一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于存储器子系统的操作特性来管理阈值电压漂移的制作方法

2021-03-05 09:31:00 来源:中国专利 TAG:子系统 存储器 阈值 漂移 电压


[0001]
本公开的实施例大体上涉及存储器子系统,且更具体地,涉及基于存储器子系统的操作特性来管理阈值电压漂移。


背景技术:

[0002]
存储器子系统可以包含存储数据的一或多个存储器组件。存储器组件可以是例如非易失性存储器组件和易失性存储器组件。一般来说,主机系统可以利用存储器子系统以在存储器组件处存储数据且从存储器组件检索数据。


技术实现要素:

[0003]
一方面,本申请提供一种方法,其包括:建立与存储器子系统的操作特性相对应的多个值集合;对于与所述操作特性相对应的所述多个值集合中的每一者,识别与所述存储器子系统的编程分布的降低的误码率相对应的读取电压电平;存储数据结构,所述数据结构包含针对所述操作特性的每一值集合的所述读取电压电平;响应于读取命令,确定所述操作特性的当前值集合;使用所述数据结构识别与所述操作特性的所述当前值集合相对应的所存储的读取电压电平;以及通过处理装置使用与所述操作特性的所述当前值集合相对应的所述所存储的读取电压电平来执行所述读取命令。
[0004]
另一方面,本申请进一步提供一种包括指令的非暂时性计算机可读媒体,所述指令在由处理装置执行时使所述处理装置执行包括以下各项的操作:响应于与存储器子系统相关联的读取命令,确定与包括写到读延迟和裸片温度的多个操作特性相对应的当前值集合;执行表的查找操作,以识别与所述多个操作特性的所述当前值集合相对应的读取电压电平;以及使用所述读取电压电平执行所述读取命令。
[0005]
又一方面,本申请进一步提供一种系统,其包括:存储器组件;以及处理装置,其与所述存储器组件可操作地耦合以进行以下操作:建立与存储器子系统的操作特性相对应的多个值集合;对于与所述操作特性相对应的所述多个值集合中的每一者,识别与所述存储器子系统的编程分布的降低的误码率相对应的读取电压电平;存储数据结构,所述数据结构包含针对与所述操作特性相对应的每一值集合的所述读取电压电平;响应于读取命令,确定所述操作特性的当前值集合;使用所述数据结构识别与所述操作特性的所述当前值集合相对应的所存储的读取电压电平;以及使用与所述操作特性的所述当前值集合相对应的所述所存储的读取电压电平来执行所述读取命令。
附图说明
[0006]
根据下文给出的详细描述和本公开的各种实施方案的附图,将更充分地理解本公开。
[0007]
图1示出根据本公开的一些实施例的包含存储器子系统的实例计算环境。
[0008]
图2是根据一些实施例的使用与操作特性的当前集合相对应的优化读取电压电平
来执行读取命令的实例方法的流程图。
[0009]
图3示出根据一些实施例的与存储器子系统的操作特性值相对应的优化读取电压值的实例关联。
[0010]
图4示出根据一些实施例的包含与存储器子系统的实例操作特性值集合相对应的实例优化读取电压电平的表。
[0011]
图5是根据一些实施例的将读取电压电平调节至与操作特性值集合相关联的优化读取电压电平的实例方法的流程图。
[0012]
图6是本公开的实施方案可在其中操作的实例计算机系统的框图。
具体实施方式
[0013]
本公开的方面涉及基于存储器子系统的操作特性来管理阈值电压漂移。存储器子系统可以是存储装置、存储器模块,或存储装置和存储器模块的混合。下文结合图1描述存储装置和存储器模块的实例。一般来说,主机系统可以利用存储器子系统,所述存储器子系统包含一或多个存储器组件,例如,存储数据的存储器装置。主机系统可以提供数据以存储于存储器子系统处并且可以请求从存储器子系统检索数据。
[0014]
存储器装置可以是非易失性存储器装置,例如作为非易失性存储器的交叉点阵列的三维交叉点(“3d交叉点”)存储器装置,其可结合可堆叠交叉网格化数据存取阵列基于体电阻的改变来执行位存储。非易失性存储器装置的另一实例是“与非”(nand)存储器装置。下文结合图1描述非易失性存储器装置的其它实例。
