一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

移动式原位薄层电解法在电极上连续合成金属氧化物或金属沉积物微/纳米结构的方法与流程

2021-08-10 16:32:00 来源:中国专利 TAG:沉积物 金属 薄层 电化学 原位
移动式原位薄层电解法在电极上连续合成金属氧化物或金属沉积物微/纳米结构的方法与流程

本发明涉及一种移动式原位薄层电解法在电极上连续合成金属氧化物或金属沉积物微/纳米结构的方法,属于电化学领域。



背景技术:

目前在工业上,在带状或条状电极上电化学沉积金属氧化物或金属沉积物微/纳米结构的方法大多数采用间歇式的沉积法,得到的结构也比较单一。

另外现有金属氧化物或金属沉积物微/纳米结构合成方法中大多采用水热合成等方法,存在反应条件苛刻,过程繁琐等问题。

并且,目前制备金属氧化物微/纳米阵列的方法,都是将电极浸泡在电解液中,施加电压,在二维基底上长出金属氧化物微/纳米结构,生产连续性不好,且无法实现在电极轴向上精确控制微/纳米结构的生长位置,厚度也不可控制,从而限制了金属氧化物微/纳米结构在后续研究及应用中的发展。



技术实现要素:

为了解决上述技术问题,本发明的目的在于提供一种移动式原位薄层电解法在电极上连续合成金属氧化物或金属沉积物微/纳米结构的方法,能实现连续在带状或条状电极上电化学沉积金属氧化物或金属沉积物微/纳米结构,并且可精确控制生长位置和厚度。

为了实现本发明的上述目的,本发明提供了一种移动式原位薄层电解法在电极上连续合成金属氧化物或金属沉积物微/纳米结构的方法,其特征在于:阴阳电极均为带状或条状电极,阴阳电极平行相间穿过薄层电解液,实现在该薄层电解液所对应的电极位置上精确电沉积生长金属氧化物或金属沉积物微/纳米结构,并最终包裹整个电极,所述薄层电解液的厚度为10nm~10mm。

本发明的方法,采用薄层电解液,电极与电解液接触面积小,通过移动阴阳电极,可使沉积物快速脱离反应体系,并最终包裹整个电极,可结合辊轴对阴阳电极的牵伸和卷取,实现大规模连续生长。

上述方案中:所述薄层电解液是含有银、锰、铜、锌、镍、钛、钴、钒离子的水溶液或有机溶液。

上述方案中:带状或条状电极的材料是铂、碳纤维、钛、银、金、不锈钢、铜、锌、镍中的一种。带状电极宽为1mm~5dm,宽厚比大于1.5。条状电极可以是纤维、细丝等,其直径为0.01mm~5cm。

上述方案中:电解电流密度为1ma·cm-2~10a·cm-2,电解电流密度小。

上述方案中:阴阳电极相对于薄层电解液的移动速度小于20mm·s-1

上述方案中:所述薄层电解液采用垂直向下的电解液水幕,阴阳电极平行相间穿过电解液水幕,电解液水幕的厚度为0.5mm~10mm,更容易实现。

上述方案中:所述薄层电解液采用气液界面,将电解液盛放在电解液槽中,让阴阳电极穿过电解液的气液界面,气液界面的厚度在10nm~600μm。

上述方案中:所述电解液为含有相应金属离子的有机溶液,所述有机溶液不溶于水,将有机溶液盛放于电解液槽中,然后加入水,分层,上层有机溶剂作为薄层溶液,厚度为1μm~500μm。

与现有的金属氧化物或金属沉积物微/纳米结构合成及连续制备方法相比,本发明具有以下有益效果:

1)现有金属氧化物或金属沉积物微/纳米结构合成方法中大多采用水热合成等方法,存在反应条件苛刻,过程繁琐等问题。在本发明的技术方案中,使用电沉积方法,直接在带状或条状电极上合成金属氧化物或金属沉积物微/纳米结构,方便简单且易操作,并且在总体电流小的情况下,可以实现局部电流密度很高,从而能快速长出微/纳米结构。

