一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于制冷系统的维护和诊断的制作方法

2021-08-17 13:42:00 来源:中国专利 TAG:申请 专利申请 引用 美国 制冷
用于制冷系统的维护和诊断的制作方法

本申请是申请日为2016年6月30日、国家申请号为201680038422.5(pct申请号为pct/us2016/040488)、名称为“用于制冷系统的维护和诊断”的中国专利申请的分案申请。

相关申请的交叉引用

本申请要求于2016年6月29日提交的美国实用专利申请第15/197,169号的优先权并且还要求于2015年6月30日提交的美国临时申请第62/186,813的权益。以上引用的申请的全部公开内容通过引用合并入本文中。

本公开内容涉及制冷系统,更特别地,涉及用于制冷系统的维护和诊断。



背景技术:

本文提供的背景描述是为了在总体上呈现本公开内容的上下文。在本背景技术部分中描述的程度上,当前指明的发明人的工作以及在提交时可能在其他方面不符合现有技术的描述的方面既不明确地被承认为针对公开内容的现有技术也不隐含地被承认为针对本公开内容的现有技术。

制冷系统是许多商业建筑和住宅的基本组成部分。例如,食品零售商可以依靠制冷系统来确保食物产品的质量和安全。许多其他商业可以具有必须冷藏或者保持在较低温度下的产品或材料。供热通风与空气调节(hvac)系统使得人们能够在他们购物、工作或生活的地方保持舒适。

然而,制冷系统操作可能表示商业运行成本的重要部分。因此,制冷系统用户密切监测制冷系统的性能和能量消耗以检测和诊断任何性能问题可能是有益的,从而可以执行维护以将效率最大化并且降低运行成本。总而言之,用户可能缺乏准确地分析系统性能以及检测和诊断任何性能问题的专业知识。



技术实现要素:

该部分提供了本公开内容的总体概述,并且不是其全部范围或其全部特征的全面公开内容。

提供了一种系统,所述系统包括:系统控制器,所述系统控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架和冷凝单元,压缩机机架具有至少一个压缩机,冷凝单元具有至少一个冷凝器风扇,系统控制器监测制冷或hvac系统的操作。机架控制器与系统控制器通信,机架控制器监测和控制压缩机机架的操作并且确定压缩机机架功率消耗数据。冷凝单元控制器与系统控制器通信,冷凝单元控制器监测和控制冷凝单元的操作并且确定冷凝单元功率消耗数据。系统控制器接收压缩机机架功率消耗数据和冷凝单元功率消耗数据,基于压缩机机架功率消耗数据和冷凝单元功率消耗数据来确定制冷或hvac系统的总功率消耗,确定针对制冷系统的预测功率消耗和基准功率消耗中的至少一个,将总功率消耗与预测功率消耗和基准功率消耗中的至少一个进行比较,并且基于所述比较来生成健康指标分数。

在其它特征中,系统控制器可以接收针对制冷或hvac系统的性能系数,并且基于针对制冷或hvac系统的性能系数和操作数据来确定预测功率消耗。

在其它特征中,系统控制器可以监测制冷或hvac系统在初始化时间段上的功率消耗数据,并且基于该初始化时间段的所监测的功率消耗数据来确定基准功率消耗。

提供了一种方法,所述方法包括:利用系统控制器来监测制冷或hvac系统的操作,所述制冷或hvac系统具有压缩机机架和冷凝单元,压缩机机架具有至少一个压缩机,冷凝单元具有至少一个冷凝器风扇。方法还包括:利用与系统控制器通信的机架控制器来监测和控制压缩机的操作。方法还包括:利用机架控制器来确定针对压缩机机架的压缩机机架功率消耗数据。方法还包括:利用与系统控制器通信的冷凝单元控制器来监测和控制冷凝单元的操作。方法还包括:利用冷凝单元控制器来确定针对冷凝单元的功率消耗数据。方法还包括:利用系统控制器来接收压缩机机架功率消耗数据和冷凝单元功率消耗数据。方法还包括:利用系统控制器、基于压缩机机架功率消耗数据和冷凝单元功率消耗数据来确定制冷或hvac系统的总功率消耗。方法还包括:利用系统控制器来确定针对制冷系统的预测功率消耗和基准功率消耗中的至少一个。方法还包括:利用系统控制器将总功率消耗与预测功率消耗和基准功率消耗中的至少一个进行比较。方法还包括:利用系统控制器基于所述比较来生成健康指标分数。

在其他特征中,该方法还包括:利用系统控制器来接收针对制冷或hvac系统的性能系数,以及利用系统控制器基于针对制冷或hvac系统的性能系数和操作数据来确定预测功率消耗。

在其他特征中,方法还包括:利用系统控制器来监测制冷或hvac系统在初始化时间段上的功率消耗数据,以及利用系统控制器基于所述初始化时间段的所监测的功率消耗数据来确定基准功率消耗。

提供了另一系统,所述系统包括系统控制器,系统控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,所述压缩机机架具有至少一个压缩机,所述系统控制器监测和控制制冷或hvac系统的操作。机架控制器与系统控制器通信,机架控制器监测和控制压缩机机架的操作。系统控制器确定与回液情况对应的回液排出温度,接收与压缩机机架相关联的实际排出温度,将实际排出温度与回液排出温度进行比较,并且基于所述比较向机架控制器生成通知。

在其他特征中,当回液排出温度与实际排出温度之间的差小于预定阈值时,系统控制器生成通知。

在其他特征中,机架控制器在接收到通知之后实现冲击启动操作。

在其他特征中,机架控制器在接收到通知之后启用曲柄箱加热器。

提供了另一方法,所述方法包括:利用系统控制器来监测和控制制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,压缩机机架具有至少一个压缩机。方法还包括:利用机架控制器来监测和控制压缩机机架的操作。方法还包括:利用系统控制器来确定与回液情况对应的回液排出温度。方法还包括:利用系统控制器来接收与压缩机机架相关联的实际排出温度。方法还包括:利用系统控制器将实际排出温度与回液排出温度进行比较。方法还包括:利用系统控制器基于所述比较向机架控制器生成通知。

在其他特征中,方法还可以包括:当回液排出温度与实际排出温度之间的差小于预定阈值时,利用系统控制器来生成通知。

在其他特征中,方法还可以包括:在接收到通知之后,利用机架控制器来实现冲击启动操作。

在其他特征中,方法还可以包括:在接收到通知之后,利用机架控制器来启用曲柄箱加热器。

提供了另一系统,所述系统包括系统控制器,所述系统控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇,系统控制器监测和控制制冷或hvac系统的操作。机架控制器与系统控制器通信,机架控制器监测和控制压缩机机架的操作。冷凝单元控制器与系统控制器通信,冷凝单元控制器监测和控制冷凝单元的操作。系统控制器接收未来时间段的预报天气数据,基于预报天气数据来确定未来时间段所需的预测制冷系统容量,将预测制冷系统容量与预定容量阈值进行比较,并且当预测制冷系统容量大于预定容量阈值时生成警报。

在其他特征中,系统控制器在未来时间段之前修改制冷系统的操作以减少制冷系统在未来时间段期间的容量。

提供了另一方法,所述方法包括:利用系统控制器来监测和控制制冷或hvac系统的操作,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇。方法还包括:利用与系统控制器通信的机架控制器来监测和控制压缩机的操作。方法还包括:利用与系统控制器通信的冷凝单元控制器来监测和控制冷凝单元的操作。方法还包括:利用系统控制器来接收未来时间段的预报天气数据。方法还包括利用系统控制器基于预报天气数据来确定未来时间段所需的预测制冷系统容量。方法还包括:利用系统控制器将预测制冷系统容量与预定容量阈值进行比较。方法还包括:当预测制冷系统容量大于预定容量阈值时,利用系统控制器来生成警报。

在其他特征中,方法还可以包括:利用系统控制器在未来时间段之前修改制冷系统的操作以降低制冷系统在未来时间段期间的容量。

提供了另一系统,所述系统包括系统控制器,所述系统控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇。机架控制器用于压缩机机架,机架控制器与系统控制器通信。冷凝单元控制器用于冷凝单元,冷凝单元控制器与系统控制器通信。系统控制器接收识别压缩机机架和冷凝单元的部件的部件识别信息,基于部件识别信息来检索包括部件规格信息、部件容量信息和部件性能信息中的至少一个的部件信息,以及基于部件信息来执行设置操作。

在其他特征中,控制器将包括部件识别信息和部件信息中的一个或更多个的第一数据传输至远程设备,基于发送至远程设备的第一数据从远程设备接收第二数据,以用于控制压缩机机架和冷凝单元的部件中的一个或更多个,并且基于从远程设备接收的第二数据来控制压缩机机架和冷凝单元的部件中的一个或更多个。

在其他特征中,控制器将部件识别信息和部件信息中的一个或更多个传输至远程设备,以用于从远程设备诊断压缩机机架和冷凝单元的部件中的一个或更多个,并且为压缩机机架和冷凝单元的部件中的一个或更多个安排服务。

提供了另一方法,所述方法包括:利用系统控制器来接收识别制冷或hvac系统的压缩机机架和冷凝单元的部件的部件识别信息,所述压缩机机架具有至少一个压缩机和相关联的机架控制器,所述冷凝单元具有至少一个冷凝器风扇和相关联的冷凝单元控制器。方法还包括:利用系统控制器基于部件识别信息来检索包括部件规格信息、部件容量信息和部件性能信息中的至少一个的部件信息。方法还包括:利用系统控制器基于部件信息来执行针对制冷或hvac系统的设置操作。

