一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种高纯金属铍及其制备工艺的制作方法

2021-06-18 20:11:00 来源:中国专利 TAG:
一种高纯金属铍及其制备工艺的制作方法
本发明涉及金属铍的制备工艺,更具体地,涉及一种高纯金属铍及其制备工艺。
背景技术
:金属铍尤其是核纯级铍密度小、强度高、核性能优异,广泛用作导弹、卫星的结构材料和惯性导航系统中,也是核反应堆和核武器的结构材料、中子源材料。通常采用镁热还原法制备金属铍,该方法制备的铍的纯度较低,无法达到核纯级,从而限制了金属铍在航空航天领域的应用。金属纯铍的生产工艺主要有两种,一种是氟化铍镁热还原法,制取的金属铍为珠状,纯度一般在97%左右;另一种是电解氟化铍或氯化铍,制取的金属铍为鳞片状,纯度可达99%左右。综上所述,现有用氟化铍、氯化铍为原料,熔盐电解法生产工艺制取金属铍,具有氧含量高,夹盐率高,电流效率低等缺点。因此,实有必要提供一种新的熔盐电解精炼法制备高纯金属铍的方法解决上述技术问题。技术实现要素:本发明的目的在于解决现有技术存在的上述不足中的至少一项。例如,本发明的目的之一在于解决现有的电解氟化铍或氯化铍制高纯金属铍存在的含氧量高、夹盐率高、以及电流效率低的问题。为了实现上述目的,本发明的一方面提供了一种制备高纯金属铍的工艺,所述工艺包括以下步骤:以金属铍作为阴极和阳极,以nacl-kcl-licl净化熔盐为电解质,在保护气体的保护下,并在槽温400~750℃进行电解,得到阴极产物,其中,阴极电流密度为0.01~2a/cm2,阳极电流密度为0.01~1.2a/cm2,电解质流速控制在0~18cm/s;nacl-kcl-licl净化熔盐包括占熔盐总量的质量分数分别为30~65%的nacl、30~65%的kcl、0~40%的licl和0.5~6%的可溶铍离子;使阴极产物在保护气体的保护下冷却,然后进行酸洗处理;将酸洗处理后的阴极产物进行真空干燥,得到高纯金属铍。在本发明的一个示例性实施例中,所述nacl-kcl-licl净化熔盐可以通过以下步骤获得:在容器内均匀混合质量分数分别为30~65%的nacl、30~65%的kcl、0~40%的licl的混合盐;使混合盐处于真空度在7×10-3pa以下的环境中,并将其加热至400~550℃,保温,得到第一熔盐;再将第一熔盐加热至710~780℃,通入hcl气体鼓泡并保温,得到第二熔盐;对第二熔盐进行预电解纯化,预电解纯化过程中进行搅拌,在残余电流密度降至0.1ma/cm2以下时,停止预电解纯化,冷却,得到第三熔盐;在所述第三熔盐中放入铍电极,在保护气体的保护下升温至710~780℃,然后加入becl2,在铍离子达到一定浓度后,停止加入becl2,保温,得到所述nacl-kcl-licl净化熔盐。在本发明的一个示例性实施例中,在所述加热至400~550℃后的保温时间可以为3~7h。在本发明的一个示例性实施例中,所述向第一熔盐中通入hcl气体鼓泡的步骤可以包括:以5~30l/min的流速向所述第一熔盐中通入hcl气体,鼓泡1~6小时。在本发明的一个示例性实施例中,所述对第二熔盐进行预电解纯化可以包括:采用石墨作为阴极和阳极,在保护气体的保护下,以0.7~2.9v槽压对所述第二熔盐预电解纯化。在本发明的一个示例性实施例中,所述第一熔盐中氧含量可以在650ppm以下。在本发明的一个示例性实施例中,所述金属铍可以包括铍珠、铍板和铍棒中的一种或多种,所述金属铍的纯度在98%以上。在本发明的一个示例性实施例中,所述酸洗处理的步骤可包括:将所述冷却后的阴极产物放入浓度为1~3mol/l的盐酸溶液中进行超声清洗,然后放入质量分数为5~10%的氢氟酸中清洗抽滤。