2)现有的制备方法一般都是将电极浸入在电解液本体相中,也可利用辊轴牵伸使电沉积得到的微/纳米结构脱离反应体系,从而实现大规模连续生长,但这种方法不能使制备所得到的结构快速脱离反应体系,反应仍会继续在本体相中进行,致使结构的位置和厚度都不能精确的控制。本发明一方面可在电极上实现大规模连续合成金属氧化物或金属沉积物微/纳米结构,另一方面,由于电解液为薄层形式接触面积小,能够使制备所得的结构快速脱离反应体系,从而能精确控制结构生长位置和厚度,此外还能在界面处长出本体相不能长出的物质结构(本发明给出的是珊瑚状)。

3)本发明大规模连续性电沉积合成得到的金属氧化物或金属沉积物微/纳米结构,还可以通过不同的合成方法在其结构上负载其他物质而获得其他方面的应用。

附图说明

图1为实施例1移动式原位薄层电解装置的示意图。

图2为移动式原位薄层电沉积过程示意图。

具体实施方式

下面实施例对本发明做进一步描述。

实施例1-铂丝上锰氧化物微/纳米结构的制备

步骤s1,配制50g·l-1(以锰计)酸性硫酸锰溶液用作电解液,配制方法为:称量76.82g一水合硫酸锰粉末溶于300ml蒸馏水中,溶解后滴加14ml浓硫酸于溶解后的硫酸锰水溶液中,定容至500ml。

步骤s2,尺寸为14.8cm×7cm×6.8cm的亚克力反应器内,放置长度约为15mm,宽约为0.5mm的水幕引流器。

步骤s3,取直径为0.1mm的铂丝约7cm长度,经600目砂纸打磨后作阳极,即是锰氧化物的丝状电极基底。取直径为0.2mm的不锈钢丝约25cm长度,经600目砂纸打磨后作阴极。

步骤s4,倒入配制的50g·l-1酸性硫酸锰溶液于烧杯中,用恒流泵控制电解液流入水幕装置的速度为20ml·h-1,电解液流入亚克力反应器内。

步骤s5,将准备的阳极材料和阴极材料,绷直、竖直方向平行(相距约为3mm)固定在涂丝机仪器上,并使丝状电极穿过电解液水幕,控制电解液水幕沿着丝状电极轴向平行移动,移动速度控制在0.3mm·s-1~0.7mm·s-1。在实际生产中,采用牵引电极移动,电解液水幕固定的方式生产。

步骤s6,移动的同时开始通过直流电源以电流密度为5a·cm-2供电,即可在铂丝上得到大规模连续沉积的锰氧化物微/纳米结构。移动式原位薄层电沉积过程示意图如图2所示。

实施例2-金丝上镍氧化物微/纳米结构的制备

步骤s1,配制硫酸镍、氯化镍混合溶液用作电解液,电解液成分分别为120g·l-1硫酸镍、45g·l-1氯化镍、35g·l-1硼酸。

步骤s2,尺寸为14.8cm×7cm×6.8cm的亚克力反应器内,放置长度约为15mm,宽约为3mm的水幕引流器。

步骤s3,取直径为1mm的金丝长度约10cm,经600目砂纸打磨后作阳极,即是镍氧化物沉积的条状电极基底。取直径为0.2mm的不锈钢丝约25cm长度,经600目砂纸打磨后作阴极。

步骤s4,倒入配制的硫酸镍、氯化镍混合溶液于烧杯中,用恒流泵控制电解液流入水幕装置的速度为30ml·h-1

步骤s5,将准备的的阳极材料和阴极材料,绷直、竖直方向平行(相距约为4mm)固定在涂丝机仪器上,并使条状电极穿过电解液水幕,控制电解液水幕沿着金丝轴向平行移动,移动速度控制在0.5mm·s-1~1mm·s-1

步骤s6,移动的同时开始通过直流电源以电流密度为4a·cm-2供电,即可在金丝上得到大规模连续沉积的镍氧化物微/纳米结构。

实施例3-碳纸上锰氧化物微/纳米结构的制备

步骤s1,配制90g·l-1(以锰计)酸性硫酸锰溶液用作电解液,配制方法为:称量138.27g一水合硫酸锰粉末溶于300ml蒸馏水中,溶解后滴加14ml浓硫酸于溶解后的硫酸锰水溶液中,定容至500ml。