在其他特征中,方法还包括:利用控制器将包括部件识别信息和部件信息中的一个或更多个的第一数据传输至远程设备。方法还包括:利用控制器基于发送至远程设备的第一数据从远程设备接收第二数据,以用于控制压缩机机架和冷凝单元的部件中的一个或更多个。方法还包括:利用控制器基于从远程设备接收的第二数据来控制压缩机机架和冷凝单元的部件中的一个或更多个。

在其他特征中,方法还包括:利用控制器将部件识别信息和部件信息中的一个或更多个传输至远程设备,以用于从远程设备诊断压缩机机架和冷凝单元的部件中的一个或更多个,并且为压缩机机架和冷凝单元的部件中的一个或更多个安排服务。

提供了另一系统,所述系统包括系统控制器,所述系统控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇。该系统还包括机架控制器,所述机架控制器用于压缩机机架,机架控制器与系统控制器通信。该系统还包括冷凝单元控制器,所述冷凝单元控制器用于冷凝单元,冷凝单元控制器与系统控制器通信。系统控制器接收识别压缩机机架和冷凝单元的部件的部件识别信息,基于该部件识别信息来检索包括部件规格信息、部件容量信息和部件性能信息中的至少一个的部件信息,以及基于该部件信息来执行设置操作。

提供了另一方法,所述方法包括:利用系统控制器来接收识别制冷或hvac系统的压缩机机架和冷凝单元的部件的部件识别信息,压缩机机架具有至少一个压缩机和相关联的机架控制器,冷凝单元具有至少一个冷凝器风扇和相关联的冷凝单元控制器。方法还包括:利用系统控制器基于该部件识别信息来检索包括部件规格信息、部件容量信息和部件性能信息中的至少一个的部件信息。该方法还包括:利用系统控制器基于所述部件信息来执行针对制冷或hvac系统的设置操作。

提供了另一系统,所述系统包括控制器,所述控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇,所述系统控制器监测制冷或hvac系统的操作。控制器确定与压缩机机架的功率消耗对应的压缩机机架功率消耗数据和与冷凝单元的功率消耗对应的冷凝单元功率消耗数据,基于压缩机机架功率消耗数据和冷凝单元功率消耗数据来确定制冷或hvac系统的总功率消耗,确定针对制冷系统的预测功率消耗和基准功率消耗中的至少一个,将总功率消耗与预测功率消耗和基准功率消耗中的至少一个进行比较,以及基于所述比较来生成健康指标分数。

在其他特征中,控制器接收针对制冷或hvac系统的性能系数,并且基于针对制冷或hvac系统的性能系数和操作数据来确定预测功率消耗。

在其他特征中,控制器监测制冷或hvac系统在初始化时间段上的功率消耗数据,并且基于所述初始化时间段的所监测的功率消耗数据来确定基准功率消耗。

提供了另一方法,所述方法包括:利用控制器来监测制冷或hvac系统的操作,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇。方法还包括:利用控制器来监测和控制压缩机机架的操作。方法还包括:利用控制器来确定针对压缩机机架的压缩机机架功率消耗数据。方法还包括:利用控制器来监测和控制冷凝单元的操作。方法还包括:利用控制器来确定针对冷凝单元的功率消耗数据。方法还包括:利用控制器来接收压缩机机架功率消耗数据和冷凝单元功率消耗数据。方法还包括:利用控制器基于压缩机机架功率消耗数据和冷凝单元功率消耗数据来确定制冷或hvac系统的总功率消耗。方法还包括:利用控制器来确定针对制冷系统的预测功率消耗和基准功率消耗中的至少一个。方法还包括:利用控制器将总功率消耗与预测功率消耗和基准功率消耗中的至少一个进行比较。方法还包括:利用控制器基于所述比较来生成健康指标分数。

在其他特征中,方法还可以包括:利用控制器来接收针对制冷或hvac系统的性能系数,并且利用控制器基于针对制冷或hvac系统的性能系数和操作数据来确定预测功率消耗。

在其他特征中,方法还可以包括:利用控制器来监测制冷或hvac系统在初始化时间段上的功率消耗数据,并且利用控制器基于初始化时间段的所监测的功率消耗数据来确定基准功率消耗。

提供了另一系统,所述系统包括系统控制器,所述系统控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇,所述系统控制器监测制冷或hvac系统的操作。系统还包括机架控制器,所述机架控制器与系统控制器通信,机架控制器监测和控制压缩机机架的操作并且确定压缩机机架功率消耗数据。系统还包括冷凝单元控制器,所述冷凝单元控制器与系统控制器通信,冷凝单元控制器监测和控制冷凝单元的操作并且确定冷凝单元功率消耗数据。系统控制器监测hvac系统的操作数据,所述操作数据包括hvac系统的温度和压力中的至少一个,并且系统控制器基于所监测的操作数据来生成健康指标分数。

在其他特征中,系统控制器监测至少一个制冷箱温度,确定针对至少一个制冷箱温度的随着时间的趋势,以及基于所述趋势来生成健康指标分数。

在其他特征中,系统控制器监测在除霜操作之后的至少一个制冷箱温度,以及基于在除霜操作之后的至少一个制冷箱温度来生成健康指标分数。

在其他特征中,系统控制器监测至少一个制冷箱过热温度,确定针对至少一个制冷箱过热温度的随着时间的趋势,以及基于所述趋势来生成健康指标分数。

在其他特征中,系统控制器监测吸入过热温度,确定针对吸入过热温度的随着时间的趋势,以及基于所述趋势来生成健康指标分数。

在其他特征中,系统控制器监测制冷单元的环境温度和容量,确定环境温度与容量之间的相关性,确定针对相关性的随着时间的趋势,以及基于所述趋势来生成健康指标分数。

提供了另一方法,所述方法包括:利用控制器来监测制冷或hvac系统的操作,所述制冷或hvac系统具有压缩机机架和冷凝单元,所述压缩机机架具有至少一个压缩机,所述冷凝单元具有至少一个冷凝器风扇。方法还包括:利用控制器来监测和控制压缩机机架的操作。方法还包括:利用控制器来确定针对压缩机机架的压缩机机架功率消耗数据。方法还包括:利用控制器来监测和控制冷凝单元的操作。方法还包括利用系统控制器来监测hvac系统的操作数据,所述操作数据包括hvac系统的温度和压力中的至少一个。方法还包括利用系统控制器基于所监测的操作数据来生成健康指标分数。

在其他特征中,系统控制器监测至少一个制冷箱温度。方法还可以包括:利用系统控制器来确定针对至少一个制冷箱温度的随着时间的趋势。系统控制器基于所述趋势来生成健康指标分数。

在其他特征中,系统控制器监测在除霜操作之后的至少一个制冷箱温度,并且基于在除霜操作之后的至少一个制冷箱温度来生成健康指标分数。

在其他特征中,系统控制器监测至少一个制冷箱过热温度。方法还可以包括:利用系统控制器来确定针对至少一个制冷箱过热温度的随着时间的趋势。系统控制器基于所述趋势来生成健康指标分数。

在其他特征中,系统控制器监测吸入过热温度。方法还包括:利用系统控制器来确定针对吸入过热温度的随着时间的趋势。系统控制器基于所述趋势来生成健康指标分数。

在其他特征中,系统控制器监测冷凝单元的环境温度和容量。方法还包括:利用系统控制器来确定环境温度与容量之间的相关性,以及利用系统控制器来确定针对相关性的随着时间的趋势。系统控制器基于所述趋势生成健康指标分数。

提供另一系统,所述系统包括控制器,所述控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,所述压缩机机架具有至少一个压缩机。控制器包括监测模块和跟踪模块。监测模块被配置成基于从与压缩机相关联的功率计接收的数据、针对压缩机的供给电压或者压缩机的电流强度来监测压缩机机架中的压缩机的功率消耗。跟踪模块被配置成基于压缩机的功率消耗来诊断压缩机的健康。

在其他特性中,监测模块还包括电压确定模块、功率因数模块和功率消耗模块。电压确定模块被配置成基于供给至压缩机机架的功率和压缩机机架中的压缩机的数量来确定针对压缩机的供给电压。功率因数模块被配置成基于压缩机的供给电压和额定电压来调整针对压缩机的功率因数。功率消耗模块被配置成基于所调整的功率因数、针对压缩机的供给电压和压缩机的电流强度来确定压缩机的功率消耗。

在其他特征中,监测模块还包括功率消耗模块和误差校正模块。功率消耗模块被配置成基于压缩机的电流强度、压缩机的额定电压和压缩机的额定功率因数来估计压缩机机架中的每个压缩机的功率消耗。误差校正模块被配置成确定误差校正因数,所述误差校正因数被应用于每个压缩机的所估计的功率消耗以使得制冷或hvac系统的每个压缩机和其他负载的功率消耗值的总和等于测量的压缩机机架的总计功率消耗。

