一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于改进循环神经网络算法的推荐召回方法及系统与流程

2021-10-30 02:49:00 来源:中国专利 TAG:神经网络 召回 算法 信息检索 改进


1.本发明涉及信息检索技术领域,具体涉及一种基于改进循环神经网络算法的推荐召回方法及系统。


背景技术:

2.随着互联网技术的飞速发展,基于互联网的信息提供平台已十分丰富。为提高用户对平台的粘度,如何在海量信息基础上为用户提供准确的信息推荐,特别是提供个性化的推荐召回,已成为现在急需解决的问题。
3.现有技术中公开了一种基于用户评论的推荐算法,通过获取用户对目标商品的评论集及对某一商品的所有评论集,根据这两个评论集及用户的购买历史记录构造用户和商品的对象类别向量,并构造对象类别矩阵,通过卷积神经网络提取商品的交互对象类别,最终进行推荐;只是通过对用户与商品的间接评论文本数据进行处理与挖掘,没有充分挖掘商品和用户之间发生的直接用户交互行为数据,特别是这种数据的时间序列化属性,这导致该算法在推荐准确度比较低;
4.现有技术中还公开了一种基于循环神经网络的推荐算法,通过使用商品的交互数据和商品的类别信息构造rating

rnn神经网络和category

rnn神经网络,通过两个模型的混合使用得到融合神经网络模型mixing

rnn,最终进行推荐;使用模型需要大量的序列化的数据作为模型训练基础,但是它无视了交互对象的类别信息,无法计算出或者较为准确的计算出用户的兴趣点,将无法提供准确的推荐结果。
5.目前的推荐系统存在以下两个问题:
6.1、对用户行为数据的时间属性利用率不足;
7.2、面对数据稀疏性问题时性能发挥受限。


技术实现要素:

8.针对现有技术中的上述不足,本发明提供了一种基于改进循环神经网络算法的推荐召回方法及系统。
9.为了达到上述发明目的,本发明采用的技术方案为:
10.一方面,一种基于改进循环神经网络算法的推荐召回方法,包括以下步骤:
11.s1、对目标用户交互数据进行时间交互序列化过滤,得到用户

对象交互记录;
12.s2、根据步骤s1中用户

对象交互记录提取目标用户的交互对象类别特征;
13.s3、基于改进rnn循环神经网络对步骤s1中用户

对象交互记录与步骤s2中交互对象类别特征进行融合预测,得到召回生成结果。
14.本发明具有以下有益效果:
15.对目标用户交互数据进行时间交互序列化过滤,得到用户

对象交互记录,并根据用户

对象交互记录提取目标用户的交互对象类别特征,并利用改进rnn循环神经网络对用户

对象交互记录与交互对象类别特征进行融合预测,得到召回生成结果,充分挖掘了用户
交互记录的时间特性以及交互对象的类别信息,使召回生成结果兼顾用户偏好挖掘的准确性和及时性,缓解数据稀松性问题,提高推荐结果准确性,为用户提供更加准确的推荐功能,提升用户体验。
16.进一步地,所述步骤s1具体包括以下分步骤:
17.s11、对目标用户交互数据进行数据清理;
18.s12、对步骤s11中清理后交互数据进行时间序列范围内过滤,得到目标用户在预设时间范围内用户

对象交互行为信息;
19.s13、对步骤s12中用户

对象交互行为信息进行信息转换,得到用户

对象交互记录。
20.该进一步方案具有以下有益效果:
21.将交互数据进行离散化、向量化处理等清洗操作,得到可用数据,提高数据整理的精准性,填补直接交互数据的缺失,为后续交互对象类别统计奠定数据基础。
22.进一步地,所述步骤s2具体包括以下分步骤:
23.s21、根据步骤s1中用户

对象交互记录构建对象信息提取模型,并提取目标用户的交互对象信息;
24.s22、计算步骤s21中目标用户的交互对象信息中各类别特征的统计学特征;
25.s23、对步骤s22中各类别特征的统计学特征进行整理,得到目标用户的交互对象类别特征。
26.该进一步方案具有以下有益效果:
27.对交互记录数据的用户

对象数据进行类别划分,分别进行针对性处理,挖掘其中的对象特征信息,充分挖掘了用户交互记录的时间特性。
28.进一步地,所述步骤s21具体包括以下分步骤:
29.s211、根据步骤s1中用户