[0015]
存储器装置中的每一者可以包含一或多个存储器单元阵列。存储器单元(“单元”)是存储信息的电子电路。取决于单元类型,单元可以存储二进制信息的一或多个位,且具有与所存储的位数相关的各种逻辑状态。逻辑状态可以由二进制值(例如“0”和“1”)或这些值的组合表示。例如,单层级单元(slc)可以存储一个信息位且具有两个逻辑状态。各个逻辑状态具有对应的阈值电压电平。阈值电压(vt)是施加到单元电路系统(例如,晶体管变为导通的控制栅极)以设置单元状态的电压。基于施加到单元的vt将所述单元设置成其逻辑状态中的一者。例如,如果高vt施加到slc,则单元中将存在电荷,从而将slc设置为存储逻辑0。如果低vt施加到slc,则单元中将不存在电荷,从而将slc设置为存储逻辑1。
[0016]
对于某些存储器类型(即,对于采用某些类型的存储媒体的存储器子系统),错误率可以随时间变化。具体地,一些非易失性存储器具有随时间推移而移动或“漂移”得更高的阈值电压编程分布。在给定的读取电压电平(即,作为读取操作的一部分施加到存储器单元的电压值)下,如果阈值电压编程分布移动,则某些可靠性统计数据也可能受到影响。可靠性统计数据的一个实例是误码率(ber)。ber可以定义为错误位的数目与存储器子系统单元中存储的所有数据位的数目之比,其中单元可以是整个存储器子系统、存储器装置的裸片、码字的集合,或存储器子系统的任何其它有意义的部分。
[0017]
可以在读取电压电平下执行读取操作。读取阈值电压电平或值(在此为“读取电压电平”)可以是施加到存储器装置的存储器单元以读取存储在存储器单元处的数据的特定电压。例如,如果特定存储器单元的阈值电压被识别为低于施加到特定存储器单元的读取电压电平,则存储在特定存储器单元处的数据可以是特定值(例如,“1”),并且如果特定存储器单元的阈值电压被识别为高于读取电压电平,则存储在特定存储器单元处的数据可以
是另一个值(例如,“0”)。因此,可以将读取电压电平施加到存储器单元以确定存储在存储器单元处的值。
[0018]
在常规存储器子系统中,当存储器单元的阈值电压编程分布改变时,相对于改变后的阈值电压,读取电压电平的施加可能是不准确的。例如,存储器单元可以被编程为具有低于读取电压电平的阈值电压。编程的阈值电压会随时间推移而改变,并且可以转变为高于读取电压电平。例如,存储器单元的阈值电压可以从最初低于读取电压电平转变为高于读取电压电平。因此,当将读取电压电平施加到存储器单元时,与阈值电压尚未转变时最初存储的值相比,存储在存储器单元处的数据可能被误读或误解为错误的值。
[0019]
阈值电压编程分布的漂移速度或速率以及常规存储器子系统的对应ber会受到存储器子系统的一或多个操作特性的影响。实例操作特性包含裸片温度、写到写(w2w)延迟时间(即,在当前写入操作和与存储器装置的单元相关联的先前写入操作之间经过的时间段)、写到读(w2r)延迟时间(即,将数据写入存储器装置的单元与从存储器装置的所述单元读取数据之间的时间段),以及存储器装置的写/读循环条件(即,存储器装置已被擦除和编程的次数)。
[0020]
例如,当经历相同的w2r延迟时间时,较高裸片温度下的漂移速度比较低温度下的漂移速度更快。例如,与较短的w2r延迟时间相比,较长的w2r延迟时间产生更大的阈值电压漂移。在此实例中,较长的w2r延迟时间的读取重试触发率(即,触发纠错处理的错误率)高于较短的w2r延迟时间的读取重试触发率。常规存储器子系统采用读取清理操作(例如,三小时的读取清理,其中每三小时读取一次整个存储器子系统)和写入清理操作(即,强制定期(例如每十二小时一次)在“0”值与“1”值之间进行切换且反之亦然的写入操作),以刷新或降低阈值电压编程分布以抵抗漂移。然而,读取和写入清理操作因读取操作的频繁执行而降低存储器子系统的服务质量,并导致不必要的读取干扰,从而降低可靠性。
[0021]
本公开的方面通过具有识别出优化读取电压电平(或读取电压电平范围)的存储器子系统来解决上述和其它缺陷,所述优化读取电压电平(或读取电压电平范围)最小化或减小了与由于操作特性集合(即,一或多个操作特性的当前值集合)而经历漂移的阈值电压编程分布相对应的ber。具体地,可以根据存储器子系统的操作特性值集合(例如,w2w延迟时间、w2r延迟时间、温度和循环信息)来确定优化读取电压电平。