提供了另一系统,所述系统包括控制器,所述控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,所述压缩机机架具有至少一个压缩机。控制器与被配置成诊断压缩机机架中的压缩机的健康的跟踪模块通信。响应于针对压缩机的额定性能数据不可用,跟踪模块被配置成生成针对压缩机的基线数据并且通过将压缩机的操作数据与针对压缩机的基线数据进行比较来诊断压缩机的健康。响应于针对压缩机的额定性能数据可用,跟踪模块被配置成通过将压缩机的操作数据与针对压缩机的额定性能数据进行比较来诊断压缩机的健康。

在其他特征中,控制器包括性能跟踪模块。

在其他特征中,远程控制器包括性能跟踪模块。

在其他特征中,跟踪模块包括基线数据模块和监测模块。基线数据模块被配置成基于紧接着安装压缩机之后从压缩机接收的数据生成针对压缩机的基线数据。监测模块被配置成通过将基线数据与在生成基线数据之后获得的压缩机的操作数据进行比较来诊断压缩机的健康。

在其他特征中,性能跟踪模块包括基于回归的监测模块,该基于回归的监测模块被配置成对额定性能数据和在操作期间从压缩机获得的数据执行回归分析并且基于回归分析来诊断压缩机的健康。

在其他特征中,基于回归的监测模块包括基准生成模块和分析模块。基准生成模块被配置成生成基准多项式和基准包络。分析模块被配置成使用基准多项式和基准包络来分析在操作期间从压缩机获得的数据,并且基于所述分析来诊断压缩机的健康。

在其他特征中,系统还包括优化模块,所述优化模块被配置成仅选择影响选择的额定性能数据之一的在统计学上重要的变量并且去除在统计学上不重要的变量,以及使用所选择的变量来优化基准多项式。

在其他特征中,系统还包括异常值检测模块,所述异常值检测模块被配置成检测在操作期间从压缩机获得的数据中的异常值并且去掉具有最大偏差的异常值。

在其他特征中,系统还包括比较模块,所述比较模块被配置成将基准多项式和基准包络与历史基准多项式和包络数据进行比较,并且基于所述比较来诊断压缩机的健康。

提供了另一系统,所述系统包括控制器,所述控制器用于制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,所述压缩机机架具有至少一个压缩机。控制器包括排出管线温度确定模块和压缩机控制模块。排出管线温度确定模块被配置成实时监测在压缩机的操作期间压缩机机架中的压缩机的多个操作参数,并且基于多个操作参数来确定最小排出管线温度。压缩机控制模块被配置成响应于压缩机的排出管线温度小于或者等于最小排出管线温度达预定时间段而关闭压缩机,并且使用冲击启动方法来重启压缩机。

在其他特征中,最小排出管线温度表示与进入压缩机的液态制冷剂对应的排出管线温度。

在其他特征中,压缩机控制模块被配置成进一步响应于排出管线温度的变化率小于或等于预定阈值而关闭压缩机。

在其他特征中,压缩机的多个操作参数包括压缩机的排出压力、吸入压力和回气温度。

在其他特征中,压缩机的多个操作参数包括压缩机的性能数据和在压缩机中使用的制冷剂的特性。

在其他特征中,压缩机的多个操作参数包括是否在压缩机中应用液体注入。

在其他特征中,排出管线温度确定模块被配置成基于多个操作参数来实时调整最小排出管线温度。

在其他特征中,控制器被定位成远离制冷或hvac系统,从压缩机接收操作数据,以及向压缩机提供最小排出管线温度以及关闭指令和重启指令。

提供了另一方法,所述方法包括:利用控制器来控制制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,压缩机机架具有至少一个压缩机。方法还包括:利用监测模块基于从与压缩机相关联的功率计接收的数据、针对压缩机的供给电压或者压缩机的电流强度来监测压缩机机架中的压缩机的功率消耗。方法还包括:利用跟踪模块基于压缩机的功率消耗来诊断压缩机的健康。

在其他特征中,监测压缩机机架中的压缩机的功率消耗还包括:利用电压确定模块基于供给至压缩机机架的功率和压缩机机架中的压缩机的数量来确定针对压缩机的供给电压;利用功率因数模块基于压缩机的供给电压和额定电压来调整针对压缩机的功率因数;利用功率消耗模块基于所调整的功率因数、针对压缩机的供给电压和压缩机的电流强度来确定压缩机的功率消耗。

在其他特征中,方法还包括:利用功率消耗模块基于压缩机的电流强度、压缩机的额定电压和压缩机的额定功率因数来估计压缩机机架中的每个压缩机的功率消耗。方法还包括:利用误差校正模块来确定误差校正因数,所述误差校正因数被应用于每个压缩机的所估计的功率消耗以使得制冷或hvac系统中的每个压缩机和其他负载的功率消耗值的总和等于测量的压缩机机架的总计功率消耗。

提供了另一方法,所述方法包括:利用控制器来控制制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,压缩机机架具有至少一个压缩机。方法还包括:与被配置成诊断压缩机机架中的压缩机的健康的性能跟踪模块通信。方法还包括:响应于针对压缩机的额定性能数据不可用,利用性能跟踪模块来生成针对压缩机的基线数据,并且通过将压缩机的操作数据与针对压缩机的基线数据进行比较来诊断压缩机的健康。方法还包括:响应于针对压缩机的额定性能数据可用,利用性能跟踪模块通过将压缩机的操作数据与针对压缩机的额定性能数据进行比较来诊断压缩机的健康。

在其他特征中,方法还包括:利用基线数据模块基于紧接着安装压缩机之后从压缩机接收的数据来生成针对压缩机的基线数据。方法还包括:利用监测模块通过将基线数据与在生成基线数据之后获得的压缩机的操作数据进行比较来诊断压缩机的健康。

在其他特征中,方法还包括:利用基于回归的监测模块对额定性能数据和在操作期间从压缩机获得的数据来执行回归分析。方法还包括:利用基于回归的监测模块基于回归分析来诊断压缩机的健康。

在其他特征中,方法还包括:利用基准生成模块来生成基准多项式和基准包络;以及利用分析模块使用基准多项式和基准包络来分析在操作期间从压缩机获得的数据,并且基于所述分析诊断压缩机的健康。

在其他特征中,方法还包括:利用优化模块来仅选择影响选择的额定性能数据之一的在统计学上重要的变量,并且去除在统计学上不重要的变量;以及利用优化模块使用选择的变量来优化基准多项式。

在其他特征中,方法还包括:利用异常值检测模块来检测在操作期间从压缩机获得的数据中的异常值,并且去掉具有最大偏差的异常值。

在其他特征中,方法还包括:利用比较模块将基准多项式和基准包络与历史基准多项式和包络数据进行比较,并且基于该比较诊断压缩机的健康。

提供了另一方法,所述方法包括:利用控制器来控制制冷或hvac系统,所述制冷或hvac系统具有压缩机机架,所述压缩机机架具有至少一个压缩机。方法还包括:利用排出管线温度确定模块来实时监测在压缩机操作期间压缩机机架中的压缩机的多个操作参数,基于多个操作参数来确定最小排出管线温度。方法还包括:响应于压缩机的排出管线温度小于或者等于最小排出管线温度达预定时间段,利用压缩机控制模块来关闭压缩机,并且使用冲击启动方法来重启压缩机。

在其他特征中,最小排出管线温度表示与进入压缩机的液态制冷剂对应的排出管线温度。

在其他特征中,方法还包括:进一步响应于排出管线温度的变化率小于或者等于预定阈值,利用压缩机控制模块来关闭压缩机。

在其他特征中,压缩机的多个操作参数包括压缩机的排出压力、吸入压力和回气温度。

在其他特征中,压缩机的多个操作参数包括压缩机的性能数据和在压缩机中使用的制冷剂的特性。

在其他特征中,压缩机的多个操作参数包括是否在压缩机中应用液体注入。

在其他特征中,方法还包括:利用排出管线温度确定模块基于多个操作参数来实时调整最小排出管线温度。

在其他特征中,控制器被定位成远离制冷或hvac系统,方法还包括:利用控制器从压缩机接收操作数据,以及利用控制器向压缩机提供最小排出管线温度以及关闭指令和重启指令。

其他的适用性领域将通过本文提供的描述而变得明显。在该概述中的描述和特定示例意在仅是出于说明的目的并且不意在限制本公开内容的范围。

附图说明

本文描述的附图仅出于说明所选择的实施方式而不是所有可能的实现的目的,并且不意在限制本公开内容的范围。

图1是示例制冷系统的框图;

图2是计算健康指标分数的示例操作的流程图;

图3是计算预测功率消耗的示例操作的流程图;

图4是计算基准功率消耗的示例操作的流程图;

图5是示出与吸入过热和外界温度相关的排出过热的曲线图;

图6是检测和解决压缩机回液情况的示例操作的流程图;

图7是基于预报数据预测所需的容量的示例操作的流程图;

图8是基于检索的部件信息执行设置操作的示例操作的流程图;

图9a和图9b是用于监测图1的制冷系统的压缩机的功率消耗的示例系统的框图;

图10是监测图1的制冷系统的压缩机的功率消耗的示例操作的流程图;

图11是用于跟踪图1的制冷系统的压缩机的性能的示例系统的框图;

图12是在跟踪图1的制冷系统的压缩机的性能的示例操作的流程图;

图13是用于跟踪图1的制冷系统的压缩机的性能的示例性基于回归的系统的框图;

图14是图1的制冷系统的压缩机的基于回归的性能跟踪的示例操作的流程图;

图15a至图15c是针对图1的制冷系统的压缩机的回液保护系统的示例的框图;

