一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种新型氢气液化装置的制作方法

2021-08-17 13:54:00 来源:中国专利 TAG:氢气 液化 装置
一种新型氢气液化装置的制作方法

本实用新型涉及氢气液化技术领域,特别是涉及一种新型氢气液化装置。



背景技术:

氢气的存储主要有高压气态存储和低温液态存储两种形式,运输同等重量的氢气时高压气态存储的氢气体积和储罐重量均大于低温液态存储的氢气,其运输成本较高、效率较低,并且压缩氢气需要消耗较多的能量,进一步增加了运输成本,随着燃料电池车和氢能的普及,市场对氢气的需求将不断增加,提升氢气的运输效率就变得尤为重要,液氢运输比气氢运输的运输效率高6~8倍,因此液氢运输是未来氢气运输的主流方向。

氢气的液化温度较低,需先预冷到一定程度后再节流膨胀才能达到液化温度,目前氢气的液化方法主要有节流液化循环、带膨胀机液化循环和氦制冷液化循环,然而,节流液化循环效率较低,氦制冷液化循环设备复杂难以控制和维护。



技术实现要素:

本实用新型的目的在于提供一种新型氢气液化装置,用于提升氢气液化效率,其结构简单、易控制维护。

本实用新型的目的通过以下技术方案来实现:

一种新型氢气液化装置,包括氢气压缩机,氢气压缩机上连接有原料氢气管,氢气压缩机气体出口连接到增压氢气管,增压氢气管依次经过第一换热器、第二换热器、第三换热器、第四换热器、第五换热器,所述第五换热器增压氢气入口设有减压阀,第五换热器热流出口连接到循环氢气管,循环氢气管依次经过第四换热器、第三换热器、第一换热器,并连接到氢气压缩机入口,所述第三换热器增压氢气出口连接有增压氢气旁路管,增压氢气旁路管的另一端连接着第一膨胀机,第一膨胀机出口连接到第一气液分离器,第一气液分离器液体出口连接到正仲转化反应器,正仲转化反应器连接到存储罐,第一气液分离器气体出口通过循环氢气旁路管连接到第四换热器的循环氢气入口。

在上述的氢气液化装置中,原料氢气经过氢气压缩机压缩后从增压氢气管依次进入第一换热器、第二换热器、第三换热器进行逐步降温,并在第三换热器增压氢气出口分流,一部分氢气随增压氢气管进入第四换热器进一步降温,并在进入第五换热器之前经减压阀进行降压,另一部分通过增压氢气旁路管进入第一膨胀机进行膨胀降温,膨胀降温后的氢气从第一膨胀机的出口进入第一气液换热器进行气液分离,液态氢气从液体出口进入正仲转化反应器中进行进行正-仲转化,正-仲转化完成后的液氢进入存储罐,气态氢气从气体出口进入循环氢气旁路管,并汇流到第五换热器的循环氢气管中,低温氢气通过循环氢气管依次进入第四换热器、第三换热器、第一换热器与从增压氢气管进入的压缩氢气进行热交换逐步恢复到常温,并再次进入氢气压缩机。

进一步的,所述第一气液分离器的气体出口连接有第二膨胀机,第二膨胀机的出口连接到第二气液分离器,第二气液分离器的液体出口连接到正仲转化反应器、气体出口通过循环氢气旁路管连接到第四换热器的循环氢气入口,其作用在于:对经过第一膨胀机未液化的氢气进行二次膨胀降温液化,提升液化效率。

进一步的,所述第二换热器上设有第一液氮管,其作用在于:对进入第二换热器的压缩氢气进行进一步降温。

进一步的,所述第五换热器上设有第二液氮管,其作用在于:对进入第五换热器的氢气进行进一步降温。

结合以上技术方案,与现有技术相比,本实用新型所提供的氢气液化装置,其有益效果是:

本实用新型所提供的氢气液化装置,通过对压缩氢气进行三次预冷降温后进入第一膨胀机进行膨胀降温液化,并对未液化的氢气进行二次膨胀降温液化,提升了氢气的液化效率,通过循环氢气管中的低温氢气对压缩氢气管中的压缩氢气进行预冷,节省了能源,本实用新型所提供的氢气液化装置,其结构较为简单,易于控制和维护。

附图说明

图1为本实用新型所述的氢气液化装置的结构示意图。

其中,1-氢气压缩机,2-第一换热器,3-第二换热器,4-第三换热器,5-第一膨胀机,6-第一气液分离器,7-第四换热器,8-正仲转化反应器,9-第二膨胀机,10-第五换热器,11-第二气液分离器,12-存储罐,13-减压阀,14-增压氢气管,15-循环氢气管,16-增压氢气旁路管,17-循环氢气旁路管,18-原料氢气管,19-第一液氮管,20-第二液氮管。