步骤s2,尺寸为14.8cm×7cm×6.8cm的亚克力反应器内,放置长度约为15mm,宽约为2mm的水幕引流器。

步骤s3,取宽为2mm,厚为0.2mm的碳纸约20cm长度作阳极,即是锰氧化物沉积的带状电极基底。取直径为1mm的不锈钢丝约30cm长度,经600目砂纸打磨后作阴极。

步骤s4,倒入配制90g·l-1酸性硫酸锰溶液于烧杯中,用恒流泵控制电解液流入水幕装置的速度为35ml·h-1

步骤s5,将准备的的阳极材料和阴极材料,绷直、竖直方向平行(相距约为3mm)固定在涂丝机仪器上,并使电极穿过电解液水幕,控制电解液水幕沿着碳纸带状电极轴向平行移动,移动速度控制在0.8mm·s-1~1.5mm·s-1

步骤s6,移动的同时开始通过直流电源以电流密度为6a·cm-2供电,即可在碳纤维上得到大规模连续沉积的锰氧化物微/纳米结构。

实施例4-锌丝上钴氧化物微/纳米结构的制备

步骤s1,配制50g·l-1(以钴计)酸性钴盐溶液用作电解液。

步骤s2,尺寸为14.8cm×7cm×6.8cm的亚克力反应器内,放置长度约为15mm,宽约为2mm的水幕引流器。

步骤s3,取直径为0.1mm的锌丝长度约10cm,经600目砂纸打磨后作阳极,即是钴氧化物沉积的丝状电极基底。取直径为0.2mm的不锈钢丝约25cm长度,经600目砂纸打磨后作阴极。

步骤s4,倒入配制50g·l-1酸性钴盐溶液于烧杯中,用恒流泵控制电解液流入水幕装置的速度为35ml·h-1

步骤s5,将准备的的阳极材料和阴极材料,绷直、竖直方向平行(相距约为3mm)固定在涂丝机仪器上,并使电极穿过电解液水幕,控制电解液水幕沿着锌丝电极轴向平行移动,移动速度控制在0.5mm·s-1~1.1mm·s-1

步骤s6,移动的同时开始通过直流电源以电流密度为5a·cm-2供电,即可在锌丝电极上得到大规模连续沉积的钴氧化物微/纳米结构。

实施例5-镍丝上铜氧化物和锰氧化物微/纳米复杂结构的制备

步骤s1,配制硫酸铜溶液用作电解液,电解液成分分别为0.2mol·l-1硫酸铜、1.5mol·l-1硫酸。配制50g·l-1(以锰计)酸性硫酸锰溶液用作电解液。

步骤s2,尺寸为14.8cm×7cm×6.8cm的亚克力反应器内,放置长度约为15mm,宽约为10mm的水幕引流器。

步骤s3,取直径为0.5mm的镍丝约15cm长度作阳极,即是铜氧化物和锰氧化物沉积的条状电极基底。取直径为1mm的不锈钢丝约30cm长度,经600目砂纸打磨后作阴极。

步骤s4,将配制的硫酸铜电解液溶液倒入一个烧杯中,将配置的硫酸锰电解液倒入另一个烧杯中备用,用恒流泵控制硫酸铜电解液流入水幕装置的速度为25ml·h-1

步骤s5,将准备的的阳极材料和阴极材料,绷直、竖直方向平行(相距约为5mm)固定在涂丝机仪器上,并使电极穿过电解液水幕,控制电解液水幕沿着镍丝条状电极轴向平行移动,移动速度控制在1mm·s-1~2mm·s-1

步骤s6,移动的同时开始通过直流电源以电流密度为5a·cm-2供电,即可在镍丝上得到连续沉积的铜氧化物微/纳米结构。

步骤s7,将硫酸铜电解液换成备用的硫酸锰电解液,同样用恒流泵控制硫酸锰电解液流入水幕装置的速度为25ml·h-1

步骤s8,控制电解液水幕沿着沉积有铜氧化物的镍丝条状电极轴向平行移动,移动速度控制在1mm·s-1~2mm·s-1。同时开始通过直流电源以电流密度为5a·cm-2供电,即可在镍丝上得到连续沉积的锰氧化物微/纳米结构。