图16a至图16e是提供针对图1的制冷系统的压缩机的回液保护的示例操作的流程图;

图17a是示例压缩机识别系统的框图;以及

图17b是压缩机识别的示例操作的流程图。

在附图中,附图标记可以重复使用以识别相似和/或相同的元件。

具体实施方式

现在将参照附图更充分地描述示例实施方式。

参照图1,示出了示例性制冷系统10,所述示例性制冷系统10包括利用公共吸入歧管16和排出集管18一起管接在压缩机机架14中的多个压缩机12。尽管图1示出了示例制冷系统10,但是本公开内容的教导也适用于例如hvac系统。

每个压缩机12具有监测和控制压缩机12的操作的相关联的压缩机控制器20。例如,压缩机控制器20可以利用功率传感器、电压传感器和/或电流传感器监测输送至压缩机12的电功率、电压和/或电流。此外,压缩机控制器20还可以利用吸入或排出温度或压力传感器来监测压缩机12的吸入或排出温度或压力。例如,每个压缩机12的排出出口可以包括相应的排出温度传感器22。除了排出温度传感器22以外还可以使用排出压力传感器或者可以使用排出压力传感器来代替排出温度传感器22。吸入歧管16的输入部分可以包括吸入压力传感器24和吸入温度传感器26二者。此外,排出集管18的排出出口可以包括相关联的排出压力传感器28。除了排出压力传感器28以外还可以使用排出温度传感器或者可以使用排出温度传感器来代替排出压力传感器28。如后面进一步详细描述的,各种传感器可以实现用于监测性能和诊断压缩机机架14中的压缩机12。

机架控制器30可以经由与压缩机控制器20中的每一个的通信来监测和控制压缩机机架14的操作。例如,机架控制器30可以通过与压缩机控制器20的通信来指示各个压缩机12打开或关闭。此外,机架控制器30可以通过与压缩机控制器20的通信来指示可变容量压缩机增加或减少容量。此外,机架控制器30可以从压缩机控制器20接收指示输送至压缩机12中的每一个的电功率、电压和/或电流的数据。此外,机架控制器30还可以从压缩机控制器20接收指示压缩机12中的每一个的吸入或排出温度或压力的数据。此外或者可替选地,机架控制器30可以直接与吸入或排出温度或压力传感器通信以接收这些数据。此外,机架控制器30可以与包括例如排出压力传感器28、吸入压力传感器24和吸入温度传感器26的其他吸入或排出温度和压力传感器通信。

电功率可以从电力供给32被输送至压缩机机架14,以用于分配至各个压缩机12。机架功率传感器34可以感测输送至压缩机机架14的功率值。除了功率传感器34以外还可以使用电流传感器或电压传感器或者可以使用电流传感器或电压传感器来代替功率传感器34。机架控制器30可以与机架功率传感器34通信,并且监测输送至压缩机机架14的功率。可替选地,机架功率传感器34可以被省略,并且可以基于如由压缩机控制器20确定的输送至各个压缩机12中的每一个的功率的功率数据来确定输送至压缩机机架14的总功率。

压缩机机架14对输送至具有冷凝器38的冷凝单元36的制冷剂蒸气进行压缩,在冷凝器中制冷剂蒸气在高压下被液化。冷凝器风扇40能够提高从冷凝器38的热传递。冷凝单元36可以包括相关联的环境温度传感器42、冷凝器温度传感器44和/或冷凝器排出压力传感器46。冷凝器风扇40中的每一个可以包括感测输送至冷凝器风扇40中的每一个的功率值的冷凝器风扇功率传感器47。除了冷凝器风扇功率传感器47以外还可以使用电流传感器或者电压传感器或者可以使用电流传感器或者电压传感器来代替冷凝器风扇功率传感器47。

冷凝单元控制器48可以监测和控制冷凝器风扇40的操作。例如,冷凝单元控制器48可以打开或关闭各个冷凝器风扇40和/或增加或减少任何变速冷凝器风扇40的容量。此外,冷凝单元控制器48可以通过与冷凝器风扇功率传感器47的通信来接收指示输送至冷凝器风扇40中的每一个的电功率的数据。此外,冷凝单元控制器48可以与其他冷凝单元传感器通信,其他冷凝单元传感器包括例如环境温度传感器42、冷凝器温度传感器44和冷凝器排出压力传感器46。

电功率可以从电力供给32被输送至冷凝单元36,以用于分配至各个冷凝风扇40。冷凝单元功率传感器50可以感测输送至冷凝单元36的功率值。除了冷凝单元功率传感器50以外还可以使用电流传感器或电压传感器或者可以使用电流传感器或电压传感器来代替冷凝单元功率传感器50。冷凝单元控制器48可以与冷凝单元功率传感器50通信,并且监测输送至冷凝单元36的功率值。

来自冷凝单元36的高压液体制冷剂可以被输送至制冷箱52。例如,制冷箱52可以包括制冷箱52的组54。例如,制冷箱52可以是在食品杂货店的冷藏或冷冻的食品箱。每个制冷箱52可以包括用于控制制冷剂的过热的蒸发器56和膨胀阀58以及蒸发器温度传感器60。制冷剂传递通过膨胀阀58,在膨胀阀58处压降导致高压液体制冷剂实现液体和蒸气的较低压组合。随着来自制冷箱52的热空气移动通过蒸发器56,低压液体变成气体。然后低压气体被输送回压缩机机架14,在压缩机机架14处再次启动制冷循环。

箱控制器62可以监测和控制蒸发器56和/或膨胀阀58的操作。例如,箱控制器62可以打开或关闭蒸发器56的蒸发器风扇和/或增加或减少任何变速蒸发器风扇的容量。箱控制器62可以与蒸发器温度传感器60通信并且接收蒸发器温度数据。

电功率可以从电力供给32被输送至制冷箱52的组54,以用于分配至各个冷凝器风扇40。制冷箱功率传感器60可以感测输送至制冷箱52的组54的功率值。除了制冷箱功率传感器60以外还可以使用电流传感器或电压传感器或者可以使用电流传感器或电压传感器来代替制冷箱功率传感器60。箱控制器62可以与制冷箱功率传感器60通信,并且监测输送至制冷箱52的组54的功率值。

如上所述,尽管图1示出了示例制冷系统10,但是本公开内容的教导也适用于例如包括例如空调和热泵系统的hvac系统。在hvac系统的示例中,蒸发器56可以被安装在空气处理器单元中而不是安装在制冷箱52中。

系统控制器70通过与机架控制器30、冷凝单元控制器48和箱控制器62中的每一个通信来监测和控制整个制冷系统10的操作。可替选地,机架控制器30、冷凝单元控制器48和/或箱控制器62可以被省略,并且系统控制器70可以直接控制压缩机机架14、冷凝单元36和/或制冷箱52的组54。系统控制器70可以通过与机架控制器30、冷凝单元控制器48和/或箱控制器62通信来接收如由各种传感器感测的制冷系统10的操作数据。例如,系统控制器可以接收关于系统的各种温度和压力的数据以及关于输送至各种系统部件的电功率、电流和/或电压的数据。可替选地,各种传感器中的一些传感器或全部传感器可以被配置成与系统控制器70直接通信。例如,环境温度传感器42可以与系统控制器70直接通信并且提供环境温度数据。

系统控制器70可以例如通过增加或减少各种系统部件的容量来协调制冷系统的操作。例如,系统控制器70可以通过启用或停用压缩机12或者通过增加或减少可变容量压缩机12的容量来指示机架控制器30增加或减少容量。系统控制器70可以通过启用或停用冷凝器风扇40或者通过增加或减少变速冷凝器风扇40的速度来指示冷凝单元控制器48增加或减少冷凝单元容量。系统控制器70可以通过启用或停用蒸发器56的蒸发器风扇或者通过增加或减少变速蒸发器风扇的速度来指示箱控制器62增加或减少蒸发器容量。系统控制器70可以包括计算机可读介质例如易失性存储器或非易失性存储器,以存储由处理器可执行以实现在本文描述的功能以监测和控制制冷系统10的操作的指令。

系统控制器70可以例如是可以从佐治亚州肯尼索的艾默生环境优化技术零售解决方案公司获得的e2rx制冷控制器。如果系统是hvac系统而不是制冷系统,则系统控制器70可以例如是也从佐治亚州肯尼索的艾默生环境优化技术零售解决方案公司获得的e2bxhvac和照明控制器。此外,还可以使用可以被编程有在本公开内容中描述的功能的任何其他类型的可编程控制器。

系统控制器70可以与通信设备72通信。通信设备72可以例如是台式计算机、笔记本电脑、平板计算机、智能电话或具有通信/联网能力的其他计算设备。通信设备72可以在制冷系统10的设施位置处经由局域网与系统控制器70通信。通信设备72还可以经由广域网例如互联网与系统控制器70通信。

通信设备72可以与系统控制器70通信以接收和查看制冷系统10的操作数据,所述数据包括例如针对制冷系统10的能量或性能数据。

系统控制器70还可以例如经由广域网例如互联网或者经由电话线、蜂窝通信和/或卫星通信与远程监测器74通信。远程监测器74可以与关联到多个制冷或hvac系统的多个系统控制器70通信。远程监测器74还可以被通信设备76访问,通信设备76例如是台式计算机、笔记本电脑、平板计算机、智能电话或具有通信/联网能力的其他计算设备。通信设备76可以与远程监测器74通信以接收和查看针对一个或更多个制冷或hvac系统的操作数据,所述数据包括例如针对制冷或hvac系统的能量或性能数据。