在本发明的一个示例性实施例中,所述nacl-kcl-licl净化熔盐中的杂质的质量分数可不高于0.004%,含氧量可不高于150ppm。本发明的另一方面提供了一种高纯金属铍,所述高纯金属铍通过上述的一种制备高纯金属铍的工艺制造而成。与现有技术相比,本发明的有益效果包括:本发明区别于现有技术中以氟化铍或氯化铍为原料电解制备高纯度金属铍,而是以较高纯度的金属铍作为原料;在电解的工序中,金属铍作为阴、阳极,以nacl-kcl-licl净化熔盐为电解质,生产出的铍颗粒、铍板或铍棒氧含量低于50ppm,纯度可达4n~5n级,夹盐率可控制在1~12%,电流效率在85%以上。附图说明图1示出了本发明的一种制备高纯金属铍的工艺的流程图。具体实施方式在下文中,将结合附图和示例性实施例来详细说明本发明的一种高纯金属铍及其制备工艺。示例性实施例1图1示出了本发明的一种制备高纯金属铍的工艺的流程图。如图1所示,在本实施例中,一种制备高纯金属铍的工艺包括以下步骤:以金属铍作为阴极和阳极,以nacl-kcl-licl净化熔盐为电解质,在保护气体的保护下,并在槽温400~750℃(例如410、450、650、740℃)进行电解,得到阴极产物,其中,阴极电流密度为0.01~2a/cm2,阳极电流密度为0.01~1.2a/cm2(例如0.1、0.5、1.9、1.1a/cm2),电解质流速控制在0~18cm/s(例如1、5、10、17m/s);nacl-kcl-licl净化熔盐包括质量比为30~65:30~65:0~40:0.5~6%的nacl、kcl、licl和可溶铍离子这里,阴、阳极的电流密度小于区间最小值将影响电解效率,大于区间最大值将影响产物纯度。这里,将电解质流速控制在0~18cm/s将有利于阴极产物的沉积。这里,保护气体可以是惰性气体,例如氩气、氦气等。然而,本发明不限于此,保护气体还可以是氮气等不影响制备效果的气体。例如,nacl-kcl-licl净化熔盐中的杂质的质量分数不高于0.004%,含氧量不高于150ppm。在本实施例中,nacl-kcl-licl净化熔盐可以通过以下步骤获得:在容器内均匀混合,得到质量分数分别为30~65%(例如31%、35%、50%、64%等)的nacl、30~65%(例如31%、35%、50%、64%)的kcl和0~40%(例如1%、3%、10%、20%、35%、39%等)的licl的混合盐;使混合盐处于真空度在7×10-3pa以下的环境中,并将其加热至400~550℃(例如410、450、500、540℃),保温,得到第一熔盐;再将第一熔盐加热至710~780℃(例如720、730、750、770℃),保温2~4h,通入hcl气体鼓泡并继续保温,得到第二熔盐;对第二熔盐进行预电解纯化,预电解纯化过程中进行搅拌,在残余电流密度降至0.1ma/cm2以下时停止预电解纯化,冷却,得到第三熔盐;在第三熔盐中放入铍电极,在保护气体的保护下升温至710~780℃(例如720、730、750、770℃),然后加入becl2,在铍离子达到一定浓度后,停止加入becl2,保温,得到nacl-kcl-licl净化熔盐。例如,一定浓度可以是becl2占熔盐总量的0.5~6%(例如1%、3%、5%、5.5%等)。例如,进一步地,通入的hcl气体纯度为4n级以上。例如,通入的becl2的纯度为4n级以上。这里,4n级以上指的是纯度不低于99.99%。例如,进一步地,上述混合盐可包括质量分数分别为35~65%的nacl、35~65%的kcl和0~40%的licl。例如,进一步地,该容器可以是坩埚(例如,高纯金属镍坩埚)。例如,进一步地,真空度也可以在3~7×10-3pa,例如6×10-3pa、4×10-3pa等。