一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种双有序复合钙钛矿红色荧光粉及其制备方法与流程

2021-08-24 16:03:00 来源:中国专利 TAG:荧光粉 制法 有序 制备方法 复合
一种双有序复合钙钛矿红色荧光粉及其制备方法与流程

本发明涉及荧光粉及其制法,具体为一种双有序复合钙钛矿红色荧光粉及其制备方法。



背景技术:

白光led(lightemittingdiode)因具有节能环保高效、使用寿命长、等特点在照明、显示等领域获得了广泛应用。

目前通过荧光转换法获得白光led的方式主要有两种:一是将黄色荧光粉涂覆到蓝光芯片上,可以获得白光led,但是由于器件缺少红光组分,导致显色指数偏低、色温偏高;二是将红绿蓝三基色荧光粉涂覆到近紫外芯片上,三色光混合即可得到白光led,但是目前商用的硫化物红粉在同激发下弱于蓝粉和绿粉,且硫化物化学稳定性差。因此,近些年红色荧光粉的研究吸引了学者们的广泛关注,制备出一种与蓝光/近紫外芯片匹配性好、发光效率高、化学稳定性好的红色荧光粉是促进白光led发展的关键之一。

作为红光补偿的荧光粉,eu3 激活的氧化物在近紫外及蓝光波段处有较好的吸收,与近紫外/蓝光芯片均具有非常好的匹配性,且在对称性较低的格位环境中,eu3 的跃迁以5d0-7f2电偶极跃迁为主,发射出615nm附近的红光,是白光led用红色荧光粉的最佳选择。其中,eu3 激活的双钙钛矿荧光粉由于具有较高的发光效率吸引了学者们的大量关注,如balamgsbo6:eu3 、nalamgwo6:eu3 、gd2mgtio6:eu3 等,在提高eu3 的红光发射方面,学者们致力于降低基质的对称性,提高5d0-7f2电偶极跃迁的强度,如在a位上选用半径较小的离子掺杂,降低钙钛矿的容差因子,进而降低体系的对称性(journalofluminescence215(2019)116674;dyesandpigments160(2019)165-171;opticalmaterials110(2020)110526)等。eu3 在这类双钙钛矿基质中占据对称性较低的格位环境,以电偶极跃迁为主,发射出红光,色坐标离标准红光坐标非常接近,是一种性能优异的红色荧光粉。但是在这类基质中eu3 的最高猝灭浓度为50.0mol%,仍有一定的提升空间。



技术实现要素:

发明目的:为了克服现有技术中存在的不足,本发明目的是提供一种发光强度强、热稳定性好的双有序复合钙钛矿红色荧光粉,本发明的另一目的是提供一种能够在低温下快速合成的双有序复合钙钛矿红色荧光粉的制备方法。

技术方案:本发明所述的一种双有序复合钙钛矿红色荧光粉,其化学组成如下式所示:

a0.5a’0.5-xeuxmg0.333nb0.667o3

其中,a为na、li中的一种或其组合,a’为la、gd中的一种或多种,0<x≤0.50。

进一步地,li和gd的总摩尔数不超过阳离子总摩尔数的25%;若超过,结构将会坍塌,导致杂相出现。荧光粉的粒径为600~800nm。

上述双有序复合钙钛矿红色荧光粉的制备方法,包括以下步骤:

步骤一,按配比称取nacl、licl、la2o3、gd2o3、eu2o3、mgco3、nb2o5粉体,加入到球磨罐中;

步骤二,球磨罐中添加不同直径的锆球,添加无水乙醇作为球磨介质,将球磨罐放入到球磨机上进行湿法球磨,得到浆料;

步骤三,将浆料置于70~80℃的烘箱中烘干后,转移到刚玉坩埚中,放置到微波马弗炉中央,并在坩埚周围放置碳粉,以增加对微波的吸收;

步骤四,在微波马弗炉中,以20~40℃/min的加热速率升温,在1100~1400℃煅烧温度下保温5~25分钟;

