一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

废气净化过滤器的制作方法

2021-10-09 18:12:00 来源:中国专利 TAG:废气 过滤器 净化 申请 专利申请

废气净化过滤器
1.关联申请的相互参照
2.本技术基于2019年7月12日申请的日本专利申请第2019-130426号,这里引用其记载内容。
技术领域
3.本发明涉及在汽油发动机的排气通路中配置的废气净化过滤器。


背景技术:

4.在从汽油发动机、柴油发动机等内燃机排出的废气中,包含被称作颗粒物的粒子状物质。以下适当将颗粒物称作“pm”。为了捕获该废气中的pm而进行废气的净化,在内燃机的排气通路中配置废气净化过滤器。
5.作为这种废气净化过滤器,例如,在专利文献1中,公开了将从柴油发动机排出的pm捕获的柴油颗粒物过滤器。具体而言,记载了使过滤器的大量单元中的规定的单元的截面积、水力直径不同于其余单元的截面积、水力直径、并使单元的角部为圆弧状的技术。根据该文献,通过该技术,抑制了流入侧端面被堵塞的情况,能够维持高强度。
6.现有技术文献
7.专利文献
8.专利文献1:日本特开2005-270969号公报


技术实现要素:

9.在为了提高强度而强化过滤器的隔壁等的构造的情况下,隔壁的交叉部的截面积变大。隔壁的截面积的增大使废气的流动变差,使压力损失增大。另一方面,为了降低压力损失,例如提高隔壁的气孔率是有效的,但若提高气孔率,则过滤器的强度下降。以下,适当将压力损失称作“压损”。
10.通常,与柴油发动机相比,汽油发动机中搭载的过滤器处于高温环境,废气的流速变高,因此有压损增大的倾向。因而,汽油发动机中搭载的过滤器在使用中有可能发生过滤器从搭载位置向废气的流动方向的下游侧移动这样的移位。为了防止移位,向过滤器施加较大的外压而将其固定于搭载位置是有效的,但在过滤器的尺寸精度较差的情况下局部应力会作用于过滤器,过滤器发生破损。
11.本发明的目的在于,提供压损低且强度高的废气净化过滤器。
12.本发明的一实施方式,是配置于汽油发动机的排气通路的废气净化过滤器,具有:
13.单元构造部,包括沿过滤器轴向延伸的多个单元和将上述多个单元划分形成为格子状的多孔质的隔壁;
14.密封部,将上述单元构造部中的上述单元的两端互不相同地堵塞;以及
15.筒状的表皮部,形成在上述单元构造部的外周,
16.上述隔壁的气孔率为50~70%,
17.上述表皮部的厚度t为0.3~1.0mm,
18.上述单元的外缘在上述隔壁的交叉位置带有圆度,上述交叉位置处的曲率半径r为0.02~0.6mm,
19.上述过滤器轴向上的、上述废气净化过滤器的外形尺寸的变化程度即变形度δ超过0且在1.5mm以下,
20.下述式i所表示的构造变量x为0.05~6,
21.x=t
×
r/δ
···
式i。
[0022][0023]
上述废气净化过滤器具有上述结构。特别是,气孔率、表皮部的厚度t、交叉位置的单元的外缘的曲率半径r、变形度δ处于上述范围内,式i所表示的构造变量x处于上述范围内。因此,废气净化过滤器的压损低,强度高。
[0024]
另外,技术方案中记载的括号内的附图标记表示与后述实施方式中记载的具体部件之间的对应关系,并不限定本发明的技术范围。
附图说明
[0025]
本发明的上述目的及其他目的、特征及优点通过参照附图并通过以下详细记载会更加明确。
[0026]
图1是实施方式1的废气净化过滤器的示意图。
[0027]
图2是实施方式1的废气净化过滤器的轴向上的放大剖视图。
[0028]
图3是实施方式1的废气净化过滤器的与轴向正交的方向上的交叉位置的放大剖视图。
[0029]
图4是实施方式1的废气净化过滤器的与轴向正交的方向上的单元的放大剖视图。
[0030]
图5的(a)是实施方式1的在轴向上无变形的废气净化过滤器的外观示意图,图5的(b)是在轴向上有较大变形的废气净化过滤器的外观示意图,图5的(c)是表示废气净化过滤器的与轴向正交的方向上的尺寸差的说明图。