步骤s9,如此重复步骤s7~s8,就可以在镍丝电极上得到连续沉积的铜氧化物和锰氧化物交替的微/纳米复杂结构。

实施例6-钛丝上锌氧化物微/纳米结构的制备

步骤s1,配制50g·l-1(以锌计)酸性硫酸锌溶液用作电解液。

步骤s2,取直径为0.01mm的钛丝约17cm长度,经600目砂纸打磨后作阳极,即是锌氧化物的丝状电极基底。取直径为0.02mm的不锈钢丝约34cm长度,经600目砂纸打磨后作阴极。

步骤s3,尺寸为14.8cm(长)×2cm(宽)×6.8cm(高)的亚克力反应器内,盛放电解液,电解液表面由于表面张力形成的气液界面,电解液形成的气液界面厚度在20μm。亚克力反应器的下侧设置有供电极穿过的小孔(小孔孔径与电极直径匹配,由于小孔很小,在表面张力作用下,电解液不会从该小孔流出)。

步骤s4,将准备的的阳极材料和阴极材料,绷直、竖直方向平行(相距约为3mm),并使丝状电极穿过亚克力反应器上的小孔,并且丝状电极位于薄层电解液中,同时向上牵引移动电极,移动速度控制在2mm·s-1~3mm·s-1

步骤s5,移动的同时开始通过直流电源以电流密度为2a·cm-2供电,即可在钛丝上得到大规模连续沉积的锌氧化物微/纳米结构。

实施例7-铜丝上锰氧化物微/纳米结构的制备

步骤s1,配制50g·l-1(以锰计)酸性硫酸锰溶液用作电解液,配制方法为:称量76.82g一水合硫酸锰粉末溶于300ml蒸馏水中,溶解后滴加14ml浓硫酸于溶解后的硫酸锰水溶液中,定容至500ml。

步骤s2,取直径为0.03mm的铜丝约17cm长度,经600目砂纸打磨后作阳极,即是锌氧化物的丝状电极基底。取直径为0.05mm的不锈钢丝约34cm长度,经600目砂纸打磨后作阴极。

步骤s3,尺寸为14.8cm(长)×2cm(宽)×6.8cm(高)的亚克力反应器内,盛放电解液,电解液表面由于表面张力形成的气液界面,电解液形成的气液界面厚度在60μm。亚克力反应器的下侧设置有供电极穿过的小孔(小孔孔径与电极直径匹配,由于小孔很小,在表面张力作用下,电解液不会从该小孔流出)。

步骤s4,将准备的的阳极材料和阴极材料,绷直、竖直方向平行(相距约为3mm),并使丝状电极穿过亚克力反应器上的小孔,丝状电极位于薄层电解液中,同时向上牵引移动电极,移动速度控制在1.8mm·s-1~3.9mm·s-1

步骤s5,移动的同时开始通过直流电源以电流密度为3a·cm-2供电,即可在铜丝上得到大规模连续沉积的锰氧化物微/纳米结构。

实施例8-银丝上铜氧化物微/纳米结构的制备

步骤s1,配制60g·l-1(以铜计)含有铜离子的二甲基硫醚有机溶液。

步骤s2,取直径为0.1mm的银丝约15cm长度,经600目砂纸打磨后作阳极,即是铜氧化物的丝状电极基底。取直径为0.02mm的不锈钢丝约30cm长度,经600目砂纸打磨后作阴极。

步骤s3,尺寸为14cm(长)×4.6cm(宽)×8cm(高)的亚克力反应器内,将有机溶液盛放于电解液槽中,然后加入水,分层,上层有机溶剂作为薄层溶液,厚度为500μm。

步骤s4,在亚克力反应器的底部放置定滑轮,准备的阳极和阴极电极穿过薄层电解液面,再穿过该定滑轮,在外部也通过定滑轮的牵伸,移动速度控制在2mm·s-1~3mm·s-1,使电极脱离电解液面。

步骤s5,移动的同时开始通过直流电源以电流密度为2.5a·cm-2供电,即可在银丝上得到大规模连续沉积的铜氧化物微/纳米结构。

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,如薄层电解液可以是含有银、锰、铜、锌、镍、钛、钴、钒等离子的水溶液也可以是有机溶液,但是不局限于上述金属离子的电解液。带状或条状电极的材料可以是铂、碳纤维、钛、银、金、不锈钢、铜、锌、镍。但是不局限于上述集中材料。本发明的范围由权利要求及其等同物限定。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