[0022]
本公开的优点包含但不限于降低存储器子系统的错误率。有利地,可以确定优化读取电压电平并结合读取操作来应用,以抵消由当前操作特性引起的阈值电压漂移。此外,识别并应用与当前操作条件集合(例如,w2w延迟时间、w2r延迟时间、裸片温度和循环条件)相对应的优化读取电压电平抵消了由操作条件引起的阈值电压漂移。根据操作条件调节读取电压电平降低了读取重试触发率,并因改进的数据完整性而提高了存储器子系统的性能。另外,本公开的系统和方法减少或消除了读取清理频率并且避免了不必要的读取干扰错误。
[0023]
图1示出根据本公开的一些实施例的包含存储器子系统110的实例计算环境100。存储器子系统110可以包含媒体,例如一或多个易失性存储器装置(例如,存储器装置140)、一或多个非易失性存储器装置(例如,存储器装置130),或其组合。
[0024]
存储器子系统110可以是存储装置、存储器模块,或存储装置和存储器模块的混合。存储装置的实例包含固态驱动器(ssd)、快闪驱动器、通用串行总线(usb)快闪驱动器、
嵌入式多媒体控制器(emmc)驱动器、通用快闪存储(ufs)驱动器以及硬盘驱动器(hdd)。存储器模块的实例包含双列直插式存储器模块(dimm)、小外形dimm(so-dimm)以及非易失性双列直插式存储器模块(nvdimm)。
[0025]
计算环境100可以包含耦合到一或多个存储器子系统110的主机系统120。在一些实施例中,主机系统120耦合到不同类型的存储器子系统110。图1示出耦合到一个存储器子系统110的主机系统120的一个实例。主机系统120使用存储器子系统110,例如,将数据写入到存储器子系统110以及从存储器子系统110读取数据。如本文中所使用,“耦合到”通常是指组件之间的连接,其可以是间接通信连接或直接通信连接(例如,没有中间组件),无论是有线还是无线的,包含例如电、光、磁连接等的连接。
[0026]
主机系统120可以是计算装置,例如台式计算机、笔记本计算机、网络服务器、移动装置、车辆(例如,飞机、无人机、火车、汽车或其它运输工具)、物联网(iot)装置、嵌入式计算机(例如,包含在车辆、工业设备或联网商用装置中的嵌入式计算机),或包含存储器和处理装置的此类计算装置。主机系统120可以经由物理主机接口耦合到存储器子系统110。物理主机接口的实例包含但不限于串行高级技术附件(sata)接口、外围组件互连高速(pcie)接口、通用串行总线(usb)接口、光纤通道、串行附接的scsi(sas)等。物理主机接口可以用于在主机系统120与存储器子系统110之间传输数据。当存储器子系统110通过pcie接口与主机系统120耦合时,主机系统120可以进一步利用nvm快速(nvme)接口存取存储器组件(例如存储器装置130)。物理主机接口可提供接口以用于在存储器子系统110与主机系统120之间传送控制、地址、数据以及其它信号。
[0027]
存储器装置可以包含不同类型的非易失性存储器装置和/或易失性存储器装置的任何组合。易失性存储器装置(例如,存储器装置140)可以是但不限于随机存取存储器(ram),例如动态随机存取存储器(dram)和同步动态随机存取存储器(sdram)。
[0028]
非易失性存储器装置(例如,存储器装置130)的一些实例包含与非(nand)类型快闪存储器和就地写入(write-in-place)存储器,例如三维交叉点(“3d交叉点”)存储器。非易失性存储器的交叉点阵列可结合可堆叠交叉网格化数据存取阵列基于体电阻的改变来执行位存储。另外,与许多基于闪存的存储器对比,交叉点非易失性存储器可以进行就地写入操作,其中可在不预先擦除非易失性存储器单元的情况下对非易失性存储器单元进行编程。
[0029]
虽然描述了例如3d交叉点类型存储器的非易失性存储器组件,但存储器装置130可以基于任何其它类型的非易失性存储器,例如“与非”(nand)、只读存储器(rom)、相变存储器(pcm)、自选存储器、其它基于硫族化物的存储器、铁电随机存取存储器(feram)、磁性随机存取存储器(mram)、“或非”(nor)快闪存储器,以及电可擦除可编程只读存储器(eeprom)。