系统控制器70可以监测包括压缩机机架14、冷凝单元36和制冷箱52的制冷系统10的实际功率消耗,并且将制冷系统10的实际功率消耗与针对制冷系统10的预测功率消耗或基准功率消耗进行比较,以确定针对制冷系统10和/或针对各个制冷系统部件的健康指标分数。此外或者可替选地,系统控制器70可以监测包括压缩机机架14、冷凝单元36和制冷箱52的制冷系统10的温度和压力,并且基于例如历史数据将温度和/或压力与预期的温度和/或压力进行比较以确定针对制冷系统10和/或针对各个制冷系统部件的健康指标分数。

参照图2,示出了用于计算针对制冷系统和/或针对制冷系统部件的健康指标分数的控制算法200。控制算法200例如可以由系统控制器70执行并且在202处开始。在204处,系统控制器70接收针对制冷系统10和/或针对制冷系统10的系统部件的实际功率消耗数据。例如,如上所述,系统控制器70可以从机架控制器30、冷凝单元控制器48和箱控制器62接收关于压缩机机架14、冷凝单元36和制冷箱52的组54的功率消耗数据。在206处,系统控制器70基于针用于制冷系统10的操作数据来确定针对制冷系统10和/或系统部件的预测功率消耗或基准功率消耗。下面将参照图3和图4讨论用于确定预测功率消耗或基准功率消耗的进一步的细节。

在208处,系统控制器70将针对系统和/或系统部件的预测功率消耗或基准功率消耗与实际功率消耗进行比较。在210处,系统控制器70基于该比较来确定针对制冷系统和/或系统部件的健康指标分数。例如,当实际功率消耗相对接近预测功率消耗或基准功率消耗时,所计算的健康指标分数可以指示制冷系统和/或系统部件运行良好。此外,当实际功率消耗与预测功率消耗或基准功率消耗并不太接近时,所计算的健康指标分数可以指示制冷系统和/或系统部件未运行良好。

尽管根据计算针对制冷系统10和/或制冷系统部件的健康指标分数来示出和描述了控制算法200,但是系统控制器70可以另外地或者可替选地为制冷系统部件中的每一个单独计算健康指标分数,然后基于针对各个部件的健康指标分数来确定总的制冷系统健康指标分数。例如,系统控制器70可以对各个健康指标分数进行平均和/或对某些健康指标分数使用加权函数进行平均,以确定针对制冷系统10的总的健康指标分数。

针对制冷系统10和/或制冷系统部件的健康指标分数可以传送至通信设备72、远程监测器74和/或通信设备76,以显示给制冷系统的用户。例如,通信设备72、76可以显示针对制冷系统10的总的健康指标分数,并且使得用户能够钻研以查看针对各个制冷系统部件的各个健康指标分数。基于健康指标分数,用户可以确定需要维护或者需要维修或更换的特定部件。此外,一旦制冷系统10和/或制冷系统部件的健康指标分数低于预定阈值,系统控制器70可以发送警报。例如,制冷系统70可以经由通信设备72、76向用户发送警报,以对具有低健康指标分数的制冷系统10和/或制冷系统部件执行检查。此外,系统控制器70可以修改制冷系统70的操作,以避免使用具有低健康指标分数的制冷系统部件。控制算法200在212处结束。

此外,尽管根据将实际功率消耗与预测功率消耗或基准功率消耗进行比较来示出和描述了控制算法200,但是系统控制器70可以使用其他操作数据值来比较以确定一个或多个健康指标分数。例如,系统控制器可以将实际排出温度或压力与预测或基准排出温度或压力进行比较以确定健康指标分数。可以基于针对部件的性能因数和/或基于针对部件的历史操作数据——包括监测和在初始化时间段期间存储的操作数据——来计算预测或基准排放温度或压力。例如,系统控制器70可以基于在稳定之后压缩机机架14的排出温度或压力来确定针对压缩机机架14的压缩机机架健康指标分数。可以将在稳定之后压缩机机架14的排出温度或压力与预测或基准排气温度或压力进行比较。此外,可以连同功率消耗比较一起来执行操作数据比较,并且可以基于两比较来确定针对部件的健康指标分数。

另外或者可替选地,针对制冷箱52,健康指标分数可以基于制冷箱保持预定温度或过热的能力和/或制冷箱能够保持预定温度或过热的时间长度。此外或者可替选地,健康指标分数可以基于在除霜操作之后的制冷箱52的降温性能。在这样的情况下,健康指标分数可以基于制冷箱52在除霜操作之后能够多快达到预定目标温度。

参照图3,示出用于基于针对系统部件的性能系数和针对系统的操作数据来确定预测功率消耗的控制算法300。图3的功能性例如为在图2的206处所概述的。控制算法300可以由系统控制器70执行并且在302处开始。在304处,系统控制器70接收针对制冷系统10的系统部件的性能系数数据。性能系数由系统部件制造商公布,并且可以用于确定针对给定的系统部件、给定的特定操作条件的包括预测功率消耗的期望操作特征。例如,压缩机制造商可以公布针对特定型号的压缩机的性能系数。系统控制器70例如可以在系统部件制造商的网站访问性能系数的公开数据库,并且确定针对包括在制冷系统中的系统部件的特定性能系数。性能系数可以与系统部件的特定型号对应。可替选地,可以在制造时基于每个部件来确定性能系数。在这样的情况下,性能系数可以与针对系统部件的特定型号和序列号对应。例如,系统控制器70可以针对特定部件利用特定型号和序列号来查询制造商的数据库以检索性能系数。此外,性能系数可以存储在系统部件本身上的非易失性存储器中或者在与系统部件本身一起的非易失性存储器中。可替选地,可以经由通信设备72从用户或者从远程监测器74或通信设备76接收性能系数。在304处接收性能系数之后,系统控制器70进行至306。

在306处,系统控制器70接收针对制冷系统的操作数据。例如,操作数据可以包括:针对压缩机机架14的排出温度和/或压力;针对压缩机机架14的吸入温度和/或压力;冷凝温度;冷凝单元排出温度和/或压力;蒸发器温度和/或压力以及/或者外界环境温度等。操作数据可以指示在制冷系统10上的负载,并且可以与性能系数一起用于确定针对特定负载的制冷系统10的预测功率消耗。

在308处,系统控制器70基于针对系统部件的性能系数和针对制冷系统10的操作数据来计算预测功率消耗。在310处,控制算法300结束。

参照图4,示出用于在预定时间段例如初始化时间段期间基于系统性能确定基准功率消耗的控制算法400。图4的功能例如在图2的206处概述的。控制算法400可以由系统控制器70执行并且在402处开始。在404处,系统控制器70在预定初始化时间段期间接收针对系统的操作数据。例如,预定初始化时间段可以是紧接着首次安装或首次维修制冷系统10之后或者在制冷系统10维护之后的时间段例如一周或更多周或者一个月或更多个月。操作数据可以包括:针对压缩机机架14的排出温度和/或压力;针对压缩机机架14的吸入温度和/或压力;冷凝温度;冷凝单元排出温度和/或压力;蒸发器温度和/或压力以及/或者室外环境温度等以及针对制冷系统部件例如压缩机机架14、冷凝单元36和制冷箱52的功率消耗数据。

在406处,系统控制器70基于在预定初始化时间段内的针对系统的操作数据来计算基准功率消耗数据。以这种方式,基准功率消耗可以与例如在安装、维护或修理之后系统所消耗的功率相关联。如上所述,然后可以将实际功率消耗与基准功率消耗进行比较,以确定制冷系统性能是否已经下降以及制冷系统10由于劣化而消耗额外的功率的程度。控制算法400在408处结束。

在美国专利第8,065,886中描述了用于基于环境温度数据计算针对制冷系统的部件的预计能量消耗数据以用于与实际能量消耗数据进行比较的系统和方法,所述美国专利的全部内容通过引用合并至本文中。

系统控制器70可以监测制冷系统10的操作数据并且确定何时发生回液情况。例如当吸入过热度(ssh)接近零度时,可能发生回液情况。如图5所示,ssh可以与排出过热度(dsh)相关。对于涡旋式压缩机,dsh与ssh之间的相关性可能是特别准确的,外界环境温度仅是次要影响。如图5所示,示出针对外界温度(odt)为115华氏度、95华氏度、75华氏度和55华氏度的dsh与ssh之间的相关性。在图5中示出的相关性仅是示例,并且针对特定压缩机的特定相关性可以随着压缩机类型、型号、容量等而变化。如图5进一步所示,示出了针对示例性制冷剂充注水平的典型ssh温度。例如,随着制冷系统10中的制冷剂充注的百分比降低,ssh通常增加。

参照图6,示出了用于确定回液情况并且采取适当措施的控制算法600。控制算法600可以由系统控制器70执行并且在602处开始。在604处,系统控制器70监测操作数据并且计算与零度ssh即回液情况对应的压缩机机架14的排出温度。在606处,一旦检测到回液情况,系统控制器70可以向机架控制器30和/或各个压缩机控制器20通知回液情况,并且指示它们采取措施以解决回液情况。然后,机架控制器30和/或各个压缩机控制器20可以采取恰当的措施以解决回液情况。例如,机架控制器30和/或各个压缩机控制器20可以操作与压缩机相关联的任何曲柄箱加热器,以加热一个或多个压缩机12的一个或多个曲柄箱,并且驱动液体制冷剂流出压缩机12。例如在美国专利第8,734,125中描述了用于变速压缩机的曲柄箱加热器系统和方法,其全部内容通过引用合并在本文中。