[0031]
图6是实施方式1的配置在排气通路中的废气净化过滤器的示意图。
[0032]
图7是表示实验例的等静压(isostatic)强度试验的示意图。
[0033]
图8的(a)是实验例的在表皮部的材料强度的测定中使用的测定样本的截面示意图,图8的(b)是在单元构造部的材料强度的测定中使用的测定样本的截面示意图。
[0034]
图9是表示实验例中的4点弯曲试验的示意图。
[0035]
图10是表示实验例中的材料强度的测定样本与截面系数的变量之间的关系的说明图。
[0036]
图11是表示实验例中的曲率半径r的测定部位的说明图。
[0037]
图12是表示实验例中的表皮部的厚度的测定部位的说明图。
[0038]
图13是表示过滤器轴向上的距流入端面为5mm的位置的废气净化过滤器的半径h、中央部的废气净化过滤器的半径m、距流出端面为5mm的位置的废气净化过滤器的半径l的说明图。
[0039]
图14是表示实验例1中的构造变量x与压力损失的关系的曲线图。
[0040]
图15是表示实验例1中的构造变量x与等静压强度的关系的曲线图。
[0041]
图16是表示实验例2中的曲率半径r与压力损失的关系的曲线图。
[0042]
图17是表示实验例3中的材料强度与等静压强度的关系的曲线图。
[0043]
图18是表示实验例3中的气孔率与材料强度的关系的曲线图。
具体实施方式
[0044]
[实施方式1]
[0045]
参照图1~图6说明关于废气净化过滤器1的实施方式。本说明书中,在用“~”在其前后夹着数值或物性值来表现的情况下,表示是包含其前后的值的范围。如图1~图3所示,废气净化过滤器1具有单元构造部2、密封部11和表皮部12。单元构造部2、表皮部12由堇青石等陶瓷构成。
[0046]
单元构造部2包括大量的单元21和多孔质的隔壁22。单元21在过滤器轴向y上延伸。过滤器轴向y与单元21的延伸方向通常一致。以下适当将过滤器轴向称作“轴向”。隔壁22将大量的单元21划分形成为格子状。隔壁22通常也称作单元壁。
[0047]
如图1、图3、图4所示,与轴向y正交的方向的过滤器截面中的单元形状例如是四边形,但不限于此。单元形状可以是三角形、四边形、六边形等多边形或圆形等。此外,单元形状也可以是2种以上不同形状的组合。另外,即使多边形的单元形状的顶点带有圆度,外观上也可以说是多边形,因此该单元形状认为是多边形。
[0048]
表皮部12例如是圆筒状那样的筒状。表皮部12与单元构造部2的外周一体形成。表皮部12的轴向通常与过滤器轴向y一致。隔壁22将表皮部12的内侧划分为格子状,形成大量的单元21。废气净化过滤器1是多孔质体,隔壁22形成有大量的细孔。废气净化过滤器1能够使废气中含有的pm堆积于隔壁22的表面及细孔内而将其捕获。细孔也称作气孔。pm是称作粒子状物质、颗粒物质、颗粒物等的微小粒子。
[0049]
废气净化过滤器1例如是圆柱状等柱状体,其尺寸能够适当变更。在废气净化过滤器1为圆柱状的情况下,能够将轴向y的长度l调整为50~200mm且将直径φ调整为100~165mm的范围。废气净化过滤器1在过滤器轴向y的两端具有流入端面18、流出端面19。流入端面18是废气流入的一侧的端面,流出端面19是废气流出的一侧的端面。在没有配置在排气管内等的废气的气流中的状态下,流入端面18及流出端面19表示彼此相对的面。即,在某一方的端面是流入端面18的情况下,另一方为流出端面19。例如,还能够将流入端面18称作轴向y的第1端面,将流出端面19称作轴向y的第2端面。
[0050]
作为单元21,能够具有第1单元21a和第2单元21b。如图2所示,第1单元21a例如在流入端面18中开口,在流出端面19中被密封部11堵塞。第2单元21b例如在流出端面19中开口,在流入端面18中被密封部11堵塞。
[0051]