例如,进一步地,在加热至400~550℃后的保温时间可以为3~7h,例如4、5、6h等,在hcl气体鼓泡后的的保温时间可以为2~4h,例如2.5、3、3.5h等。例如,进一步地,在加热至710~780℃后的保温时间可以为2~6h,例如2.5、3、5、5.5h等。例如,进一步地,向第一熔盐中通入hcl气体鼓泡的步骤可以包括:以5~30l/min(例如6、10、20、29l/min等)的流速向所述第一熔盐中通入hcl气体,鼓泡1~6小时(例如1.5、2、4、5.5h等)。例如,这里的搅拌可以是机械搅拌,然而,本发明不限于此。这里,在预电解纯化的同时伴随搅拌,可促进传质过程,加快电解进程。例如,上述的加热的设备可以是电炉。例如,进一步地,对第二熔盐进行预电解纯化可以包括:采用石墨作为阴极和阳极,在保护气体的保护下,以0.7~2.9v(例如0.8、1、2、2.5、2.7v等)槽压对第二熔盐预电解纯化。例如,进一步地,第一熔盐中的氧含量可以在650ppm以下,例如200、400、550、600ppm等。例如,金属铍可以包括铍珠、铍板和铍棒中的一种或多种。例如,金属铍的纯度可以为95%、96%、97%、98%或99%以上。这里,由于nacl和kcl都有较强的吸水性,如果直接熔融,熔盐中氧含量可高达1500ppm,在高温下游离氧元素极易与铍金属结合形成间隙固溶体,使电解产品氧含量偏高。在nacl-kcl-licl熔盐体系中一般存在氧化物、铁、镍、碳等杂质,熔盐中杂质元素的存在会影响铍离子阴极电结晶过程,不仅会造成产品金属杂质含量升高,还会使阴极产品严重粉化,在后期酸洗处理时被严重氧化,所以需通过上述步骤对混合的熔盐进行净化除杂。使阴极产物在保护气体的保护下冷却,然后进行酸洗处理。例如,酸洗处理的步骤可以包括:将冷却后的阴极产物放入浓度为1~3mol/l(例如1.2、2、2.5、2.8mol/l)的盐酸溶液中进行超声清洗,然后放入质量分数为5~10%(例如6、7、8、9%)的氢氟酸中清洗抽滤。将酸洗处理后的阴极产物进行真空干燥,得到高纯金属铍。例如,可以将酸洗处理后的阴极产物送入100℃(例如80、90、95℃等)以下的真空干燥箱中干燥封存。示例性实施例2在本实施例中,以含铍为99.1%的金属铍板为原料,通过本发明的以工业铍为原料电解法制备高纯金属铍的工艺来制备高纯度金属铍。(1)熔盐制备熔盐准备。先将nacl、kcl和licl分别进行125℃烘干24h。称取质量分数分别为48.1%的nacl、39.2%的kcl和12.7%的licl盐,在混料机内均匀混合。将混合盐加入金属镍坩埚,将坩埚置于电炉内,抽真空至7×10-3pa,同时升温至450℃,保温4小时,进行真空脱水处理。然后向电炉内通入5n级高纯氩气,同时升温至720℃保温4小时。检测高温脱水后nacl、kcl和licl的混合物中的氧含量,其含氧量低于650ppm。化学净化。以流量为15l/min的速度向坩埚熔盐中通入纯度不低于99.999%的hcl气体鼓泡2小时。在氩气保护条件下,冷却至室温,电解质经熔盐化学净化后nacl、kcl和licl混合物中的氧含量为150ppm以下。电化学净化。采用高纯高强石墨作为惰性阴、阳极,在氩气保护条件下,以2.6v槽压对nacl、kcl和licl熔盐预电解纯化,同时采用机械搅拌方式对nacl、kcl和licl熔盐进行搅动,促进传质过程,当残余电流密度降至0.1ma/cm2时停止预电解纯化。冷却。将电化学净化后的nacl、kcl和licl熔盐冷却至室温,完成熔盐的制备。(2)可溶铍离子制备在制备的熔盐中放入铍电极,在氩气保护条件下升温至750℃,向熔盐中加入4n级以上的becl2,铍离子的质量分数达到熔盐总量的5.5wt%时,停止加入becl2,保温6小时。(3)电解。