此外或者可替选地,当存在回液情况时,压缩机机架控制器30和/或各个压缩机控制器20可以实现用于启动各个压缩机的满液式启动控制算法。例如,当在回液情况下启动时,在没有将压缩机完全排空液体制冷剂和润滑剂的情况下,压缩机可以通过一个或更多个短开/关循环来打开和关闭,以逐渐地从压缩机泵送液体。因为在压缩机排空液体和润滑剂之前允许有更多的时间来使制冷剂/润滑剂能够通过制冷系统工作并且返回压缩机。此外,逐渐泵送使得压缩机能够有额外的时间借助于压缩机中的电动机的操作以及压缩机的内部移动部件的旋转而自身加热。在美国公布第2014/0308138中描述了用于满液式启动控制的系统和方法,其全部内容通过引用合并入本文。此外,另外,在美国专利9,057,549中描述了用于监测压缩机回液的系统和方法,其全部内容同样通过引用合并入本文。控制算法600在608处结束。

参照图7,示出了用于预测未来时间段的性能或容量问题的控制算法700。控制算法700可以由系统控制器70执行并且在702处开始。在704处,系统控制器70接收未来时间段的天气或温度预报数据。系统控制器70可以访问天气数据库或天气服务器网站和/或从远程监测器74、通信设备或通信设备76接收天气预报和温度数据。在706处,系统控制器70基于所指示的天气或温度预报数据来估计需要的预测制冷容量。基于监测制冷系统70的操作数据随着时间的变化,系统控制器70可以获知制冷系统70对于各种环境外界温度的容量和性能。基于该历史数据,系统控制器70然后可以能够预测针对给定预报温度由制冷系统70需要的制冷容量。例如,基于预报,系统控制器70可以预测制冷系统10上的预期负载以及需要的预期制冷容量。

在710处,系统控制器70确定预测所需的容量是否大于预定阈值。在710处,当预测所需的容量大于预定阈值时,系统控制器70可以经由通信设备72、远程监测器74和/或通信设备76向制冷系统10的用户或操作者发送警报。此外,系统控制器70可以修改系统部件的操作和安排。例如,系统控制器70可以重新安排先前所安排的除霜操作。此外,系统控制器70可以在未来时间段之前实施预冷却。例如,系统控制器70可以在未来时间段之前增加制冷系统10的容量,以在未来时间段之前降低特定制冷箱52中的温度。以这种方式,在未来时间段期间制冷系统10上的负载与正常运行相比可以降低。控制算法700在712处结束。

参照图8,示出了用于基于检索到的部件信息来执行针对系统部件的自动设置操作的控制算法800。控制算法800可以由系统控制器70和/或由特定部件控制器例如机架控制器30、冷凝单元控制器48和/或箱控制器62来执行。在图8的示例中,控制算法800将根据由机架控制器30执行来讨论。控制算法在802处开始。

在804处,机架控制器30确定针对压缩机机架14中的部件中的每一个部件的部件识别信息。例如,压缩机机架14可以确定针对压缩机机架14中的每个压缩机12的型号和序列号。例如,压缩机机架控制器30可以与压缩机控制器20通信,并且检索被存储在针对各个压缩机12的压缩机控制器20处的型号和序列号信息。可替选地,压缩机12可以包括唯一地识别压缩机和/或与压缩机的型号和序列号相对应的条形码。安装者可以使用扫描设备例如智能手机扫描压缩机上的条形码,以获得唯一的识别信息。然后识别信息可以例如经由通信设备72输入到机架控制器和/或输入到系统控制器70。

在806处,一旦检索到针对压缩机的唯一的识别信息,机架控制器30可以基于识别信息来检索针对每个部件的部件规格/容量/性能信息。例如,机架控制器30可以访问部件制造商网站或数据库以检索关于特定部件的信息。例如,机架控制器30可以访问压缩机制造商的网站或数据库并且检索关于压缩机机架14中的特定部件12中的每一个的信息。可替选地,机架控制器30可以与系统控制器70通信,并且请求系统控制器70访问部件制造商网站或数据库来检索信息。

规格、容量和/或性能信息可以包括关于特定部件例如特定压缩机12的特定信息。例如,特定信息可以包括:针对压缩机的容量、尺寸和/或额定马力;压缩机的类型(即涡轮式、往复式等);指示压缩机是否是可变容量压缩机的信息,以及如果是,则可获得的容量调节的类型(即,变速、堵塞吸入、涡旋分离等);指示压缩机是否具有卸载器设备的信息;指示压缩机是否具有曲柄箱加热器的信息;以及在压缩机机架14的操作期间可以由机架控制器30使用的特定于压缩机的任何其他信息。

在808处,机架控制器30可以基于检索到的部件规格、容量和性能信息来执行设置操作。例如,机架控制器30可以将针对每个压缩机的信息存储在存储器中以在操作期间使用。此外,机架控制器30可以基于识别信息执行物理至逻辑的映射。例如,机架控制器30可以将压缩机中的一个识别为机架中的“压缩机#1”,并且将该压缩机的所有规格信息与逻辑“压缩机#1”相关联。在810处,控制算法800结束。

现在在下面进一步详细描述上面描述的本公开内容的各个方面。以下公开内容组织如下。图9a、图9b和图10示出了在图1中示出的压缩机机架14中的各个压缩机12的功率监测。图11和图12示出了用于跟踪各个压缩机12的性能的系统和方法。图13和图14示出了针对压缩机性能的基于回归的监测的系统和方法。图15a至图16e示出了用于提供压缩机中的稳态液体回液保护的系统和方法。图17a和图17b示出了在控制和诊断压缩机时有用的压缩机识别的系统和方法。

参照图9a和图9b,示出了用于监测在图1的压缩机机架14中的各个压缩机12的功率消耗的系统900的示例。在图9a中,在图1中示出的系统控制器70中实现系统900。系统控制器70包括功率监测模块902和性能跟踪性能904。功率监测模块902监测在压缩机机架14中的各个压缩机12的功率消耗。性能跟踪模块904基于由功率监测模块902监测的功率消耗来跟踪各个压缩机12的性能。性能跟踪模块904还基于由功率监测模块902监测的功率消耗和由性能跟踪模块904跟踪的性能来诊断各个压缩机12的健康。因此,功率监测和性能跟踪可以用于制冷系统10的能量管理和维护以及诊断。

如本文所使用的,诊断制冷系统的部件例如压缩机的健康包括以下步骤:检测部件的实际和/或可能故障;确定部件的操作是否符合针对部件的一个或更多个制造商的额定值;检测和/或确定与部件相关联的故障状态;预测和/或上述中的任一者;预测和/或估计针对部件的无故障操作持续时间(有效寿命);以及提供关于上述的有形的指示或警报。

在图9b中,示出了功率监测模块902的示例。功率监测模块902包括功率消耗模块906、电压确定模块908、功率因数模块910以及误差校正模块912。功率消耗模块906基于可用的数据类型以不同方式确定每个压缩机12的功率消耗。例如,如果每个压缩机12具有与其相关联的功率计,则功率消耗模块906根据从与各个压缩机12相关联的功率计接收的功率消耗数据来直接确定每个压缩机12的功率消耗。然而,如果功率计对于每个压缩机12不可用,则功率消耗模块906以两种方式之一确定每个压缩机12的功率消耗。

在第一种方式中,电压确定模块908基于由电力供给32(如图1所示)供给至压缩机机架14的电功率和在压缩机机架14中的压缩机12的数量确定针对每个压缩机12可用的供给电压。功率因数模块910基于由电压确定模块908确定的针对特定压缩机12的供给电压来调整针对特定压缩机12的功率因数。针对特定压缩机12的功率因数由于特定压缩机12的操作条件(例如负载)的改变以及针对特定压缩机12的供给电压的改变而改变。功率因数模块910调整针对特定压缩机12的功率因数以补偿针对特定压缩机12的实际供给电压(例如240v或220v)与特定压缩机12的额定电压(例如230v)之间的差。

功率因数模块910使用公式(或者适用于压缩机的其他pf校正公式)pf=volt额定*pf额定*(amp标称-额定/amp实际)/volt实际调整针对特定压缩机12的功率因数,其中,volt额定表示特定压缩机12的额定电压,pf额定表示特定压缩机12的额定功率因数,amp标称-额定表示特定压缩机12的电流强度或额定电流,amp实际表示特定压缩机12的实际电流消耗,volt实际表示由电压确定模块908确定的针对特定压缩机12的实际供给电压。

功率消耗模块906基于由功率因数模块910确定的经调整或校正的功率因数来确定特定压缩机12的功率消耗。功率消耗模块906使用公式功率=volt*pf*amp*3^0.5确定特定三相(例如)压缩机12的功率消耗,其中,volt表示由电压确定模块908确定的针对特定压缩机12的实际供给电压,pf表示由功率因数模块910确定的经调整或校正的功率因数,amp表示特定压缩机12的实际电流强度。