密封部11将过滤器轴向y上的单元21的两端211、212相互不同地堵塞。换言之,密封部11将单元21在流入端面18或流出端面19处相互不同地堵塞。密封部11例如能够由堇青石等陶瓷形成,但也可以是其他材质。图2中,形成了插塞状的密封部11,但密封部11的形状只要能够将单元21的端部密封则并不特别限定。另外,虽然省略了结构的图示,但例如还能够通过在流入端面18或流出端面19处使隔壁22的一部分变形而形成密封部11。该情况下,由于由隔壁22的一部分形成密封部11,所以隔壁22和密封部11一体地连续形成。
[0052]
第1单元21a和第2单元21b在与过滤器轴向y正交的横向x上和与过滤器轴向y及横
向x双方正交的纵向z上都例如彼此相邻地交替排列形成。即,当从过滤器轴向y观察废气净化过滤器1的流入端面18或流出端面19时,第1单元21a和第2单元21b例如配置为棋盘格图样状。隔壁22将第1单元21a和第2单元21b分隔。
[0053]
隔壁22的气孔率是50~70%。在气孔率小于50%的情况下压损变高。在气孔率超过70%的情况下过滤器强度下降。从降低压损并提高过滤器强度的观点来看,气孔率优选为55~67%,更优选为57%~67%,进一步优选为60%~66%。气孔率根据压汞法的原理来测定,详细的测定方法通过实验例1表示。
[0054]
单元21的外缘213在隔壁22的交叉位置225处带有圆度。即,如图3所示,在与过滤器轴向y正交的平面的截面中,单元21的外缘213在隔壁22的交叉位置225处成为例如圆弧状那样的弧状。在上述截面中,隔壁22的交叉位置225可以说是单元21的角部。即,单元21的外缘213在隔壁22的交叉位置225处带有圆度,与单元21的角部为弧状实质上相同。通过使交叉位置225为弧状,与交叉位置225为例如直角形状的情况相比,能够增大交叉位置225处的隔壁22的截面积。由此,隔壁22在交叉位置225处被加强,过滤器强度提高。特别是,与来自与过滤器轴向y正交的方向的应力相对应的强度提高。交叉位置225是形成为格子状的隔壁22交叉的位置。与过滤器轴向y正交的方向在废气净化过滤器1为圆柱状的情况下是径向。
[0055]
对废气净化过滤器1的变形度δ进行说明。变形度是过滤器轴向y上的废气净化过滤器1的外形尺寸的变化程度。更具体而言,变形度是,距过滤器轴向y的两端分别为5mm靠内侧的位置、轴向y的中央位置这合计3个部位的、与轴向y正交的方向上的尺寸(例如半径)的最大值与最小值之差。
[0056]
图5的(a)表示变形度为0的废气净化过滤器1的外观形状的例子,图5的(b)表示变形度较大的废气净化过滤器1的外观形状的例子。在图5的(a)、(b)中,为了方便附图制作,省略了隔壁22、单元的图示。相对于(a)所示的废气净化过滤器1,(b)所示的废气净化过滤器1的轴变形,该情况下,如图5的(c)所示那样,过滤器轴向y的正交方向的外形尺寸产生差。该差是变形度δ。在废气净化过滤器1为例如圆柱状的情况下,外形尺寸例如是半径。另外,图5的(c)中,图的纸面的正交方向是过滤器轴向y。变形度的测定方法通过实验例表示。
[0057]
在废气净化过滤器1中,构造变量x是0.05~6。构造变量x如式i所示,通过表皮部12的厚度tmm、单元21的外缘213在交叉位置225的曲率半径rmm与变形度δmm的关系来表示。其中,t、r、δ能够取的范围是0.3≤t≤1.0,0.02≤r≤0.6,0<δ≤1.5。
[0058]
x=t
×
r/δ
···
式i
[0059]
t<0.3的情况下,r<0.02的情况下,δ>1.5的情况下,过滤器强度不充分。特别是,与来自与过滤器轴向y正交的方向的应力相对应的强度不充分。因而,例如,在向废气净化过滤器1缠绕陶瓷垫而向过滤器壳体插入的、被称作罐装(canning)的组装作业时,废气净化过滤器1有可能发生破损。因为在t<0.3的情况下表皮部12的厚度过小。因为在r<0.02的情况下交叉位置225处的加强不充分。因为在δ>1.5的情况下由于变形大从而容易对过滤器作用局部应力且该应力变大。
[0060]
