一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于压缩感知原理的光纤白光干涉解调方法及系统与流程

2021-10-30 01:37:00 来源:中国专利 TAG:解调 传感 感知 光纤 干涉


1.本发明涉及光学传感技术领域,特别是涉及一种基于压缩感知原理的光纤白光干涉解调方法及系统。


背景技术:

2.高频声波、振动信号测量在生物医学领域的超声成像、光声成像,大型电力设备及涡轮发动机的运行状态监测,高精度光声光谱气体浓度检测,精密加工、光刻、半导体制造等领域的高精度运动或位置测量中发挥着重要作用。干涉型光纤声振动传感器具有体积小,灵敏度高,抗电磁干扰的优势,在传统电学传感器不适合或者无法满足需求的场景下优势明显,例如在易燃易爆、强电磁干扰、高温高压等恶劣环境,或者对传感器尺寸要求较高的狭窄空间中的应用。光纤白光干涉技术是一种通过全光谱分析精确测量干涉仪绝对光程差的光纤传感技术,已经广泛应用于温度、压力、应变、折射率、位移等准静态参量的测量。近年来,高速光谱仪和解调技术的发展使得基于白光干涉的动态绝对测量成为可能。相比于单频激光的强度测量技术,全光谱解调不仅可以提高仪器系统的抗环境波动干扰能力,实现更大的动态范围,而且可以联用不同传感器可实现动、静态多参量传感,提供更加丰富的待测量信息。光纤白光干涉仪的光谱采集方式分为两种,一种是宽谱光源结合线阵探测器,另一种是波长扫描光源结合点式光电探测器。关于前一种,大连理工大学陈珂等人在非专利文献(chen,ke,et al."simultaneous measurement of acoustic pressure and temperature using a fabry

perot interferometric fiber

optic cantilever sensor."optics express 28.10(2020):15050

15061.)中利用白光干涉绝对腔长解调技术的法布里

珀罗(fabry

perot,f

p)声波传感器,其中高频动态交流腔长变化量用于表征声信号,低频直流腔长信息用于表征外界环境温度,实时的温度测量还可以用来校准不同温度下声传感器的声压灵敏度。该方案中采用宽谱光源和线阵探测光谱仪实现白光干涉测量,受限于光谱采集速度(5khz),目前只适用于相对低频的声振动信号测量。现有的高速光谱仪的光谱采集速度也大多局限在khz量级至几十khz量级,难以实现数量级的提高。此外,全光谱采集所产生的大量数据也给存储和传输带来很大压力。关于后一种,电信领域高速可调谐半导体激光光源已经可实现数百khz全谱采集速度,且更容易实现多路阵列复用和小型化集成,因此,基于可调谐激光器的方案是一种更加适合工程化的方案。然而,线性波长扫描的光谱采集方案在解调动态干涉仪时存在着一个不可忽略的问题:在光谱采集过程中,干涉仪的动态变化会引入多普勒误差。高速线阵探测器的光谱采集方式不仅成本高昂,难以实现大规模多路复用,其光谱采集速度也难以满足日益增加的高频动态声振动信号解调需求。可调谐激光器波长扫描的光谱采集方案,虽然可以实现百khz量级的光谱扫描,但现有的解调技术只支持其应用于干涉仪的准静态测量。
3.如何提供一种既适用于多路阵列复用的,又能避免由于线性波长扫描光谱采集方式引入的多普勒误差的光谱采集方式,成为一个亟待解决的技术问题。


技术实现要素:

4.本发明的目的是提供一种基于压缩感知原理的光纤白光干涉解调方法及系统,以提供一种既适用于多路阵列复用的,又能避免由于线性波长扫描光谱采集方式引入的多普勒误差的光谱采集方式。
5.为实现上述目的,本发明提供了如下方案:
6.本发明提供一种基于压缩感知原理的光纤白光干涉解调方法,所述方法包括如下步骤:
7.在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中;
8.采用压缩采样的方式,采集干涉型光纤传感器反射输出的干涉光谱,获得随机波长调制采集的压缩采样干涉光谱;
9.采用压缩感知算法,对随机波长调制采集的压缩采样干涉光谱进行重构,获得每个采样时间点的原始二维干涉光谱;
10.根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量。
11.可选的,所述在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中,具体包括:
12.按照预设的随机波长序列,在不同的采样时间点,输出不同波长的光至干涉型光纤传感器中。
13.可选的,所述采用压缩感知算法,对随机波长调制采集的压缩采样干涉光谱进行重构,获得每个采样时间点的原始二维干涉光谱,具体包括:
14.将随机波长调制采集的压缩采样干涉光谱构建成观测矩阵;
15.根据所述观测矩阵,利用公式y=φ(ψs),求解原始二维干涉光谱在变换域中的稀疏表示;
16.其中,y为观测矩阵,φ为欠采样算子,ψ为稀疏变换算子,s为原始二维干涉光谱在变换域中的稀疏表示;
17.根据所述稀疏变换算子,利用公式x=ψs,对原始二维干涉光谱在变换域中的稀疏表示进行变换,获得每个采样时间点的原始二维干涉光谱。
18.可选的,所述根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量,具体包括:
19.根据每个采样时间点的原始二维干涉光谱,采用傅里叶变换频率估计算法、双谱峰追踪算法、交叉相关算法、最小均方误差算法和/或极大似然估计算法,进行绝对光程差测量。
20.一种基于压缩感知原理的光纤白光干涉解调系统,所述系统包括:随机波长光源发射装置、光纤环形器、干涉型光纤传感器、压缩采样模块和数据处理上位机;
21.所述随机波长光源发射装置与所述光纤环形器的第一端口采用光纤连接,所述干涉型光纤传感器与所述光纤环形器的第二端口采用光纤连接,所述压缩采样模块与所述光纤环形器的第三端口采用光纤连接;
22.所述数据处理上位机与所述随机波长光源发射装置和所述压缩采样模块电连接;
23.所述数据处理上位机用于控制所述随机波长光源发射装置在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中;
24.所述压缩采样模块用于采用压缩采样的方式,采集干涉型光纤传感器反射输出的干涉光谱,获得随机波长调制采集的压缩采样干涉光谱;
25.所述数据处理上位机还用于采用压缩感知算法,对随机波长调制采集的压缩采样干涉光谱进行重构,获得每个采样时间点的原始二维干涉光谱,并根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量。
26.可选的,所述随机波长光源发射装置包括随机波长调制模块和可调谐激光光源;
27.所述随机波长调制模块分别与所述数据处理上位机和所述可调谐激光光源电连接;
28.所述可调谐激光光源与所述光纤环形器的第一端口采用光纤连接。
29.可选的,所述可调谐激光光源为调制光栅y分支激光器。
30.可选的,所述随机波长调制模块集成在fpga控制板中。
31.可选的,所述压缩采样模块包括光电探测器和同步采样模块;
32.所述同步采样模块分别与所述光电探测器和所述数据处理上位机电连接;
33.所述光电探测器与所述光纤环形器的第三端口采用光纤连接。
34.可选的,所述同步采样模块集成在fpga控制板中。
35.根据本发明提供的具体实施例,本发明公开了以下技术效果:
36.本发明公开了一种基于压缩感知原理的光纤白光干涉解调方法,所述方法包括如下步骤:在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中;采用压缩采样的方式,采集干涉型光纤传感器反射输出的干涉光谱,获得随机波长调制采集的压缩采样干涉光谱;采用压缩感知算法,对随机波长调制采集的压缩采样干涉光谱进行重构,获得每个采样时间点的原始二维干涉光谱;根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量。本发明基于了扫描激光器结合点式光电探测器的原理,能够实现多路阵列复用,并且采用随机波长调制技术,进行随机波长扫描,通过压缩感知算法重构出每一个采样时间点的全光谱,避免了由于线性波长扫描光谱采集方式引入的多普勒误差,且可以大幅提高光谱采样率。
附图说明
37.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
38.图1为本发明提供的一种基于压缩感知原理的光纤白光干涉解调方法的流程图;
39.图2为本发明提供的一种基于压缩感知原理的光纤白光干涉解调系统的结构图;
40.图3为本发明提供的随机波长调制示意图;
41.图4为本发明提供的压缩采样得到的压缩采样干涉光谱图;
42.图5为本发明提供的重构得到的原始二维干涉光谱图。
具体实施方式
43.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完
整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
44.本发明的目的是提供一种基于压缩感知原理的光纤白光干涉解调方法及系统,以提供一种既适用于多路阵列复用的,又能避免由于线性波长扫描光谱采集方式引入的多普勒误差的光谱采集方式。
45.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
46.本发明提供了一种基于压缩感知原理的光纤白光干涉解调方法及系统,旨在实现干涉型光纤传感器的高频绝对测量。在本发明中,随时间变化的干涉光谱被看作是一种相对于激光波长和时间的二维(2d)信号,采用快速可调谐激光光源的随机波长调制配合光电探测器的同步探测实现在测量过程中的压缩采样,进而通过重构算法高保真的重构原始2d干涉光谱数据。不同于常规一维光谱采集过程中的线性波长扫描,该技术采样过程中的激光器输出波长是随机调制的,以满足压缩感知原理中的非相干性要求。其中快速可调谐激光光源被用于实现可编程的离散波长快速切换。通过压缩感知重构算法重构后,可以获得每个采样时间点的干涉光谱,以实现高精度,高采样率的绝对解调。本发明在大幅提高光谱采样率的同时避免常规线性波长扫描引入的多普勒误差,为光纤干涉仪的高频、动态、绝对测量提供一种可行的方案。