在第二种方式中,在针对特定压缩机12的供给电压未知但是压缩机机架14的总功率消耗已知(例如根据在图1中示出的机架功率传感器34)的情况下,误差校正模块912确定误差校正因数。基于每个压缩机12的实际电流强度、额定电压和额定功率因数来计算每个压缩机12的功率消耗。校正因数被应用于每个压缩机12的相应功率消耗值,使得各个压缩机(加上风扇和其他负载)的功率消耗值的总和等于测量的压缩机机架14的总功率消耗。

参照图10,示出了用于监测压缩机机架14中的各个压缩机12的功率消耗的控制算法1000的示例。例如,控制算法1000可以由图1中示出的系统控制器70执行。控制算法1000在1002处开始。在1004处,系统控制器70确定是否可以从与特定压缩机12相关联的功率计获得针对特定压缩机12的功率消耗数据。如果可以从功率计获得功率消耗数据,则在1006处系统控制器70使用来自功率计的功率消耗数据来确定特定压缩机12的功率消耗。

然而,如果不可以从功率计获得功率消耗数据,则在1008处,系统控制器70确定针对特定压缩机12的供给电压是否可用。例如,系统控制器70可以基于由电力供给32供给至压缩机机架14的功率和在压缩机机架14中的压缩机12的数量(参见图1)来确定针对特定压缩机12的供给电压。

如果系统控制器70可以确定针对特定压缩机12的供给电压,则在1010处,系统控制器70基于供给电压来调整或校正针对特定压缩机12的功率因数,以补偿针对特定压缩机12的实际供给电压与特定压缩机12的额定电压之间的差。例如,系统控制器70使用以上参照图9a和图9b在功率因数模块910的描述中公开的公式来调整或校正针对特定压缩机12的功率因数。在1012处,系统控制器70基于经调整或校正的功率因数以及特定压缩机12的实际供给电压和电流强度来确定特定压缩机12的功率消耗。例如,系统控制器70使用以上参照图9a和图9b在功率消耗模块906的描述中公开的公式来确定特定压缩机12的功率消耗。

如果针对特定压缩机12的供给电压不可用,则在1014处,系统控制器70使用特定压缩机12的电流强度和特定压缩机12的额定电压和额定功率因数来估计特定压缩机12的功率消耗。如果功率计(例如,图1中示出的机架功率传感器34)测量压缩机机架14的总计功率消耗,则应用误差校正因数,使得各个压缩机(加上风扇和其他负载)的功率消耗的总和等于总计功率消耗。

在1016处,系统控制器70使用如上所述确定的功率消耗来跟踪特定压缩机12的性能并且诊断特定压缩机12的健康。如上所述,系统控制器70确定压缩机12中的每一个的功率消耗并且跟踪压缩机12中的每一个的性能并且诊断压缩机12中的每一个的健康。控制算法1000在1018处结束。

参照图11,示出了用于跟踪压缩机机架14中的压缩机12的性能的系统1100的示例。系统1100可以在图1中示出的系统控制器70中总体实现,并且可以在图9a和图9b中示出的性能跟踪模块904中具体实现。性能跟踪模块904确定压缩机12的性能是否符合制造商的额定性能。性能跟踪模块904包括基线数据模块1102、性能监测模块1104以及基于回归的监测模块(回归模块)1108。参照图12在下面简要地说明这些模块的操作。

简而言之,如果针对压缩机12的额定性能数据不可用,则性能跟踪模块904生成针对压缩机12的基线数据,通过将压缩机12的操作数据与针对压缩机12的基线数据进行比较来评估压缩机12的性能并且诊断压缩机12的健康。然而,如果针对压缩机12的额定性能数据可用,则性能跟踪模块904通过将压缩机12的操作数据与针对压缩机12的额定性能数据进行比较来评估压缩机12的性能并且诊断压缩机12的健康。

基线数据模块1102基于在紧接着安装压缩机12之后从压缩机12接收的数据来生成针对压缩机12的基线数据。性能监测模块1104通过将基线数据与在生成针对压缩机12的基线数据之后获得的压缩机12的操作数据进行比较来评估压缩机12的性能并且诊断压缩机12的健康。

基于回归的监测模块1108对额定性能数据和在操作期间从压缩机12获得的数据执行回归分析,并且基于回归分析来评估压缩机12的性能并且诊断压缩机12的健康。

参照图12,示出了用于跟踪图1的压缩机12和压缩机机架14的性能的控制算法1200的示例。例如,控制算法1200可以由在图1中示出的系统控制器70总体执行,并且由在图11中示出的性能跟踪模块904具体执行。在下面将简要地说明控制算法1200。之后进行图11的模块和控制算法1200的详细描述。

控制算法1200在1202处开始。在1204处,性能跟踪模块904确定针对压缩机12的额定性能数据是否可用。如果针对压缩机12的额定性能数据不可用,则在1206处,基线数据模块1102在安装之后启动时生成针对每个压缩机12的基线数据。在1208处,性能监测模块1104使用由基线数据模块1102生成的基线数据作为参考,并且将在操作期间获得的数据与基线数据进行比较来监测和评估压缩机12的性能并且诊断压缩机12的健康。

然而,如果针对压缩机12的额定性能数据可用,则在1210处,性能跟踪模块904确定是否使用包括但不限于基于回归的分析的其他方法来监测和评估压缩机12的性能并且诊断压缩机12的健康。如果使用基于回归的分析,则在1216处,回归模块1108使用基于统计的程序将额定值和基线数据与监测的数据进行比较,以便评估压缩机和系统行为和健康。控制算法1200在1218处结束。

参照图13,更详细地示出基于回归的监测模块1108的示例。基于回归的监测模块1108可以监测压缩机、冷凝器、蒸发器或性能数据可用的任何其他系统部件的性能。因此,尽管下面例如仅参照压缩机12描述了基于回归的监测模块1108的操作,但是本公开内容的教导还可以适用于监测其他系统部件的性能和诊断其他系统部件的健康。

基于回归的监测模块1108包括基准生成模块1900、分析模块1902、优化模块1904、异常值检测模块1906以及比较模块1908。以下将参照图14描述这些模块的操作。

简而言之,基于回归的监测模块1108对额定性能数据和在操作期间从压缩机12获得的数据执行回归分析,并且基于如下的回归分析来评估压缩机12的性能和诊断压缩机12的健康。基准生成模块1900生成基准多项式和基准包络。分析模块1902使用基准多项式和基准包络来分析在操作期间从压缩机12获得的数据,并且基于该分析来评估压缩机12的性能和诊断压缩机12的健康。

优化模块1904仅选择影响选择的额定性能数据之一(例如压缩机12的功率消耗)的在统计学上重要的变量,并且去除不会显著影响选择的额定性能数据之一(例如压缩机12的功率消耗)的在统计学上不重要的变量。优化模块1904使用选择的变量来优化基准多项式。

异常值检测模块1906检测在操作期间从压缩机12获得的数据中的异常值,并且去除具有最大偏差的异常值。比较模块1908将基准多项式和基准包络与历史基准多项式和包络数据进行比较,并且基于该比较来评估压缩机12的性能和诊断压缩机12的健康。

总体来说,基于回归的监测模块1108执行以下功能:定期(例如一天多次)数据收集和评估,周期性(例如每周或每月)基准化和评估包络以外的数据(后面说明的)以及长期评估(例如季度的、半年的或一年的)。基准化功能还包括创建模型、检查模型的有效性、去除异常值、通过去除无关变量来简化模型以及计算包络。后面将详细说明这些功能。

参照图14,示出了用于对压缩机机架14中的各个压缩机12进行基于回归的性能监测的控制算法2000的示例。例如,控制算法2000可以由图1中示出的系统控制器70总体执行,并且由图11中示出的性能跟踪模块904具体执行,并且由图13中示出的基于回归的监测模块1108更具体地执行。控制算法2000在2002处开始。

在2004处,基于回归的监测模块1108一天多次(例如,每秒、每分钟、每小时)收集系统或压缩机传感器数据。例如,数据可以用于功率消耗、质量流率或者与确定系统性能和诊断系统健康趋势相关的任何系统部件的任何其他参数。

在2006处,基准生成模块1900处理具有额定曲线并且在额定曲线的可接受的容限内的数据。如果数据不在额定曲线的可接受的容限内,则生成错误或警告。在可接受的容限内的数据被存储和处理,以用于生成基准多项式和基准包络。包络是数据点的区域,在包络内可以使用回归公式例如多项式来进行预测。基准生成模块1900生成模型并且使用统计方法检查模型的有效性。

在2008处,优化模块1904仅选择影响所选择的性能参数(例如压缩机12的功率消耗)的在统计学上重要的变量,并且去除统计学上不重要的变量以简化正在生成的基准多项式。此外,异常值检测模块1906检测数据中的任何异常值,确定异常值是否是噪声,去除具有最大偏差的异常值,以进一步简化正在生成的基准多项式。去除异常值还提高了模型的准确性。异常值被存储在数据库中,并且对其进行长期评估以确定异常值实际上是否是由系统问题引起的。优化模块1904基于所选择的变量和去除的异常值来优化基准多项式。优化模块1904还计算用于数据评估的基准包络以及基准多项式。