t>1.0的情况下,r>0.6m的情况下,压损变大。因为在t>1.0的情况下表皮部12的厚度过大。因为在r>0.6的情况下交叉位置225处的隔壁22的截面积过大。在δ=0的情况下,过滤器成为不伴随变形的理想体,但由于违反在烧成中收缩这样的陶瓷的性质,所以δ
实质上无法成为0。
[0061]
对构造变量x进行说明。构造变量x如式i所示那样,是厚度tmm、曲率半径rmm与变形度δmm的函数。式i中,0.3≤t≤1.0,0.02≤r≤0.6,0<δ≤1.5。通过使构造变量x为0.05~6的范围内,能够维持低压损并且提高过滤器强度。特别是,与来自与过滤器轴向y正交的方向的应力相对应的强度提高,因此能够防止上述的罐装时的破损。从以更高级别兼顾低压损和高强度的观点来看,构造范围x优选为0.1~6,更优选为1~6,进一步优选为1~3。构造变量x与压损、过滤器强度的关系通过实验例1具体表示。
[0062]
优选的是,与过滤器轴向y正交的平面中的、单元21的截面形状为四边形,单元21的水力直径d与曲率半径r满足式ii的关系。该情况下,能够以更高级别兼顾低压损和高强度。如图4所示的单元21的截面形状那样,通常,即使气体流动的开口截面为四边形,气体也在具有被称作水力直径的直径的圆的内侧流动。因而,如果是水力直径的圆的外侧,则即使将单元21的角部做成弧状,理论上压力损失也不增大。但是,在废气净化过滤器1中,隔壁22为多孔质,气体在隔壁22内通过,因此即使是在水力直径的圆的外侧设定了曲率半径r的构造,压损上升的边界点也存在于成为比水力直径靠外侧的曲率半径r的数值范围内。关于式ii的详细情况,在实验例2中表示。
[0063]
r≤0.5
×
d/2
···
式ii
[0064]
单元构造部2的材料强度s
a
和表皮部12的材料强度s
b
优选满足式iii的关系。该情况下,废气的流动均衡化,压损上升进一步被抑制,并且过滤器强度更加提高。式iii的关系的详细情况在实验例3中表示。
[0065]
s
a
<s
b
···
式iii
[0066]
单元构造部2的气孔率p
a
和表皮部12的气孔率p
b
优选满足下述式iv的关系。该情况下,也使得废气的流动均衡化,压损上升进一步被抑制,并且过滤器强度更加提高。单元构造部2的气孔率p
a
是与隔壁22的气孔率相同的含义。式iv的关系的详细情况在实验例3中表示。
[0067]
p
a
>p
b
···
式iv
[0068]
如图6所示,废气净化过滤器1配置在汽油发动机e的排气通路a中。具体而言,例如,将在内部容纳废气净化过滤器1的过滤器壳体c与排气通路a连结。废气净化过滤器1以在其表皮部12卷绕有陶瓷垫m的状态被容纳在过滤器壳体c内。为了防止使用中的移位,对于过滤器壳体c内的废气净化过滤器1,在与轴向y正交的方向上施加外压。
[0069]
气孔率、表皮部12的厚度t、交叉位置225处的单元21的外缘213的曲率半径r、变形度δ处于上述范围内、构造变量x处于上述范围内的废气净化过滤器1的压损低且过滤器强度高。即,能够维持低压损,并且即使在与轴向y正交的方向上施加外压,也能够防止废气净化过滤器1发生破损。
[0070]
废气净化过滤器1例如如以下那样制造。首先,制作含有堇青石形成原料的坯土。调整二氧化硅、滑石、氢氧化铝等以成为堇青石组分,进而适当添加并混合甲基纤维素等粘合剂、石墨等造孔材、润滑油、水等,从而制作坯土。为了成为堇青石组分,也可以搭配氧化铝、高岭土。作为二氧化硅,能够使用多孔质二氧化硅。在堇青石形成原料中,二氧化硅、滑石能够成为细孔形成原料。细孔形成原料是形成细孔的材料。细孔形成原料在烧成时生成液相成分,从而形成细孔。另一方面,在堇青石形成原料中,氢氧化铝、氧化铝、高岭土能够
成为骨料原料。骨料原料是形成细孔以外的陶瓷部分的材料。
[0071]
接着,对坯土进行成形、干燥、烧成。由此,形成具有一体形成的表皮部12和单元构造部2的蜂窝构造体。蜂窝构造体包括表皮部12、隔壁22和单元21。密封部11在蜂窝构造体的烧成后形成,或者在烧成前形成。具体而言,例如,利用用于形成密封部的浆料,将烧成后的蜂窝构造体或烧成前的蜂窝构造的成形体的单元21的端面交替地密封,进行烧成从而形成密封部11。
