体之间的齿轮箱的传动装置进行偏心转动运动,且分别安装在偏心轴上的活塞在第一和第二缸体中的容积室中以不同的速度进行内接偏心圆周运动,从而消除了脉动和振动且大大降低了总体脉动和振动。
尽管已经参考本发明的特定优选实施例显示并描述了本发明,但本领域技术人员应该理解,在不脱离由所附权利要求限定的本发明的精神和范围的情况下,可以在其中在形式和细节上作出各种变化。
权利要求
1.一种四联泵,包括齿轮箱,其设在第一和第二缸体之间;设在齿轮箱中的传动装置,其与马达的驱动轴连接;分别安装在传动装置上的四个偏心轴,其可以进行偏心转动运动;以及分别安装在偏心轴上的四个活塞,设在第一缸体的上、下容积室中和第二缸体的上、下容积室中。
2.如权利要求1所述的四联泵,其特征在于,所述传动装置包括安装在驱动轴上的驱动齿轮,和与该驱动齿轮配合的第一和第二从动齿轮。
3.如权利要求1或2所述的四联泵,其特征在于,所述第一从动齿轮具有用于操作第一活塞的第一偏心轴和用于操作第三活塞的第三偏心轴,而第二从动齿轮具有用于操作第二活塞的第二偏心轴和用于操作第四活塞的第四偏心轴。
4.如权利要求2所述的四联泵,其特征在于,所述驱动齿轮的转动中心点从基准中心点沿着垂直轴线的方向偏移预定的长度,且所述从动齿轮的转动中心点也从基准中心点沿着垂直轴线的方向偏移所述驱动齿轮的偏心距离。
5.如权利要求1所述的四联泵,其特征在于,所述第一和第三偏心轴装配在第一从动齿轮中,从而它们的每端相互面对,并通过键固定且通过多个螺栓完全固定在第一从动齿轮中。
6.如权利要求1所述的四联泵,其特征在于,所述第二和第四偏心轴装配在第二从动齿轮中,从而它们的每端相互面对,并通过键固定且通过多个螺栓完全固定在第二从动齿轮中。
7.如权利要求2所述的四联泵,其特征在于,所述驱动齿轮和两个从动齿轮为能够互相垂直配合的斜齿轮,用于将动力传递到相对于驱动轴垂直设置的偏心轴。
8.如权利要求7所述的四联泵,其特征在于,所述两个从动齿轮的齿轮齿方向相反。
9.如权利要求7所述的四联泵,其特征在于,所述驱动齿轮和从动齿轮分别是涡杆和涡轮。
10.如权利要求1所述的四联泵,其特征在于,所述活塞包括偏心轴,其通过止推轴承和球轴承相对于圆柱体作相对转动;圆柱体的外周表面,其涂覆有弹性橡胶;穿过前盖的螺栓,其连接到偏心轴的螺纹孔;弹簧,其设在前盖和球轴承之间;设在前盖前部的前密封件,用于密封圆柱体;设在圆柱体后部开口处的后盖;以及圆形的密封件,其设在后盖中。
11.一种四联泵,其具有齿轮箱,其设在第一和第二缸体之间;设在齿轮箱中的传动装置,其与马达的驱动轴连接;分别安装在传动装置上的四个偏心轴,其可以进行偏心转动运动;分别安装在偏心轴上的活塞,其分别设在第一缸体的上、下容积室中和第二缸体的上、下容积室中;该四联泵包括上活塞,具有设置在其活塞壳体中的轴承壳体;轴承,其安装在轴承壳体的内部;偏心轴,其装配在轴承中;以及椭圆形的活塞壳体的内周表面以及椭圆形的轴承壳体的外周表面,从而在活塞壳体和轴承壳体之间形成间隙。
12.如权利要求11所述的四联泵,其特征在于,多个弹性O形圈安装在所述轴承壳体的外周表面上,用于补偿由间隙隔开的部分。
13.如权利要求11所述的四联泵,其特征在于,下活塞的结构和工作情况与上活塞的结构和工作情况相同,而且,第二容积室中的上活塞和下活塞的结构和工作情况与第一缸体中的上活塞的结构和工作情况相同。
14.如权利要求11所述的四联泵,其特征在于,所述传动装置包括可以绕转动中心轴线无偏心地相互配合的驱动齿轮和从动齿轮,并且偏心轴的转速可以通过由齿轮模数的改变产生的动力传输率的改变而改变。
15.一种四联泵,包括齿轮箱,其设在第一和第二缸体之间;设在齿轮箱中的传动装置,其与马达的驱动轴连接;两根轴,分别安装在传动装置上;以及分别安装在轴上的活塞,其分别设在第一缸体的上、下容积室中和第二缸体的上、下容积室中。
16.如权利要求15所述的四联泵,其特征在于,所述传动装置中的驱动齿轮和从动齿轮配合,从而安装在从动齿轮上的轴能够转动,并且在轴的两端形成具有与轴的转动中心轴线相同的转动轴线的锥形部分,且相对于轴的转动中心轴线偏移的偏心活塞安装在该锥形部分上。
17.如权利要求16所述的四联泵,其特征在于,所述轴具有所述锥形部分,所述偏心活塞安装在该锥形部分上,从而可以随意调整活塞的偏心位置,且可以随意设定偏心活塞的工作顺序。
18.如权利要求16或17所述的四联泵,其特征在于,在所述偏心活塞中的活塞壳体的内周表面为椭圆形,且安装在活塞壳体的内周表面上的轴承壳体的外周表面为椭圆形,从而在活塞壳体的内周表面和轴承壳体的外周表面之间形成了间隙。
全文摘要
公开了一种四联泵,包括齿轮箱(21),设在第一和第二缸体(100和200)之间;设在齿轮箱(21)中的传动装置(1),其与马达(11)的驱动轴(13)连接;分别安装在传动装置(1)上的四个偏心轴ES1到ES4,其可以进行偏心转动运动;分别安装在偏心轴ES1到ES4上的四个活塞(120,160,220,260),其分别设在第一缸体(100)的上、下容积室(110和150)上和第二缸体(200)的上、下容积室(210和250)上。
文档编号F04C18/32GK1659379SQ03813087
公开日2005年8月24日 申请日期2003年4月30日 优先权日2002年6月4日
发明者李基万, 李完顺, 郭明顺, 李基原 申请人:李基万, 李完顺, 郭明顺, 李基原
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