步骤五,冷却至室温,即可获得双有序复合钙钛矿红色荧光粉。

进一步地,步骤一中,nacl、licl、la2o3、gd2o3、eu2o3、mgco3、nb2o5粉体均为高纯粉体。nacl和licl的质量过量比例为:(煅烧温度-1000)/10000。

进一步地,步骤二中,锆球的直径分别为2~3mm、5~6mm和8~10mm,优选为3mm、6mm和10mm,其质量比为2~3:4:3,质量比优选为3:4:3。球磨的粉、球、乙醇的质量比为1:6:1~2。湿法球磨的时间为2~6小时。

进一步地,步骤三中,碳粉的用量是坩埚中粉体质量的10.0~25.0倍。

工作原理:钙钛矿a位上 1价的碱土金属离子和 3价的稀有金属离子呈层状有序排列,b位上 2价的mg2 和 5价的nb5 呈1:2有序排列。一方面这种双有序排列可以增大a位离子层与层之间的间距,有利于eu3 的掺杂;另一方面b位1:2的有序排列能有效降低a位阳离子的对称环境,有利于eu3 的红光发射,进而获得双有序复合钙钛矿红色荧光粉。

有益效果:本发明和现有技术相比,具有如下显著性特点:

1、荧光粉以铌酸盐为基质,以eu3 为发光中心,在395nm以及464nm附近呈现强的激发带,与近紫外led芯片、蓝光led芯片均有较好的匹配性,可应用于白光led;

2、荧光粉可以被近紫外及蓝光波段激发,并发射出eu3 的特征深红光,发射波长在615nm附近,发光强度强,热稳定性好;

3、荧光粉采用微波固相法制备,可在相对较低的温度下快速合成出粉体,降低能耗。

附图说明

图1是本发明的荧光粉以615nm为监测波长测得的激发光谱和以395nm为激发波长测得的发射光谱图;

图2是本发明的荧光粉在不同温度下的发射光谱图;

图3是本发明的荧光粉以395nm为激发波长的发射光谱图。

具体实施方式

以下各实施例中,原料均为直接购买使用。

表1为采用微波固相法快速合成eu3 掺杂的复合钙钛矿红色荧光粉,4个具体实施例的配方,如下表1所示:

表1

实施例1

一种na0.5la0.1gd0.3eu0.1mg0.333nb0.667o3双有序复合钙钛矿红色荧光粉的制备方法,包括以下步骤:

(1)按表1中的组成称量原料,并依次加入到球磨罐中,其中nacl过量2.2wt%,并加入到球磨罐中;

(2)球磨罐中添加直径分别为3mm、6mm和10mm的锆球,质量比为3:4:3;

(3)在球磨罐中添加无水乙醇作为球磨介质,粉、球、乙醇的质量比为1:6:1.5,将球磨罐放入到罐磨球磨机上进行湿法球磨4小时;

(4)待球磨均匀的浆料置于80℃的烘箱中烘干后,称取5g烘干后的粉体加入到刚玉坩埚中;将装有前驱体的坩埚放置到微波马弗炉中央,并在坩埚周围放置50g碳粉;

(5)微波马弗炉以25℃/min的加热速率升温,在1220℃下保温25分钟;

(6)冷却至室温后即可获得双有序复合钙钛矿红色荧光粉。

将获得的粉末样品进行荧光光谱(hitachif-4600,japan)测试,以615nm为监测波长测得激发光谱,以395nm为激发波长测得发射光谱,测试结果见图1。由图1可以看出,该复合钙钛矿红色荧光粉可以被近紫外和蓝光有效地激发,发射出615nm的红光,适用于近紫外芯片和蓝光芯片。

实施例2

一种na0.2li0.3gd0.15eu0.35mg0.333nb0.667o3双有序复合钙钛矿红色荧光粉的制备方法,包括以下步骤:

(1)按表1中的组成称量原料,并依次加入到球磨罐中,其中nacl和licl分别过量3.5wt%,并加入到球磨罐中;

(2)球磨罐中添加直径分别为3mm、6mm和10mm的锆球,质量比为3:4:3;

(3)在球磨罐中添加无水乙醇作为球磨介质,粉、球、乙醇的质量比为1:6:1.5,将球磨罐放入到罐磨球磨机上进行湿法球磨5小时;