对象交互记录构建对象信息提取模型;
30.s212、利用步骤s211中对象信息提取模型根据步骤s1中用户

对象交互记录进行提取,得到目标用户在预设时间范围内目标用户的交互对象信息;
31.s213、对步骤s212中目标用户的交互对象信息进行类别划分,并对划分结果进行数据转换,得到转换后目标用户的交互对象信息。
32.该进一步方案具有以下有益效果:
33.用于对用户

对象交互数值进行离散化与规范化,得到目标用户在指定范围内交互对象特征,充分挖掘交互对象的类别信息,使召回生成结果兼顾用户偏好挖掘的准确性和及时性。
34.进一步地,所述步骤s3具体包括以下分步骤:
35.s31、根据步骤s1中用户

对象交互记录构建序列化交互记录模型,计算用户

对象的隐藏式表达向量;
36.s32、构建改进rnn循环神经网络,对步骤s2中对象类别信息与步骤s31中用户

对象的隐藏式表达向量的融合;
37.s33、对步骤s33中融合后的用户

对象各隐藏式表达向量进行解码,得到召回生成结果。
38.该进一步方案具有以下有益效果:
39.利用循环神经网络运算的表征学习能力在用户

对象中学习用户与对象的对象嵌入向量,并对交互对象类别特征与用户

对象交互记录进行融合,保留用户与对象之间的潜在联系,并对融合结果进行预测,得到召回生成结果,充分挖掘了用户交互记录的时间特性以及交互对象的类别信息,使召回生成结果兼顾用户偏好挖掘的准确性和及时性,缓解数据稀松性问题,提高推荐结果准确性,为用户提供更加准确的推荐功能,提升用户体验。
40.进一步地,所述步骤s31包括以下分步骤:
41.s311、根据步骤s1中用户

对象交互记录构建序列化交互记录模型,并对序列化交互记录模型中对象信息进行定义计算,得到各对象转换的低维空间表达向量,定义计算式表示为:
[0042][0043]
其中,m
j

i,r
为第r个对象转换的低维空间表达向量,c
i,j
为消息的规范化常数,w
r
为序列化交互记录模型中第r个对象的权重参数,x
j
为序列化交互记录模型中第j个对象的表示向量;
[0044]
s312、对步骤s311中低维空间表达向量进行序列数据编码,表示为:
[0045][0046]
其中,h
i
为序列化编码操作结果,merge()为序列融合操作,m
j

i,r
、m
j

i,r
分别为第r个以及第r个对象转换的低维空间表达向量,ni表示当前序列数据编码操作中待处理对象总数;
[0047]
s313、对步骤s312中编码后结果进行线性变换,得到用户

对象各隐藏式表达向量,分别表示为:
[0048]
u
i
=σ(w
u
h
i
);
[0049]
v
i
=σ(w
v
h
i
);
[0050]
其中,u
i
为用户的隐式表达向量,w
u
为用户权重参数,v
i
为对象的隐式表达向量,w
v
为对象权重参数,σ为非线性激活函数,h
i
为序列化编码操作结果。
[0051]
该进一步方案具有以下有益效果:
[0052]
构建序列化交互记录模型,得到对象加链接的序列化交互记录结构,保留用户

对象间的潜在联系。
[0053]
进一步地,所述步骤s32具体包括以下分步骤:
[0054]
s321、在基础rnn循环神经网络中增加全连接层,构建改进rnn循环神经网络;
[0055]
s322、利用步骤s321中改进rnn循环神经网络,将步骤s2中交互对象类别特征转换为对象类别低维空间表达向量,表示为:
[0056]
f
i
=σ(w
f
x
i
b)
[0057]
其中,f
i
为对象类别低维空间表达向量,x
i
为交互对象类别特征的第i个表示向量,w
f
为交互对象类别特征处理的权重参数,b为交互对象类别特征处理的偏置参数;
[0058]
s323、对步骤s31中用户