[0030]
一种类型的存储器单元,例如单电平单元(slc)可每单元存储一个位。其它类型的存储器单元,例如多电平单元(mlc)、三电平单元(tlc)和四电平单元(qlc)可每单元存储多个位。在一些实施例中,存储器装置130中的每一个可以包含一或多个存储器单元阵列,例如slc、mlc、tlc、qlc或这些的任何组合。在一些实施例中,特定存储器组件可以包含存储器单元的slc部分,以及mlc部分、tlc部分或qlc部分。存储器装置130的存储器单元可分组为页或码字,所述页或码字可指代用于存储数据的存储器装置的逻辑单元。对于一些类型的
存储器(例如,nand),可对页进行分组以形成块。一些类型的存储器(例如3d交叉点)可对跨裸片和通道的页进行分组以形成管理单元(mu)。
[0031]
存储器子系统控制器115可以与存储器装置130通信以执行操作,例如在存储器装置130处读取数据、写入数据或擦除数据和其它此类操作。存储器子系统控制器115可以包含硬件,例如一或多个集成电路和/或离散组件、缓冲存储器或其组合。硬件可以包含具有专用(即,硬译码)逻辑的数字电路系统以执行本文中所描述的操作。存储器子系统控制器115可以是微控制器、专用逻辑电路系统(例如,现场可编程门阵列(fpga)、专用集成电路(asic)等),或其它合适的处理器。
[0032]
存储器子系统控制器115可以包含处理器(处理装置)117,所述处理器经配置以执行存储在本地存储器119中的指令。在所示实例中,存储器子系统控制器115的本地存储器119包含经配置以存储指令的嵌入式存储器,所述指令用于执行控制存储器子系统110的操作(包含处理存储器子系统110与主机系统120之间的通信)的各种过程、操作、逻辑流和例程。
[0033]
在一些实施例中,本地存储器119可以包含存储器寄存器,其存储存储器指针、获取的数据等。本地存储器119还可以包含用于存储微码的只读存储器(rom)。虽然图1中的实例存储器子系统110已示为包含存储器子系统控制器115,但在本公开的另一实施例中,存储器子系统110可不包含存储器子系统控制器115,且可替代地依靠(例如,由外部主机或由与存储器子系统分开的处理器或控制器提供的)外部控制。
[0034]
通常,存储器子系统控制器115可以从主机系统120接收命令或操作,且可将所述命令或操作转换为指令或适当命令以实现对存储器装置130的所需存取。存储器子系统控制器115可负责其它操作,例如耗损均衡操作、垃圾收集操作、错误检测和纠错码(ecc)操作、加密操作、高速缓存操作,以及在与存储器装置130相关联的逻辑块地址与物理块地址之间的地址转译。存储器子系统控制器115可进一步包含主机接口电路系统以经由物理主机接口与主机系统120通信。主机接口电路系统可以将从主机系统接收到的命令转换成存取存储器装置130的命令指令,以及将与存储器装置130相关联的响应转换成主机系统120的信息。
[0035]
存储器子系统110还可以包含未示出的附加电路系统或组件。在一些实施例中,存储器子系统110可以包含高速缓存或缓冲器(例如,dram)和地址电路系统(例如,行解码器和列解码器),其可从存储器子系统控制器115接收地址且对地址进行解码以存取存储器装置130。
[0036]
在一些实施例中,存储器装置130包含本地媒体控制器135,其结合存储器子系统控制器115操作以对存储器装置130的一或多个存储器单元执行操作。外部控制器(例如,存储器子系统控制器115)可在外部管理存储器装置130(例如,对存储器装置130执行媒体管理操作)。在一些实施例中,存储器装置130可以是受管理存储器装置,其为与本地控制器(例如,本地控制器135)组合以在同一存储器装置封装内进行媒体管理的原始存储器装置。受管理存储器装置的实例是受管理nand(mnand)装置。
[0037]