具体实施方式

为详细说明本实用新型的技术特征和所实现的目的和效果,以下结合附图做进一步的描述:

如图1所示,一种氢气液化装置,包括氢气压缩机1,氢气压缩机1上连接有原料氢气管18,氢气压缩机1气体出口连接到增压氢气管14,增压氢气管14依次经过第一换热器2、第二换热器3、第三换热器4、第四换热器7、第五换热器10,所述第五换热器10增压氢气入口设有减压阀13,第五换热器10热流出口连接到循环氢气管15,循环氢气管15依次经过第四换热器7、第三换热器4、第一换热器2,并连接到氢气压缩机1入口,所述第三换热器4增压氢气出口连接有增压氢气旁路管16,增压氢气旁路管16的另一端连接着第一膨胀机5,第一膨胀机5出口连接到第一气液分离器6,第一气液分离器6液体出口连接到正仲转化反应器8,正仲转化反应器8连接到存储罐12,第一气液分离器6气体出口通过循环氢气旁路管17连接到第四换热器7的循环氢气入口。

优选的,所述第一气液分离器6的气体出口连接有第二膨胀机9,第二膨胀机9的出口连接到第二气液分离器11,第二气液分离器11的液体出口连接到正仲转化反应器8、气体出口通过循环氢气旁路管17连接到第四换热器7的循环氢气入口。

优选的,所述第二换热器3上设有第一液氮管19。

优选的,所述第五换热器10上设有第二液氮管20。

本实用新型所提供的氢气液化装置,其具体实施步骤如下:

原料氢气从原料氢气管18进入氢气压缩机1,经过氢气压缩机1压缩后从增压氢气管14进入第一换热器2,并在第一换热器2中与从循环氢气管15进入第一换热器2的低温氢气进行第一次换热降温。

第一次换热降温后的压缩氢气从增压氢气管14进入第二换热器3,与从第一液氮管19进入第二换热器3的液氮进行第二次换热降温。

第二次换热降温后的压缩氢气从增压氢气管14进入第三换热器4,与从循环氢气管15进入第三换热器4的低温氢气进行第三次换热降温。

第三次换热降温后的压缩氢气分成两路,一路从增压氢气管14进入第四换热器7,与从循环氢气管15进入第四换热器7的低温氢气进行第四次换热降温,另一路从增压氢气旁路管16进入第一膨胀机5,经膨胀后降温到液化所需温度,大部分压缩氢气液化,完成膨胀降温液化后的气液混合物进入第一气液分离器6,液态氢从第一气液分离器6的液体出口进入正仲转化反应器8进行正-仲转化后进入存储罐12,气态氢从第一气液分离器6的气体出口进入第二膨胀机9进行再次膨胀降温,绝大部分氢气液化,完成膨胀降温液化后的气液混合物进入第二气液分离器11,液态氢从第二气液分离器11的液体出口进入正仲转化反应器8进行正-仲转化后进入存储罐12,少量气态氢从第二气液分离器11的气体出口进入循环氢气旁路管17,并汇流到循环氢气管15中进入到第四换热器7中与从增压氢气管14进入第四换热器7的压缩氢气进行换热。

完成第四次换热降温的压缩氢气在进入第五换热器10之前经减压阀13进行减压,并与从第二液氮管20进入第五换热器10的液氮进行第五次换热降温。

第五次换热降温后的氢气与从第二气液分离器11气体出口流出的少量氢气汇合后从循环氢气管15依次进入第四换热器7、第三换热器4、第一换热器2进行换热,逐步升温恢复到常温,并再次进入氢气压缩机1。

由以上实施步骤可知,本实用新型所提供的氢气液化装置,通过对预冷后的压缩氢气进行膨胀降温液化制取液态氢,并完成正仲转化后存储,其效率较高,对第一次膨胀降温未液化的氢气进行第二次膨胀降温使绝大部分氢气都能液化,通过第四换热器7和第五换热器10对压缩氢气进行进一步换热降温,使从循环氢气管15进入第三换热器4和第一换热器2的氢气具有更低的温度,从而提升第一换热器2和第三换热器4的预冷效果,因此,压缩氢气可以以更低的温度进入第一膨胀机5,从而更容易在膨胀降温后达到液化温度,提高液化效率。

申请人声明,以上所述实施例仅表达了本实用新型的基本原理、主要特征和优点。本行业的技术人员应该了解,本实用新型不受上述实施例的限制,上述实施例和说明书中描述的只是本实用新型的原理,对于本行业的普通技术人员来说,在不脱离本实用新型构思和范围的前提下,还可以做出各种变化和改进,这些变化和改进都落入要求保护的本实用新型范围内。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