47.如图1所示,本发明提供一种基于压缩感知原理的光纤白光干涉解调方法,所述方法包括如下步骤:
48.步骤101,在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中。
49.步骤101所述在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中,具体包括:按照预设的随机波长序列,在不同的采样时间点,输出不同波长的光至干涉型光纤传感器中。即,通过随机波长调制模块控制快速可调谐激光光源(可调谐激光光源)按照预存的随机波长序列进行波长输出。
50.控制快速可调谐激光器在1531~1563nm范围内,0.32nm波长间隔的101个波长之间进行随机波长切换,波长切换时钟频率为10mhz。以确保压缩感知理论所要求的非相干性。可编程的波长切换频率被设置为10mhz,并且同步采集相应的光强度。每次采集5000个数据点(0.5毫秒)之后进行二维原始光谱重构和绝对腔长解调。
51.不同于常规线性波长扫描的光谱采集方式,本发明所提出的基于压缩感知原理的光纤白光干涉解调方法中,激光器的输出波长是随机调制的,图3显示了随机波长调制的示意图。
52.步骤102,采用压缩采样的方式,采集干涉型光纤传感器反射输出的干涉光谱,获得随机波长调制采集的压缩采样干涉光谱。
53.即,通过光电探测器同步采集干涉型光纤传感器反射回的光强,获得随时间变化的压缩采样干涉光谱。
54.步骤103,采用压缩感知算法,对随机波长调制采集的压缩采样干涉光谱进行重构,获得每个采样时间点的原始二维干涉光谱。其中的压缩感知重构算法可以是凸集投影约束(projection onto convex sets,pocs)算法等可以实现二维原始数据重构的算法。
55.重构方法和过程如下:
56.将与时间t和波长λ有关的原始二维干涉光谱表示为x(λ,t),则观测矩阵y可以表示为:
57.y=φ(x)=φ(ψs)
ꢀꢀ
(1)
58.其中ф为欠采样算子,ψ为稀疏变换算子。s=ψ
‑1x,是原始二维干涉光谱x在ψ变换域中的稀疏表示。
59.通过步骤102中随机波长调制采集的压缩采样数据构成观测矩阵y,利用矩阵表示二维干涉光谱,矩阵行向量表示波长,列向量表示时间,矩阵每一行向量在波长范围内只随机采样一个点同时列向量依次采样,未采样的点用零值代替,作为压缩感知重构算法的输入。根据上式(1),由于ф和ψ已知,因而可以利用压缩感知重构算法还原得到s。
60.根据x=ψs,对稀疏表示s进行变换后得到重构的原始二维干涉光谱x。
61.如图4所示,为检测200khz振动信号时的压缩采样数据。经过凸集投影约束算法重构出的原始二维干涉光谱如图5所示。该二维干涉光谱是振动过程中随时间变化的干涉光谱组合而成的,因此,在每一个采样时间点都能够获得一个干涉光谱。验证了当激光输出波长调制频率为10mhz时,利用所提出的压缩感知光纤白光干涉技术,可以实现10mhz光谱采集速率,对应着10mhz绝对腔长采样率。随着电信领域可调谐激光技术的进步,该方案可实现的最高腔长采样率仍然有很大的提升空间。
62.步骤104,根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量。
63.步骤104所述根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量,具体包括:根据每个采样时间点的原始二维干涉光谱,采用傅里叶变换频率估计算法、双谱峰追踪算法、交叉相关算法、最小均方误差算法和/或极大似然估计算法,进行绝对光程差测量。
64.如图2所示,本发明还提供一种基于压缩感知原理的光纤白光干涉解调系统,所述系统包括:随机波长光源发射装置、光纤环形器201、干涉型光纤传感器202、压缩采样模块和数据处理上位机203;所述随机波长光源发射装置与所述光纤环形器的第一端口采用光纤(第一光纤208)连接,所述干涉型光纤传感器与所述光纤环形器的第二端口采用光纤(第二光纤209)连接,所述压缩采样模块与所述光纤环形器的第三端口采用光纤(第三光纤210)连接;所述数据处理上位机与所述随机波长光源发射装置和所述压缩采样模块电连接;所述数据处理上位机用于控制所述随机波长光源发射装置在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中;所述压缩采样模块用于采用压缩采样的方式,采集干涉型光纤传感器反射输出的干涉光谱,获得随机波长调制采集的压缩采样干涉光谱;所述数据处理上位机还用于采用压缩感知算法,对随机波长调制采集的压缩采样干涉光谱进行重构,获得每个采样时间点的原始二维干涉光谱,并根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量。可以实现fp干涉型光纤振动传感器的高速腔长解调。
65.其中,所述随机波长光源发射装置包括随机波长调制模块204和可调谐激光光源205;所述随机波长调制模块分别与所述数据处理上位机和所述可调谐激光光源电连接;所述可调谐激光光源与所述光纤环形器的第一端口采用光纤连接。所述压缩采样模块包括光电探测器206和同步采样模块207;所述同步采样模块分别与所述光电探测器和所述数据处理上位机电连接;所述光电探测器与所述光纤环形器的第三端口采用光纤连接。
66.本发明的随机波长调制模块控制快速可调谐激光器按照预存的随机波长序列进行波长输出,通过光纤进入第一光纤208环形器。光纤环形器的功能是光只能从第一光纤208进入第二光纤209中。进入第二光纤209的光信号经干涉型光纤传感器反射后,经第二光纤209进入第三光纤210,通过光电探测器转换成电信号。光电探测器的电信号由同步采样模块进行同步采集,获得随时间变化的压缩采样干涉光谱,传输至数据处理上位机中。数据处理上位机在压缩采样干涉光谱的基础上,重构原始二维干涉光谱,获得每一采样时间点的全光谱,并用于干涉型光纤传感器绝对光程差测量。最终可以实现10mhz绝对光程差采样率。
67.本发明的随机波长调制模块和同步采样模块采用fpga实现,数据处理上位机采用计算机实现;fpga控制板实现快速可调谐激光光源输出波长驱动和光电探测器探测数据的同步采集和传输。fpga控制板内置控制激光波长对应的电流查找表。
68.所述可调谐激光光源为快速可调谐激光光源,选用调制光栅y分支(modulated gratingy