存储器子系统110包含读取电压调节组件113,所述读取电压调节组件可以用于识别与操作特性的当前集合相对应的优化读取电压电平,并且在执行与存储器子系统110处存储的数据有关的读取操作时应用所述优化读取电压电平。在一些实施例中,控制器115包
含读取电压调节组件113的至少一部分。例如,控制器115可以包含处理器117(处理装置),其经配置以执行本地存储器119中存储的指令,用于执行本文中描述的操作。在一些实施例中,读取电压调节组件113是主机系统120、应用程序或操作系统的一部分。在相同或替代实施例中,读取电压调节组件113的部分是主机系统120的一部分,而读取电压调节组件113的其它部分在控制器115处执行。
[0038]
读取电压调节组件113可以用于存储数据结构(例如,表),所述数据结构包含与例如w2w延迟时间、w2r延迟时间、裸片温度和循环条件的多个操作特性值集合相对应的优化读取电压电平。在实施例中,读取电压调节组件113针对每一操作特性值集合识别与最小ber相对应的优化读取电压电平。在存储器子系统的操作期间,读取电压调节组件113确定操作特性的当前值集合,并使用数据结构(例如,经由查表操作)来识别对应的优化读取电压电平。为了抵消由于操作特性引起的阈值电压漂移,可以将读取电压电平调节为优化读取电压电平,并且可以执行读取操作。下文描述关于读取电压调节组件113的操作的更多细节。
[0039]
图2是根据一些实施例的使用与操作特性的当前集合相对应的优化读取电压电平来执行读取命令的实例方法200的过程流程图。可以通过处理逻辑来执行方法200,所述处理逻辑可以包含硬件(例如处理装置、电路系统、专用逻辑、可编程逻辑、微码、装置的硬件、集成电路等)、软件(例如在处理装置上运行或执行的指令),或其组合。在一些实施例中,通过图1的读取电压调节组件113来执行方法200。虽然以特定顺序或次序来展示,但是除非另有指定,否则可修改所述处理程序的次序。因此,所示实施例应仅作为实例理解,且所示过程可以不同次序进行,且一些过程可并行进行。另外,在各种实施例中可省去一或多个过程。因此,在每一实施例中并非需要全部过程。其它过程流也是可能的。
[0040]
如图2所示,在操作210,处理逻辑建立与存储器子系统的操作特性相对应的多个值集合。在实施例中,操作特性可以包含w2w延迟时间、w2r延迟时间、裸片温度和循环条件中的一或多者。在实施例中,在准备或初始阶段期间,可以通过设置操作特性中的每一者的所选值来操作存储器子系统,以建立针对操作特性的多个不同值集合和组合。在实例中,操作特性中的每一者的所选值(例如,可以针对w2w延迟时间和w2r延迟时间建立50微秒(μs)、10秒(s)、1小时(hr)的值;可以针对裸片温度建立0摄氏度(c)、25c和70c的值;并且可以针对循环条件建立1、10k和100k的值)。
[0041]
在操作220,对于与操作特性相对应的多个值集合中的每一者,处理逻辑识别与存储器子系统的编程分布的降低的误码率相对应的读取电压电平。在实施例中,对于操作特性的值的每一组合,与降低的误码率(例如,不同读取电压电平集合中的最低相对误码率)相关联的读取电压电平被识别并被建立为优化读取电压电平。例如,可以确定与w2w延迟时间为50μs、w2r延迟时间为10s、裸片温度为25c以及循环条件为100k相对应的降低的误码率,并将其用于识别对应的读取电压电平(例如,“优化读取电压水平”)。
[0042]
图3示出实例数据结构300,其包含不同的操作特性310(例如,w2w延迟时间、w2r延迟时间、温度和循环)以及可以在图2的操作210期间建立的实例值(例如,值1、值2、值3)。在实施例中,对于操作特性310的值的每一组合或集合,识别并存储优化读取电压电平320(例如,与降低的误码率相对应的读取电压电平),如上文结合图2的操作220所述。
[0043]
在操作230,处理逻辑存储数据结构,所述数据结构包含针对每一操作特性值集合
的读取电压电平。在实施例中,将数据结构(例如,表)存储在可操作地耦合到图1的读取电压调节组件113的数据存储器件(例如,存储器子系统的熔丝rom)中。在实施例中,数据结构包含针对操作特性的值的多个不同情形或组合的所识别读取电压电平(例如,经优化以降低或减小误码率的读取电压电平)。