[0072]
表皮部12的厚度t、隔壁22的交叉位置225处的曲率半径r、单元21的水力直径例如能够通过成形时的模具设计而调整。变形度例如能够通过将挤压速度等成形条件、成形体的干燥条件、烧成条件等进行变更来调整。气孔率、材料强度例如能够通过原料组分、成形时使用的模具的设计变更、挤压成形压力等成形条件等来调整。
[0073]
[实验例]
[0074]
首先,说明在实验例中使用的各种测定方法。另外,在实验例之后使用的附图标记中,与在先实施方式中使用过的附图标记相同的附图标记只要不特别表示就表示与在先实施方式相同的构成要素等。
[0075]
·
等静压强度试验
[0076]
等静压强度试验基于社团法人汽车技术会(日语原文:社団法人自動車技術会)发行的汽车标准(即jaso)m505-87而测定。如图7所示,使厚度20mm的铝板51、52与废气净化过滤器1的轴向y的两端面抵接而将两端面18、19密闭,使厚度2mm的橡胶53与表皮部12的表面密接。将该废气净化过滤器1放进压力容器中,向压力容器内导入水,从表皮部12的表面施加静水压。将废气净化过滤器1损坏时的压力设为等静压强度。
[0077]
·
压损
[0078]
将废气净化过滤器1安装到2.0l的汽油直喷发动机的排气管内,使得成为吸入空气量(ga)为100g/s的状态(稳态)。并且,使包含pm的废气流入到废气净化过滤器1内。此时,测定废气净化过滤器1的前后的压力,将其差分计测为压损。
[0079]
·
材料强度
[0080]
首先,从废气净化过滤器1,如图8的(a)、(b)所示那样取得了测定样本s1、s2。具体而言,从距离废气净化过滤器1的与过滤器轴向y正交的方向(具体而言是径向)的中心部朝向半径方向为30mm的范围,取得了5个测定样本s2,从距离与过滤器轴向y正交的方向的最外周朝向半径方向为30mm的范围,取得了5个测定样本s1。如图8的(a)所示,从距最外周朝向半径方向为30mm的范围,取得包括表皮部12的测定样本s1。测定样本s1、s2在宽度方向上包括4个单元量的单元21,在厚度方向上包括2个单元量的单元21。测定样本s1、s2的过滤器轴向y上的长度是50mm,测定样本是块(block)体。
[0081]
如图9所示,关于测定样本s1、s2,依据jis r1601:2008“细陶瓷的室温弯曲强度试验方法”,进行了4点弯曲试验,将测定样本发生破裂时的弯曲力矩(单位:n
·
m)除以考虑了过滤器截面的截面系数而得到的值作为材料强度。单元构造部2的材料强度s
a
是5个测定样本s2的材料强度的平均值。表皮部12的材料强度s
b
是5个测定样本s1的材料强度的平均值。
[0082]
材料强度由以下的式子表示。
[0083]
材料强度(mpa)=弯曲力矩(n
·
mm)/截面系数(mm3)
[0084]
弯曲力矩由以下的式子表示。
[0085]
弯曲力矩(n
·
mm)=负荷(n)
×
4点弯曲试验的支点间距离(mm)/4
[0086]
截面系数由下述式v表示。如图10所示,在式v中,设为:a:与过滤器轴向y正交的面中的测定样本的截面积(mm2),y:从各基准轴到部件表面的距离(mm),b:测定样本的宽度(mm),h:测定样本的高度(mm),i:各单元部的截面惯性矩(mm4)。在图10中表示测定样本s1,但关于测定样本s2也是同样的。
[0087]
【数学式1】
[0088][0089]
·
隔壁的交叉位置处的曲率半径r
[0090]
如图3所示,曲率半径是隔壁22的交叉位置225处的单元21的带有圆度的部分相邻接的最大圆的半径r。如图11所示,测定部位是与过滤器轴向y正交的方向的中心部o、位于相对于该中心部o分别为45度方向且中心部o与表皮部12的距离的一半的位置的4处位置。即,测定位置一共是5处。在各测定位置,测定了形成于1个交叉位置225的4个曲率半径。即,测定了共计20处的曲率半径。将它们的平均值作为隔壁22的交叉位置225处的曲率半径。