对象的隐藏式表达向量与步骤s322中对象类别低维空间表达向量进行融合扩展,得到融合后的用户

对象各隐藏式表达向量分别表示为:
[0059]
u'
i
=σ(w
u
h
i
w
i
f
i
);
[0060]
v'
i
=σ(w
v
h
i
w
i
f
i
);
[0061]
其中,u'
i
为用户转换融合的隐式表达向量,v'
i
为对象转换融合的隐式表达向量,w
i
为对象类别信息转换的权值参数,f
i
为对象类别信息转换的低维空间表达向量。
[0062]
该进一步方案具有以下有益效果:
[0063]
利用改进rnn运算强大的表征学习能力进行深度卷积处理,实现了对象表征学习,将用户与对象的多种非交互数据进行融合,到获得更加准确的预测结果,充分利用各项交互数据中蕴含的“用户

对象”潜在关联信息,得到基于“用户

对象”交互行为的等价交互,填补了直接交互数据的缺失,为后续推荐方法提供了可靠输入。
[0064]
进一步地,所述步骤s33具体包括以下分步骤:
[0065]
s331、根据步骤s32中融合后的用户

对象各隐藏式表达向量计算在不同交互等级上用户对对象的预测交互概率分布,表示为:
[0066][0067]
其中,为用户对对象的预测交互概率分布,q
r
为训练参数矩阵,q
s
为线性转换矩阵,[]
t
为转置函数;
[0068]
s332、根据步骤s331中预测交互概率分布计算召回生成结果,表示为:
[0069][0070]
其中,g(u

i
,v

j
)为用户对对象的预测交互,e[]为期望函数,为召回生成结果,为预测交互在不同交互等级上的概率分布。
[0071]
该进一步方案具有以下有益效果:
[0072]
对融合后的用户

对象各隐藏式表达向量进行预测,实现链接预测,得到召回生成结果,获得更加准确的预测结果,最终实现对用户的个性化智能推荐。
[0073]
另一方面,一种基于改进循环神经网络算法的推荐召回系统,包括交互记录过滤模块、对象类别统计模块以及在线召回生成模块;
[0074]
所述交互记录过滤模块用于对目标用户交互数据进行时间序列化过滤,得到用户

对象交互记录;
[0075]
所述对象类别统计模块用于基于交互记录提取用户

对象交互记录的对象类别特征;
[0076]
所述在线召回生成模块用于构建改进rnn循环神经网络对用户

对象交互记录与对象类别特征进行融合预测,得到召回生成结果。
[0077]
该方案具有以下有益效果:
[0078]
1、交互记录过滤模块、交互对象类别统计模块与在线召回生成模块连接协作,挖掘利用若干序列化交互数据中蕴含的用户

对象潜在关联信息,得到用户

对象交互数据,并融入对象类别信息,缓解数据稀松化的问题,提高推荐结果准确率;
[0079]
2、交互记录过滤模块充分利用各项用户与对象的多种序列化交互数据中蕴藏的用户

对象潜在关联信息,获得交互记录数据,填补直接交互数据缺失;
[0080]
3、交互对象类别统计模块对交互记录数据进行针对性处理,挖掘其中对象的特征信息;
[0081]
4、在线召回生成模块保护用户与对象间的潜在联系,然后结合循环神经算法的表征学习能力,学习用户与对象的对象嵌入向量,并融合交互对象的类别特征信息,实现链接预测,得到准确性更高的召回生成结果。
附图说明
[0082]
图1为本发明提供的一种基于改进循环神经网络算法的推荐召回方法的步骤流程图;
[0083]
图2为本发明中步骤s1的分步骤流程图;
[0084]
图3为本发明中步骤s2的分步骤流程图;
[0085]
图4为本发明中步骤s21的分步骤流程图;
[0086]
图5为本发明中步骤s3的分步骤流程图;
[0087]
图6为本发明中改进rnn循环神经网络结构示意图;
[0088]
图7为本发明中步骤s31分步骤流程图;
[0089]
图8为本发明中步骤s32分步骤流程图;
[0090]
图9为本发明中步骤s33分步骤流程图;
[0091]
图10为本发明提供的一种基于改进循环神经网络算法的推荐召回系统的结构示意图。
具体实施方式
[0092]
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
[0093]
如图1所示,本发明实施例中提供了一种基于改进循环神经网络算法的推荐召回方法,包括以下步骤s1