[0044]
图4示出包含多个操作特性410(例如,写到写延迟时间410a、写到读延迟时间410b、裸片温度410c和循环条件410d)的实例表400。如图4所示,建立针对多个操作特性410的多个不同值集合,并且识别并存储对应的优化读取电压420(例如,与降低的误码率相对应的读取电压电平)。例如,将操作特性值集合430(例如,w2w延迟时间为50μs,w2r延迟时间为10s,裸片温度为25c,循环条件为1)与对应的优化读取电压电平430(例如5.25伏)一起存储在表400中。如实例表400中所示,针对多个不同的操作特性值集合(例如,集合430)中的每一者,识别优化读取电压电平。
[0045]
在操作240,响应于读取命令,处理逻辑确定操作特性的当前值集合。在实施例中,在识别出新的读取命令时,处理逻辑测量操作特征值。例如,响应于读取命令,处理逻辑可以确定与w2w延迟时间相对应的第一值,与w2r延迟时间相对应的第二值,与裸片温度相对应的第三值,以及与循环条件相对应的第四值(例如,共同地为与操作特性相对应的当前值集合)。下文参考图5详细描述包含确定当前值集合的实例过程。
[0046]
在操作250中,处理逻辑使用数据结构识别与操作特性的当前值集合相对应的所存储的读取电压电平。在实施例中,可以通过以下操作来识别所存储的读取电压电平:执行表(例如,图4的表400)的查找操作,以识别与当前值集合相对应的操作特性值集合(例如,图4的值集合430),并识别与所述操作特性值集合相关联地存储的读取电压电平(例如,图4的优化读取电压电平420)。
[0047]
在操作260中,处理逻辑使用所存储的与操作特性的当前值集合相对应的读取电压电平来执行读取命令。在实施例中,响应于读取命令,在执行读取操作时使用优化读取电压电平。有利地,将先前的读取电压电平调节至优化电压值以执行读取将使得施加精确的读取电压,这考虑了由存储器子系统的当前操作特性引起的阈值电压漂移。
[0048]
图5是根据一些实施例的将读取电压电平调节至因存储器子系统的操作特性而考虑阈值电压漂移的优化读取电压电平的实例方法500的流程图。可以通过处理逻辑来执行方法500,所述处理逻辑可以包含硬件(例如处理装置、电路系统、专用逻辑、可编程逻辑、微码、装置的硬件、集成电路等)、软件(例如在处理装置上运行或执行的指令),或其组合。在一些实施例中,通过图1的读取电压调节组件113来执行方法500。虽然以特定顺序或次序来展示,但是除非另有指定,否则可修改所述处理程序的次序。因此,所示实施例应仅作为实例理解,且所示过程可以不同次序进行,且一些过程可并行进行。另外,在各种实施例中可省去一或多个过程。因此,在每一实施例中并非需要全部过程。其它过程流也是可能的。
[0049]
在操作510中,处理逻辑执行写入操作以将数据写入到存储器子系统。在实施例中,处理逻辑可以记录与执行写入操作相对应的时间(例如,时间戳的记录)。在操作520中,处理逻辑确定包含写到写延迟时间的第一操作特性的第一值,其中写到写延迟时间对应于写入操作(例如,操作510的写入操作)与先前写入操作之间的第一时间差。在实施例中,对于由处理逻辑执行的每一写入操作(例如,操作210的写入操作和先前写入操作),记录对应的执行时间。在实施例中,通过确定当前写入操作与先前写入操作之间的时间差来计算w2w
延迟时间。
[0050]
在操作530中,响应于写入操作,处理逻辑将写到读时间重置为零值。在实施例中,处理逻辑保持计时器,所述计时器测量写入操作(例如,操作510的写入操作)与随后的或下一个读取操作之间的时间。在实施例中,计时器从写入操作的时间开始运行,并在下一个读取操作的时间停止。
[0051]
在操作540中,处理逻辑识别读取存储器子系统的数据的读取命令。在实施例中,读取命令可以由主机系统(例如,图1的主机系统120)发出,以从存储器子系统的存储器裸片读取数据。
[0052]
在操作550中,处理逻辑确定包含写到读延迟时间的第二操作特性的第二值,所述写到读延迟时间对应于写入操作与读取命令所相关联的时间之间的第二时间差。在实施例中,写到读延迟时间是最近写入操作与下一个读取操作之间的时间的量度,如写到读定时器所表示的。