[0091]
·
水力直径d
[0092]
水力直径是指流体所流动的管内的内径。当如废气净化过滤器的截面四边形的单元那样流路截面不是圆形时,水力直径d根据单元的截面积a和单元的截面长l,通过以下式子vi计算。另外,在单元的截面形状为四边形的情况下,截面长l是四边形的各边的总和,将在单元的截面形状中带有圆度的顶点视为不带有圆度的直角的顶点,来测定各边的长度。测定位置依照上述的曲率半径r。
[0093]
d=4a/l
···
式vi
[0094]
·
表皮部的厚度t
[0095]
对8处测定了过滤器的轴向y的端面(流入端面18或流出端面19)中的表皮部12的厚度。表皮部12的厚度t是8处的厚度的平均值。在测定中使用工具显微镜。测定位置是,从与过滤器轴向y正交的方向的中心部o沿着格子方向朝向表皮部12引出的线的与表皮部12的4个交点、从中心部o沿着与格子方向呈45
°
倾斜的方向朝向表皮部12引出的线的与表皮部12的4个交点。即,测定位置共计8处,是图12中的8处虚线的圆形标记内。
[0096]
·
变形度
[0097]
利用激光测定装置,在从两端面(流入端面18及流出端面19)分别靠过滤器轴向y上的内侧为5mm的位置、过滤器轴向y的中央位置,测定了废气净化过滤器1的外周的半径尺寸。由此,得到图13所例示的废气净化过滤器1的外周的半径尺寸图。将3处的半径尺寸图中的最大半径与最小半径之差设为变形度。另外,图13中,距流入端面18为5mm的位置的半径尺寸用h表示,中央位置的半径尺寸用m表示,距流出端面19为5mm的位置的半径尺寸用l表示。图13所示的半径尺寸图的变形越少越接近于正圆,在无变形的情况下成为正圆。
[0098]
·
单元构造部的气孔率p
a
、表皮部的气孔率p
b
[0099]
通过利用压汞法原理的压汞仪,测定了废气净化过滤器1的隔壁22的气孔率。作为压汞仪,使用岛津制作所(日语原文:島津製作所社)制造的自动压汞仪(auto pore)iv9500。测定条件如下。
[0100]
首先,从废气净化过滤器1的单元构造部2、表皮部12取得了测定样本。单元构造部2的测定样本是过滤器轴向y的长度为1cm、隔壁22的厚度方向的长度为1cm、与过滤器轴向y和壁厚方向正交的长度为1cm的大致立方体。表皮部12的测定样本是过滤器轴向y的长度为1cm、隔壁22厚度方向的长度包含表皮部且从表皮部朝向过滤器中心部的长度为1cm、与过滤器轴向y和壁厚方向正交的长度为1cm的大致立方体。将测定样本容纳到压汞仪的测定单元内,将测定单元内减压。然后,向测定单元内导入水银并加压,根据加压时的压力和被导入到测定样本的细孔内的水银的体积,测定了气孔径。
[0101]
测定在压力为0.5~20000psia的范围进行。另外,0.5psia相当于0.35
×
10
‑3kg/mm2,20000psia相当于14kg/mm2。对应于该压力范围的气孔径的范围是0.01~420μm。作为根据压力计算气孔径时的常数,使用了接触角140
°
以及表面张力480dyn/cm。气孔率通过以下关系式计算。另外,堇青石的真比重是2.52。
[0102]
气孔率(%)=总气孔容积/(总气孔容积 1/堇青石的真比重)
×
100
[0103]
(实验例1)
[0104]
本例中,改变制造条件,制造了多个废气净化过滤器1。废气净化过滤器1的轴向y的长度l为120mm,直径φ为118mm,单元21的截面形状为四边形,隔壁22的厚度为0.2mm,单元间距为1.47mm,气孔率为64%。关于废气净化过滤器1,分别测定了表皮部12的厚度t、交叉位置225的曲率半径r、变形度δ、压损、等静压强度。此外,根据式i,计算了构造变量x。将结果表示在表1~表8、图14、图15中。
[0105]
【表1】
[0106]
(表1)表皮部的厚度的变化
[0107]
表皮部的厚度t变形度δ曲率半径rx压力损失mmmmmm