电解以工业铍珠、铍板、铍棒作为阴、阳极,以nacl-kcl-licl熔盐为电解质,电解阳极电流密度为0.06a/cm2,阴极电流密度为0.45a/cm2,初始可溶铍离子浓度为5.5wt%,电解质流速控制在8cm/s,在高纯氩气保护下,在450℃进行电解,得到阴极产物。(4)酸洗处理将得到的阴极产物在氩气保护条件下冷却至室温后,放入浓度为1mol/l的盐酸溶液中超声清洗后,再放入5~10%的氢氟酸中清洗抽滤。(5)真空干燥酸洗处理后的阴极产物送入80℃的真空干燥箱干燥封存,经干燥所得到的产物为高纯金属铍。通过本实施例,获得的金属铍为银灰色,氧含量为31ppm,电流效率为89%,夹盐率为3%,金属铍的纯度达到4n5级高纯金属铍的要求。所制备出的金属铍的杂质元素含量如表1所示:表1-制备出的金属铍中的杂质元素含量杂质元素阳极粗铍(ppm)阴极致密铍(ppm)精炼效率(%)c7521599.98o55103199.99fe639599.99al287399.98si213999.95mg336699.98示例性实施例3以含铍为98.2%的金属铍珠为原料,通过本发明的以工业铍为原料电解法制备高纯金属铍的工艺来制备高纯度金属铍。(1)净化熔盐的制备熔盐准备。先将nacl、kcl和licl分别进行125℃烘干24h。称取质量分数分别为48.1%的nacl、48.1%的kcl和3.8%的licl盐,在混料机内均匀混合。将混合盐加入金属镍坩埚,将坩埚置于电炉内,抽真空至3×10-3pa,同时升温至450℃,保温4小时,进行真空脱水处理。然后向电炉内通入5n级高纯氩气,同时升温至770℃保温4小时。检测高温脱水后nacl、kcl和licl的混合物中的氧含量超过650ppm,因此,调高温度并增加保温时间,直至检测出混合物中的氧含量低于650ppm为止。化学净化。以流量为15l/min的速度向坩埚熔盐中通入纯度不低于99.999%的hcl气体鼓泡4小时。在氩气保护条件下,冷却至室温,经电解质熔盐化学净化后nacl、kcl和licl混合物中的氧含量为100ppm以下。电化学净化。采用高纯高强石墨作为惰性阴、阳极,在氩气保护条件下,以2.1v槽压对nacl、kcl和licl熔盐预电解纯化,同时采用机械搅拌方式对nacl、kcl和licl熔盐进行搅动,促进传质过程,当残余电流密度降至0.1ma/cm2以下时停止预电解纯化。冷却。将电化学净化后的nacl、kcl和licl熔盐冷却至室温,完成熔盐的制备。(2)可溶铍离子制备在熔盐中放入铍电极,氩气保护条件下升温至770℃,向熔盐中加入4n级以上的becl2,在铍离子达到一定浓度后,停止加入becl2,保温4小时。(3)电解电解以工业铍珠、铍板和铍棒作为阴、阳极,电解阳极电流密度为0.05a/cm2,阴极电流密度为0.95a/cm2,初始可溶铍离子浓度为2.5wt%,电解质流速控制在6cm/s,在高纯氩气保护下,在槽温650℃进行电解,得到阴极产物。(4)酸洗处理将得到的阴极产物在氩气保护条件下冷却至室温后,放入浓度为1mol/l的盐酸溶液中超声清洗后,再放入5~10%的氢氟酸中清洗抽滤。(5)真空干燥将工序4中酸洗处理后的阴极产物送入80℃的真空干燥箱干燥封存,经干燥所得到的产物为高纯金属铍。本实施例获得的金属铍为银灰色高纯金属铍,氧含量为47ppm,电流效率为91%,夹盐率为11%,纯度达到4n级高纯金属铍的要求。所制备出的金属铍的杂质元素含量如表2所示。表2-制备出的金属铍中的杂质元素含量尽管上面已经结合示例性实施例及附图描述了本发明,但是本领域普通技术人员应该清楚,在不脱离权利要求的精神和范围的情况下,可以对上述实施例进行各种修改。当前第1页12
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