[0053]
在操作560中,处理逻辑确定包含循环信息的第三操作特性的第三值。在实施例中,响应于读取命令,处理逻辑测量存储器子系统的循环条件并记录相关联的值。在实施例中,响应于读取命令,处理逻辑执行查找操作以识别当前或最近记录的循环条件值。在操作570中,处理逻辑确定包含与存储器子系统相对应的裸片温度的第四操作特性的第四值。在实施例中,响应于读取命令,处理逻辑测量与读取命令有关的裸片的温度。在实施例中,响应于读取命令,处理逻辑执行查找操作以识别当前或最近记录的裸片温度值。
[0054]
在操作580中,处理逻辑对操作特性的第一值、第二值、第三值和第四值进行归一化,以生成归一化的操作特性值集合。在实施例中,处理逻辑对w2w延迟时间、w2r延迟时间、裸片温度和循环条件的所确定或所测量值进行归一化,以与数据存储(例如,图4的表400)中存储的值集合匹配。在实施例中,因为所确定或所测量的值可能与用于建立表的精确值不匹配,所以对这些值进行归一化以与表值匹配。例如,归一化可以包含将所确定的第一值和第二值向下(或向上)舍入到与第一操作特性(即,w2w延迟时间)和第二操作特性(即,w2r延迟时间)相对应的最接近的预设值(例如,50μs、10s或1小时的值)。另外,可以对第三值(例如,裸片温度值)和第四值(例如,循环条件值)执行舍入运算以匹配最接近的预设值(例如,裸片温度为0c、25c或70c,或循环条件值为1、10k或100k)。应注意,可以应用任何合适的归一化机制或技术来将所确定的操作特性的当前值集合转换为数据结构的对应值集合(例如,图4的值集合430),以使得能够识别对应的优化读取电压。
[0055]
在操作590中,处理逻辑将读取电压电平调节至与归一化的操作特性值集合相关联的优化读取电压电平。在实施例中,考虑到在操作540中识别出的读取命令,处理逻辑在执行读取操作时应用经由数据结构(例如,图4的表400)的查找操作确定的优化读取电压电平。例如,表400中与操作特性的归一化集合匹配的值的读取电压电平可以用于读取操作。有利地,将读取电压电平动态地调节至优化读取电压电平减小了相关联的误码率,并且抵消了由当前操作特性引起的阈值电压漂移。
[0056]
图6示出计算机系统600的实例机器,在所述实例机器内可执行用于使机器执行本文中所论述的方法中的任何一或多种的指令集。在一些实施例中,计算机系统600可以对应于主机系统(例如,图1的主机系统120),所述主机系统包含、耦合到或利用存储器子系统(例如,图1的存储器子系统110)或可以用于执行控制器的操作(例如,执行操作系统,以执
行与图1的读取电压调节组件113相对应的操作)。在替代实施例中,机器可以连接(例如联网)到lan、内联网、外联网和/或互联网中的其它机器。机器可以作为对等(或分散式)网络环境中的对等机器或作为云计算基础设施或环境中的服务器或客户端机器而在客户端-服务器网络环境中的服务器或客户端机器的容量中操作。
[0057]
机器可以是个人计算机(pc)、平板pc、机顶盒(stb)、个人数字助理(pda)、蜂窝电话、网络设备、服务器、网络路由器、交换机或网桥、数字或非数字电路系统,或能够执行指定要由此机器进行的动作的指令集(顺序的或以其它方式)的任何机器。另外,尽管说明单个机器,但还应认为术语“机器”包含机器的任何集合,所述集合单独地或共同地执行一(或多个)指令集以进行本文中所论述的方法中的任何一或多种。
[0058]
实例计算机系统600包含处理装置602、主存储器604(例如,只读存储器(rom)、闪存存储器、动态随机存取存储器(dram),例如同步dram(sdram)或rambus dram(rdram)等)、静态存储器606(例如,闪存存储器、静态随机存取存储器(sram)等),以及数据存储系统618,其经由总线630彼此通信。
[0059]