brance,mg

y)激光器,其调谐波段可覆盖c波段,具体为1527nm至1567nm。该激光器输出波长由5路注入电流控制,分别为左反射器电流,右反射器电流,相位区电流,增益电流和半导体光放大器(soa)电流。通过内置在随机波长调制和同步采样模块1中的波长

电流查找表,可以实现快速离散波长切换。
69.所述光纤环形器,用于光信号的传输,来自mg

y激光器的光信号经过光纤环形器后引入干涉型光纤传感器,反射光信号再次经过光纤环形器被光电探测器探测。
70.所述的干涉型光纤传感器可以是法布里

珀罗(fabry

perot,f

p)干涉仪,其中平滑的光纤端面作为fp干涉的一个反射面,另一个反射面为粘贴在压电陶瓷换能器末端的反射镜。利用信号发生器和功率放大器产生的动态信号加载在压电陶瓷换能器,以产生高频振动待测信号。也可以是迈克尔逊(michelson)干涉仪,马赫

曾德(mach

zehnder)干涉仪或者萨格纳克(sagnac)干涉仪。
71.所述的光电探测器是具备光纤输入接口、直流耦合的1550波段高速光电探测器,将探测到的光强信号转换为模拟信号,经同步采样模块采集后传输给数据处理上位机进行原始信号重构和绝对光程差解调。
72.根据本发明提供的具体实施例,本发明公开了以下技术效果:
73.本发明公开了一种基于压缩感知原理的光纤白光干涉解调方法,所述方法包括如下步骤:在不同的采样时间点随机输出不同波长的光至干涉型光纤传感器中;采用压缩采样的方式,采集干涉型光纤传感器反射输出的干涉光谱,获得随机波长调制采集的压缩采样干涉光谱;采用压缩感知算法,对随机波长调制采集的压缩采样干涉光谱进行重构,获得每个采样时间点的原始二维干涉光谱;根据每个采样时间点的原始二维干涉光谱进行绝对光程差测量。本发明基于了扫描激光器结合点式光电探测器的原理,能够实现多路阵列复用,并且采用随机波长调制技术,进行随机波长扫描,通过压缩感知算法重构出每一个采样时间点的全光谱,避免了由于线性波长扫描光谱采集方式引入的多普勒误差,且可以大幅提高光谱采样率。
74.本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
75.本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说
明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