步骤s3:
[0094]
s1、对目标用户交互数据进行时间交互序列化过滤,得到用户

对象交互记录;
[0095]
实际中,目标用户交互记录数据包括但不限制于用户对交互对象的评分、收藏、评论等操作,在基于指定时间的时间序列范围内,对目标用户的交互记录进行筛选,得到指定范围内的交互记录子集,即统计特定时段下目标用户的用户

对象交互记录,充分利用各项用户与对象的多种序列化交互数据中蕴含的用户

对象潜在关联信息,获取用户

对象间交互记录数据,填补直接交互数据的缺失。
[0096]
如图2所示,本实施例中,步骤s1具体包括以下分步骤:
[0097]
s11、对目标用户交互数据进行数据清理;
[0098]
实际中,对若干目标用户交互数据进行离散化、向量化等清理,得到清洁可用的数据。
[0099]
s12、对步骤s11中清理后交互数据进行时间序列范围内过滤,得到目标用户在预设时间范围内用户

对象交互行为信息;
[0100]
s13、对步骤s12中用户

对象交互行为信息进行信息转换,得到用户

对象交互记录。
[0101]
s2、根据步骤s1中用户

对象交互记录提取目标用户的交互对象类别特征;
[0102]
实际中,对指定时间范围内的交互记录,统计目标用户发生过的交互的对象信息,特别是对象的类别特征信息,并将统计学特征作为交互对象信息的补充,构建模型对用户

对象等价交互进行针对性处理,挖掘其中对象的类别特征信息。
[0103]
如图3所示,本实施例中,步骤s2具体包括以下分步骤:
[0104]
s21、根据步骤s1中用户

对象交互记录构建对象信息提取模型,并提取目标用户的交互对象信息;
[0105]
实际中,根据用户

对象交互记录构建对象信息提取模型,得到对象信息并进行类别划分,对得到的类别特征信息进行离散化、规范化的转换提取,得到目标用户在指定范围内交互对象信息。
[0106]
如图4所示,本实施例中,步骤s21具体包括以下分步骤:
[0107]
s211、根据步骤s1中用户

对象交互记录构建对象信息提取模型;
[0108]
s212、利用步骤s211中对象信息提取模型根据步骤s1中用户

对象交互记录进行提取,得到目标用户在预设时间范围内目标用户的交互对象信息;
[0109]
s213、对步骤s212中目标用户的交互对象信息进行类别划分,并对划分结果进行数据转换,得到转换后目标用户的交互对象信息。
[0110]
s22、计算步骤s21中目标用户的交互对象信息中各类别特征的统计学特征;
[0111]
实际中,交互对象中各类别特征包括人的性别、年龄等,统计学特征包括平均值、众数、中位数以及总数。
[0112]
s23、对步骤s22中各类别特征的统计学特征进行整理,得到目标用户的交互对象类别特征。
[0113]
s3、基于改进rnn循环神经网络对步骤s1中用户

对象交互记录与步骤s2中交互对象类别特征进行融合预测,得到召回生成结果。
[0114]
实际中,构建序列化交互记录模型以及改进循环rnn神经网络,完成对用户

对象交互记录与交互对象类别特征进行融合预测,最终挖掘出用户偏好信息,实现新的对象推荐,挖掘用户潜在兴趣,得到召回推荐结果。
[0115]
如图5、图6所示,本实施例中,步骤s3具体包括以下分步骤:
[0116]
s31、根据步骤s1中用户

对象交互记录构建序列化交互记录模型,计算用户

对象的隐藏式表达向量;
[0117]
如图7所示,本实施例中,步骤s31具体包括以下分步骤:
[0118]
s311、根据步骤s1中用户

对象交互记录构建序列化交互记录模型,并对序列化交互记录模型中对象信息进行定义计算,得到各对象转换的低维空间表达向量,定义计算式表示为:
[0119][0120]
其中,m
j

i,r
为第r个对象转换的低维空间表达向量,c
i,j
为消息的规范化常数,w
r
为序列化交互记录模型中第r个对象的权重参数,x
j
为序列化交互记录模型中第j个对象的表示向量;
[0121]
s312、对步骤s311中低维空间表达向量进行序列数据编码,表示为:
[0122][0123]
其中,h
i
为序列化编码操作结果,
merge()
为序列融合操作,m
j

i,r
、m
j

i,r
分别为第r个以及第r个对象转换的低维空间表达向量,ni表示当前序列数据编码操作中待处理对象总数;
[0124]
s313、对步骤s312中编码后结果进行线性变换,得到用户