kpa0.30.10.601.803.300.40.10.602.403.300.50.10.603.003.300.60.10.603.603.300.70.10.604.203.300.80.10.604.803.300.90.10.605.403.30
10.10.606.003.301.50.10.609.003.30
[0108]
【表2】
[0109]
(表2)变形度的变化
[0110]
表皮部的厚度t变形度δ曲率半径rx压力损失mmmmmm

kpa11.50.600.403.3011.40.600.433.3011.30.600.463.3011.20.600.503.3011.10.600.553.30110.600.603.3010.90.600.673.3010.80.600.753.3010.70.600.863.3010.60.601.003.3010.50.601.203.3010.40.601.503.3010.30.602.003.3010.20.603.003.3010.10.606.003.30
[0111]
【表3】
[0112]
(表3)曲率半径r的变化
[0113]
表皮部的厚度t变形度δ曲率半径rx压力损失mmmmmm

kpa10.10.020.203.3010.10.101.003.3010.10.202.003.3410.10.303.003.3810.10.404.003.4210.10.505.003.4610.10.606.003.5010.10.707.004.0010.11.0010.006.60
[0114]
【表4】
[0115]
(表4)组合的变化
[0116]
表皮部的厚度t变形度δ曲率半径rx压力损失mmmmmm

kpa
0.60.250.401.003.300.80.20.492.003.340.90.160.533.003.380.90.130.574.003.4210.120.605.003.4610.10.606.003.5010.10.707.004.0010.11.0010.006.60
[0117]
【表5】
[0118]
(表5)表皮部的厚度的变化
[0119]
表皮部的厚接t变形度δ曲率半径rx等静压强度mmmmmm