处理装置602表示一或多个通用处理装置,例如微处理器、中央处理单元等。更具体地,处理装置可以是复杂指令集计算(cisc)微处理器、精简指令集计算(risc)微处理器、超长指令字(vliw)微处理器或实施其它指令集的处理器,或实施指令集的组合的处理器。处理装置602也可以是一或多个专用处理装置,例如专用集成电路(asic)、现场可编程门阵列(fpga)、数字信号处理器(dsp)、网络处理器等。处理装置602经配置以执行指令626,用于执行本文中所论述的操作和步骤。计算机系统600可进一步包含网络接口装置608,以通过网络620进行通信。
[0060]
数据存储系统618可以包含机器可读存储媒体624(也称为计算机可读媒体),在其上存储一或多个指令集626或体现本文描述的方法或功能中的任何一或多者的软件。指令626还可在其由计算机系统600执行期间完全或至少部分地驻存在主存储器604内和/或处理装置602内,主存储器604和处理装置602也构成机器可读存储媒体。机器可读存储媒体624、数据存储系统618和/或主存储器604可以对应于图1的存储器子系统110。
[0061]
在一个实施例中,指令626包含实施与读取电压调节组件(例如,图1的读取电压调节组件113)相对应的功能的指令。尽管在实例实施例中将机器可读存储媒体624展示为单个媒体,但术语“机器可读存储媒体”应被认为包含存储一或多个指令集的单个媒体或多个媒体。术语“机器可读存储媒体”还应被认为包含能够存储或编码供机器执行的指令集合且致使机器执行本公开的方法中的任何一种或多种的任何媒体。因此,应认为术语“机器可读存储媒体”包含但不限于固态存储器、光学媒体以及磁性媒体。
[0062]
已关于计算机存储器内的数据位的操作的算法和符号表示而呈现先前详细描述的一些部分。这些算法描述和表示是数据处理领域的技术人员用以将其工作的主旨最有效地传达给本领域的其它技术人员的方式。算法在这里并且通常被认为是产生期望的结果的操作的自洽序列。操作是要求对物理量进行物理操纵的操作。这些量通常但未必呈能够被存储、组合、比较和以其它方式操控的电或磁信号的形式。有时,主要出于通用的原因,已经证明将这些信号称为位、值、元件、符号、字符、术语、数目等是方便的。
[0063]
然而,应牢记,所有这些和类似术语应与适当物理量相关联,且仅仅是应用于这些量的方便标签。本公开可以指操控和变换计算机系统的寄存器和存储器内的表示为物理
(电子)数量的数据为计算机系统存储器或寄存器或其它这类信息存储系统内的类似地表示为物理量的其它数据的计算机系统或类似电子计算装置的动作和过程。
[0064]
本公开还涉及用于执行本文中的操作的设备。此设备可以出于所需目的而专门构造,或其可以包含通过存储在计算机中的计算机程序选择性地激活或重新配置的通用计算机。此类计算机程序可以存储在计算机可读存储媒体中,例如但不限于任何类型的盘(包含软盘、光盘、cd-rom和磁性光盘)、只读存储器(rom)、随机存取存储器(ram)、eprom、eeprom、磁卡或光卡,或适合于存储电子指令的任何类型的媒体,它们各自耦合到计算机系统总线。
[0065]
本文中呈现的算法和显示器在本质上并不与任何特定计算机或其它设备相关。各种通用系统可与根据本文中的教示的程序一起使用,或其可证明构造更专用的设备来执行所述方法是方便的。将如下文描述中所阐述的那样来呈现多种这些系统的结构。此外,并不参考任何特定编程语言来描述本公开。应了解,可以使用各种编程语言来实施如本文中所描述的本公开的教示。
[0066]
本公开可提供为计算机程序产品或软件,其可以包含在其上存储有可用于对计算机系统(或其它电子装置)编程以执行根据本公开的过程的指令的机器可读媒体。机器可读媒体包含用于以机器(例如,计算机)可读的形式存储信息的任何机制。在一些实施例中,机器可读(例如计算机可读)媒体包含机器(例如计算机)可读存储媒体,例如只读存储器(“rom”)、随机存取存储器(“ram”)、磁盘存储媒体、光学存储媒体、快闪存储器组件等。
[0067]
在前述说明书中,已参考其特定实例实施例描述了本公开的实施例。应显而易见的是,可在不脱离如所附权利要求书中阐述的本公开的实施例的更广精神和范围的情况下对本公开进行各种修改。因此,应在说明性意义上而非限制性意义上看待说明书和图式。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