对象各隐藏式表达向量,分别表示为:
[0125]
u
i
=σ(w
u
h
i
);
[0126]
v
i
=σ(w
v
h
i
);
[0127]
其中,u
i
为用户的隐式表达向量,w
u
为用户权重参数,v
i
为对象的隐式表达向量,w
v
为对象权重参数,σ为非线性激活函数,h
i
为序列化编码操作结果。
[0128]
实际中,根据计算得到的对象低维空间表达向量,对每个对象进行信息累加融合,实现元素的非线性变化,即序列数据编码操作,再通过对得到累加融合结果进行一轮线性变换与激活操作,进而得到用户

对象各隐藏式表达向量。
[0129]
s32、构建改进rnn循环神经网络,对步骤s2中交互对象类别特征与步骤s31中用户

对象的隐藏式表达向量的融合;
[0130]
如图8所示,本实施例中,步骤s32具体包括以下分步骤:
[0131]
s321、在基础rnn循环神经网络中增加全连接层,构建改进rnn循环神经网络;
[0132]
s322、利用步骤s321中改进rnn循环神经网络,将步骤s2中交互对象类别特征转换为对象类别低维空间表达向量,表示为:
[0133]
f
i
=σ(w
f
x
i
b)
[0134]
其中,f
i
为对象类别低维空间表达向量,x
i
为交互对象类别特征的第i个表示向量,w
f
为交互对象类别特征处理的权重参数,b为交互对象类别特征处理的偏置参数;
[0135]
s323、对步骤s31中用户

对象的隐藏式表达向量与步骤s322中对象类别低维空间表达向量进行融合扩展,得到融合后的用户

对象各隐藏式表达向量分别表示为:
[0136]
u'
i
=σ(w
u
h
i
w
i
f
i
);
[0137]
v'
i
=σ(w
v
h
i
w
i
f
i
);
[0138]
其中,u'
i
为用户转换融合的隐式表达向量,v'
i
为对象转换融合的隐式表达向量,w
i
为对象类别信息转换的权值参数,f
i
为对象类别信息转换的低维空间表达向量。
[0139]
实际中,通过在循环rnn循环神经网络中构建全连接层,得到改进rnn循环神经网络,并实现对交互对象类别特征与用户

对象各隐藏式表达向量的融合扩展,得到经过交互对象类别特征强化后用户

对象转换融合的用户与对象各隐藏向量。
[0140]
s33、对步骤s33中融合后的用户

对象各隐藏式表达向量进行解码,得到召回生成结果。
[0141]
如图9所示,本实施例中,步骤s33具体包括以下分步骤:
[0142]
s331、根据步骤s32中融合后的用户

对象各隐藏式表达向量计算在不同交互等级上用户对对象的预测交互概率分布,表示为:
[0143][0144]
其中,为用户对对象的预测交互概率分布,q
r
为训练参数矩阵,q
s
为线性转换矩阵,[]
t
为转置函数;
[0145]
实际中,基于深度融合层得到新的用户与对象的转换融合的隐式表达向量计算预测交互在不同交互等级的概率分布。
[0146]
s332、根据步骤s331中预测交互概率分布计算召回生成结果,表示为:
[0147][0148]
其中,g(u

i
,v

j
)为用户对对象的预测交互,e[]为期望函数,为召回生成结果,为预测交互在不同交互等级上的概率分布。
[0149]
实际中,通过计算期望获得用户对对象的预测交互,并将预测交互作为召回生成结果。
[0150]
如图10所示,一种基于改进循环神经网络算法的推荐召回系统,其特征在于,包括交互记录过滤模块、对象类别模块以及在线召回生成模块;
[0151]
交互记录过滤模块用于对目标用户交互数据进行时间序列化过滤,得到用户

对象交互记录;
[0152]
对象类别统计模块用于基于交互记录提取用户

对象交互记录的对象类别特征;
[0153]
在线召回生成模块用于构建改进rnn循环神经网络对用户

对象交互记录与对象类别特征进行融合预测,得到召回生成结果。
[0154]
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
[0155]
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
[0156]
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或
其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
[0157]
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
[0158]
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