(4)待球磨均匀的浆料置于80℃的烘箱中烘干后,称取5g烘干后的粉体加入到刚玉坩埚中;将装有前驱体的坩埚放置到微波马弗炉中央,并在坩埚周围放置125g碳粉;

(5)微波马弗炉以20℃/min的加热速率升温,在1350℃下保温5分钟;

(6)冷却至室温后即可获得双有序复合钙钛矿红色荧光粉。

将获得的粉末样品进行变温荧光测试,分别测试298k、323k、348k、373k、398k、423k、448k和473k下的发射光谱,测试结果见图2。由图2可以看出,荧光粉的发光强度随着温度的升高缓慢下降,具有良好的热稳定性。

实施例3

一种li0.5la0.49eu0.01mg0.333nb0.667o3双有序复合钙钛矿红色荧光粉的制备方法,包括以下步骤:

(1)按表1中的组成称量原料,并依次加入到球磨罐中,其中licl过量4.0wt%,并加入到球磨罐中;

(2)球磨罐中添加直径分别为2mm、5mm和8mm的锆球,质量比为2:4:3;

(3)在球磨罐中添加无水乙醇作为球磨介质,粉、球、乙醇的质量比为1:6:2,将球磨罐放入到罐磨球磨机上进行湿法球磨6小时;

(4)待球磨均匀的浆料置于75℃的烘箱中烘干后,称取5g烘干后的粉体加入到刚玉坩埚中;将装有前驱体的坩埚放置到微波马弗炉中央,并在坩埚周围放置70g碳粉;

(5)微波马弗炉以30℃/min的加热速率升温,在1400℃下保温15分钟;

(6)冷却至室温后即可获得双有序复合钙钛矿红色荧光粉。

实施例4

一种na0.4li0.1eu0.5mg0.333nb0.667o3双有序复合钙钛矿红色荧光粉的制备方法,包括以下步骤:

(1)按表1中的组成称量原料,并依次加入到球磨罐中,其中nacl和licl分别过量1.0wt%,并加入到球磨罐中;

(2)球磨罐中添加直径分别为2mm、5mm和9mm的锆球,质量比为3:4:3;

(3)在球磨罐中添加无水乙醇作为球磨介质,粉、球、乙醇的质量比为1:6:1,将球磨罐放入到罐磨球磨机上进行湿法球磨2小时;

(4)待球磨均匀的浆料置于70℃的烘箱中烘干后,称取5g烘干后的粉体加入到刚玉坩埚中;将装有前驱体的坩埚放置到微波马弗炉中央,并在坩埚周围放置100g碳粉;

(5)微波马弗炉以40℃/min的加热速率升温,在1100℃下保温20分钟;

(6)冷却至室温后即可获得双有序复合钙钛矿红色荧光粉。

实施例5

一种na0.5gd0.5-xeuxmg0.333nb0.667o3双有序复合钙钛矿红色荧光粉的制备方法,包括以下步骤:

(1)按表1中的组成称量原料,并依次加入到球磨罐中,其中nacl过量1.8wt%,并加入到球磨罐中;

(2)球磨罐中添加直径分别为3mm、5mm和8mm的锆球,质量比为3:4:3;

(3)在球磨罐中添加无水乙醇作为球磨介质,粉、球、乙醇的质量比为1:6:1.3,将球磨罐放入到罐磨球磨机上进行湿法球磨3小时;

(4)待球磨均匀的浆料置于78℃的烘箱中烘干后,称取5g烘干后的粉体加入到刚玉坩埚中;将装有前驱体的坩埚放置到微波马弗炉中央,并在坩埚周围放置100g碳粉;

(5)微波马弗炉以40℃/min的加热速率升温,在1180℃下保温12分钟;

(6)冷却至室温后即可获得双有序复合钙钛矿红色荧光粉。

将获得的粉末样品进行荧光光谱(hitachif-4600,japan)测试,以395nm为激发波长测得荧光粉的发射光谱,测试结果见图3。由图3可以看出,该红色荧光粉的发光强度随着eu3 掺杂量的增加而增强,未出现浓度猝灭现象。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