mpa0.30.10.200.600.70.40.10.200.800.90.50.10.201.001.10.60.10.201.201.30.70.10.201.401.50.80.10.201.601.70.90.10.201.801.9
[0120]
【表6】
[0121]
(表6)变形度的变化
[0122]
表皮部的厚度t变形度δ曲率半径rx等静压强度mmmmmm

mpa11.50.200.130.711.20.200.170.810.80.200.25110.40.200.501.210.10.202.001.5
[0123]
【表7】
[0124]
(表7)曲率半径r的变化
[0125]
表皮部的厚度t变形度δ曲率半径rx等静压强度mmmmmm

mpa0.60.50.020.020.50.60.50.100.120.80.60.50.200.2410.60.50.300.361.20.60.50.600.721.50.60.51.001.201.8
[0126]
【表8】
[0127]
(表8)组合的变化
[0128]
表皮部的厚度t变形度δ曲率半径rx等静压强度mmmmmm

mpa0.31.50.020.0040.70.31.50.130.030.80.31.50.250.0510.610.200.121.10.60.50.200.241.20.60.50.300.361.40.60.10.201.202
[0129]
从表1~4、图14可知,即使分别单独地改变表皮部12的厚度t或变形度δ,压力损失的值也不变。通过着眼于式i所示的构造变量x,能够维持低压损且实现罐装强度提高。此外,如图14可知,在使曲率半径r变化的情况下,若曲率半径达到某个值以上则压力损失上升。从防止该压力损失的上升的观点来看,构造变量x为6以下。
[0130]
从表5~8、图15可知,即使分别单独地改变表皮部12的厚度t、变形度δ或曲率半径r也对等静压强度造成影响。若将这些各参数的值向带来等静压强度的效果的方向移动,则等静压强度提高。若将各参数的变化组合,则即使在构造变量x为较小值的范围也能够带来等静压强度的提高效果。从满足为了防止向汽油发动机的排气通路搭载时的破损而要求的强度(例如罐装强度)的观点来看,构造变量x为0.05以上。
[0131]
这样,通过将构造变量x调整为0.05~6,能够将废气净化过滤器1的压损保持得较低,并且充分提高过滤器强度。
[0132]
(实验例2)
[0133]
本例中,制造了隔壁22的交叉位置225的曲率半径r不同的多个废气净化过滤器1。关于废气净化过滤器1,轴向y的长度l为100mm,直径φ为118mm,隔壁厚度为0.2mm,单元21的截面形状为四边形,单元间距为1.47mm,气孔率为63%。对于废气净化过滤器1,测定了曲率半径r、压损。在图16中表示曲率半径r与压损的关系。
[0134]
关于某单元规格的废气净化过滤器1,从理论计算的单元21的水力直径d为1.27mm,曲率半径r的上限值为0.635mm。另一方面,根据图16所示的实测结果,若将曲率半径r从0设为0.4mm则压损上升7.1%,曲率半径r具有压损较大地上升的特异点。从使得成为该特异点以下的观点来看,将曲率半径r的上限设为0.3mm。即,若r≤0.3,则能够将压损保持得较低。但是,由于隔壁22的厚度、单元间距具有设计规格范围,所以通过曲率半径r与水力直径d的1/2(即水力直径的圆的半径)之比r/(0.5
×
d),设定能够将压损保持得较低的上限。即,r/(0.5
×
d)=0.3/0.635=0.47≈0.5。
[0135]
因而,如果满足式ii:r≤0.5
×
d/2,则能够进一步降低压损。
[0136]
(实验例3)
[0137]
本例中,制造了单元构造部2和表皮部12的材料强度、气孔率不同的多个废气净化过滤器1。关于废气净化过滤器1,轴向y的长度l为100mm,直径φ为118mm,隔壁厚度为0.2mm,单元21的截面形状为四边形,单元间距为1.47mm。对于废气净化过滤器1,测定了材
料强度、等静压强度、气孔率。在图17中表示材料强度与等静压强度的关系,在图18中表示气孔率与材料强度的关系。
[0138]
图17表示废气净化过滤器1的材料强度与等静压强度的关系。如图17所示可知,若使数据线性近似,则有在材料强度变大的情况下等静压强度也变大的倾向。此外,图18表示气孔率与材料强度的关系。如图18所示可知,若使数据线性近似,则材料强度相对于气孔率呈反比关系。即,在气孔率变高的情况下,材料强度有变小的倾向。
[0139]
罐装时的应力集中于废气净化过滤器1的最外周、即表皮部12。因而,从防止罐装时的破损的观点来看,表皮部12的材料强度较大是有利的。另一方面,由于在气孔率变高的情况下材料强度变低,所以单元构造部2的材料强度低意味着隔壁22中气体通过的孔多。废气容易在废气净化过滤器1的与轴向y正交的方向上的中心部侧流动,难以在表皮部12侧(即外周侧)流动,因此对于废气净化过滤器1中的废气流量而言,中心部侧比外周侧处于主导地位。因而,即使增大表皮部12的材料强度,对在过滤器内流动的废气流量带来的影响也较小,压损上升也被抑制。
[0140]
这样,从抑制压损并进一步提高过滤器强度、防止例如罐装时的破损的观点来看,表皮部12的材料强度s
b
优选大于单元构造部2的材料强度s
a
。即,优选的是s
a
<s
b
。从同样的观点来看,单元构造部2的气孔率p
a
优选大于表皮部12的气孔率p
b
。即,优选的是p
a
>p
b

[0141]
本发明不被上述实施方式、实验例限定,在不脱离其主旨的范围内能够应用于各种实施方式。例如,废气净化过滤器适合于从汽油发动机排出的废气的净化,但还能够用于从柴油发动机排出的废气的净化。废气净化过滤器适合于两端面的开口单元互不相同地被密封部堵塞的四边单元形状的过滤器,但只要互不相同地被堵塞则不限于四边单元形状。
[0142]
本发明依据实施方式进行了记载,但应理解的是本发明不限于该实施方式及构造。本发明还包括各种各样的变形例及等同范围内的变形。除此以外,各种各样的组合及形态、进而在它们中仅包含一要素、其以上或其以下的其他组合及形态也落入本发明的范畴及思想范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