在2010处,分析模块1902使用基准多项式、基准包络和额定曲线分析定期收集的系统数据,并且基于该分析来检测误差。例如,分析模块1902将数据与基准多项式进行比较,确定数据是否在基准多项式的一个或更多个(例如±2)标准偏差内。分析模块1902还确定数据是否在基准包络以外。此外,分析模块1902确定数据是否在针对数据的额定曲线的可接受的容限内。如果数据在针对数据的额定曲线的可接受的容限内,则数据被存储并且用于生成未来基准多项式和基准包络。如果数据不在针对数据的额定曲线的可接受的容限内,则会发出关于压缩机性能和健康的错误或警告。

在2012处,比较模块1908周期性地(例如,每季度、每半年或者每年)将基准进行比较以检测长期趋势,确定长期趋势是否显示设备的任何劣化,如果长期趋势显示设备的任何劣化则发出错误或警告。

参照图15a至图16e,本公开内容的以下部分涉及用于在压缩机(例如,图1所示的压缩机机架14中的压缩机12)中提供稳态液体回液保护的系统和方法。将液体制冷剂无意地引入压缩机可能会显著地降低压缩机的可靠性。通过确定吸入气体中的过热的程度或者通过使用排出气体温度以确定吸入气体状态来确定压缩机吸入气体中的液体制冷剂(回液)的可能性。如果值小于1,则吸入过热方法不容易描绘回流气体的质量,而排出温度方法可以提供对满液式状态的严重程度的一些了解。知道液体制冷剂回液的相对速率对于确定适当的作用过程以便保护压缩机是重要的。

以低速率持续满液可能最终导致油粘度降低和相关联的轴承润滑问题、环磨损或其他润滑类型故障,但是避免该问题的响应时间相对长。较高的液体吸入速率(较低质量的制冷剂)增加了由于润滑问题而造成损坏的风险,而且(也许更重要的是)由于与液体压缩相关的高压损害的风险增加而增加了损坏的风险。本公开内容使用排出温度来确定吸入过热,并且如果值小于1还可以定义回流气体的质量。

本公开内容还包括通过将压缩机关闭并且通过冲击启动程序重启来保护压缩机的措施。冲击启动是提供额外的满液启动保护的可选的特征。冲击启动将制冷剂从油中排出,防止制冷剂作为液体通过压缩机循环,并且将油膜从承载表面上清洗掉。当启用碰撞启动时,打开压缩机几秒钟(例如2秒),然后关闭几秒钟(例如5秒),在压缩机正常运行之前重复该过程几次(例如3次)。该过程使得在不用去除油的情况下制冷剂能够离开压缩机。在由艾默生环境优化技术公司于2015年11月24日发布的美国专利第9,194,393中详细描述了冲击启动系统和方法的示例,所述专利的全部内容通过引用合并入本文中。

在本公开内容的回液保护方面使用了以下术语。

质量——气体制冷剂与压缩机的返回(吸入)液体中的总(气体制冷剂 液体制冷剂)量的质量比。1的质量=没有液体制冷剂。

弹状——通常随着吸入气体在压缩机的吸入管线中流动而移动最终进入压缩机的液体量。“弹状”通常是指由于液体的体积百分比大而使吸入流的体积密度迅速增加的状态。该事件通常与除霜循环的终止有关,因此被称作“除霜保护”程序(尽管除霜终止可能不是该现象的唯一原因)。

回液——吸入制冷剂的质量小于1(即,液体的一些连续返回)。该术语描述了与压缩机是“弹状”时相比不太快速变化的情况。

dlt——排出管线温度。理想情况下,这是压缩机的端口温度、机头温度或顶盖温度。

dt/dt——温度相对于时间的变化率

本发明的一个实施方式计算最小允许排出温度,所述最小允许排出温度表示如果压缩机在吸入气体中没有过热的情况下运行由压缩机产生的温度。压缩机的设计确定了“零”过热是否是真正的最小值。对于一些压缩机这可能过于保守,而对于其他压缩机则可能无法提供足够的安全裕度。无论如何,该过程可以应用于任何期望的回流气体过热或回液质量。

生成最小允许排出温度所需的输入包括压缩机效率、制冷剂特性和操作压力(例如排出压力、吸入压力和回气温度)。该方法包括考虑以下因素,所述因素包括压缩机是否正在数字化地操作以及是否正在使用液体注入来冷却压缩机和调节压缩机的容量。

当远程控制器74具有系统操作状态信息时,一个实施方式使用远程控制器74(如图1所示)来执行最小dlt计算。压缩机控制器20(如图1所示)经由系统控制器70从远程控制器74接收通信更新,并且决定是否关闭压缩机12(如图1所示)以及是否使用冲击启动方法重启压缩机12。

在替选实施方式中,如果传感器输入和信息可用,则可以在压缩机控制器20中(或者在系统控制器70中)完成最小dlt的计算。即使没有严重到足以确定关闭压缩机,检测到液体的通知也可以成为学习过程的一部分,以优化用于回液保护的控制和设置。

根据本公开内容的用于提供稳态液体回液保护的系统和方法包括可以使用动态(实时)系统操作状态(压力或饱和温度)一般地应用于多个制冷压缩机来生成最小安全操作排出管线温度的方法。基于压缩机的设计考虑可以动态地(实时)调整温度计算以提供或多或少的安全裕度。

图15a至图16e示出了根据本公开内容的用于在压缩机中提供稳态液体回液保护的系统和方法的示例。图15a示出了实现用于在系统控制器70(如图1所示)中提供稳态液体回液保护的系统的示例。图15b示出了实现用于在远程控制器74(也如图1所示)中提供稳态液体回液保护的系统的示例。图15c示出了实现用于在压缩机控制器20(也如图1所示)中提供稳态液体回液保护的系统的示例。图16a至图16e示出了执行最小dlt计算和回液保护的示例。

应该注意的是,执行最小dlt计算和回液保护的任务可以部分地或完全地以单独的或者任何共享的方式在系统控制器70、远程控制器74和压缩机控制器20之间实现。例如,在一些实现中,远程控制器74可以执行最小dlt计算,并且可以确定是否关闭压缩机12以及是否使用冲击启动来重启压缩机12。在一些实现中,远程控制器74可以直接控制压缩机12(例如,通过经由系统控制器70访问压缩机12)。在一些实现中,远程控制器74可以向系统控制器70或压缩机控制器20发送最小dlt计算和用于关闭和重启压缩机12的指令,这又相应地可以控制压缩机12。在一些实现中,系统控制器70和/或压缩机控制器20可以执行最小dlt计算并且决定如何关闭和重启压缩机12。

图16a示出了用于计算在远程控制器74中的最小dlt并且将该信息传送至压缩机控制器20以用于回液保护的方法的示例。图16b示出了由压缩机控制器20执行以做出关于回液保护的决策的控制算法的示例。图16c示出了用于生成最小允许排出温度所需的输入和涉及的相关的热力学计算的示例。图16d和图16e示出了使用远程的、基于系统的控制器(例如远程控制器74)来计算最小dlt然后将最小dlt传送至压缩机控制器20以用于做出决策和回液保护的实施方式的示例。

参照图15a,示出了在系统控制器70中实现的回液保护系统2100-1的示例,其中系统控制器70包括回液保护模块2102。回液保护模块2102包括dlt确定模块2104和压缩机控制模块2106。

dlt确定模块2104监测在压缩机12的操作期间压缩机机架14中的压缩机12的多个操作参数。例如,压缩机12的多个操作参数可以包括但不限于压缩机12的排出压力、吸入压力和回气温度。例如,dlt确定模块2104可以从功率监测模块902和性能跟踪模块904中的一个或更多个实时接收多个操作参数,这在以上参照图9a至图14详细描述。基于多个操作参数,dlt确定模块2104确定压缩机12的最小排出管线温度。dlt确定模块2104还基于实时获得的多个参数周期性地更新最小排出管线温度,以根据压缩机12的当前操作状态调整最小排出管线温度。

压缩机控制模块2106通过将压缩机12的当前排出管线温度与最小排出管线温度进行比较来确定是否关闭压缩机12。例如,压缩机控制模块2106可以确定压缩机12的当前排出管线温度在预定时间段(例如20秒)内是否小于或等于最小排出管线温度。此外,压缩机控制模块2106可以确定排出管线温度的变化率是否小于或等于预定阈值(例如0)达预定时间段(例如20秒)。如果压缩机12的当前排出管线温度小于或等于最小排出管线温度达预定时间段(例如20秒)并且如果排出管线温度的变化率小于或等于预定阈值达预定时间段(例如20秒),则压缩机控制模块2106可以决定关闭压缩机12。此外,压缩机控制模块2106确定是否应该使用冲击启动过程来重启压缩机12(例如,参考以上引用的美国专利第9,194,393)。

此外,压缩机控制模块2106可以确定当前在压缩机12中是否发生任何液体注入(例如,用于冷却压缩机12和/或用于调节压缩机12的容量)。如果当前在压缩机12中发生液体注入,则压缩机控制模块2106不关闭压缩机12。

参照图15b,示出了在远程控制器74中实现的回液保护系统2100-2的示例,其中远程控制器74包括回液保护模块2102。回液保护模块2102包括dlt确定模块2104和压缩机控制模块2106。

远程控制器74中的dlt确定模块2104在压缩机12的操作期间接收压缩机机架14中的压缩机12的多个操作参数。例如,dlt确定模块周期性地从系统控制器70(或者压缩机控制器20)接收多个操作参数。例如,dlt确定模块2104可以从以上参照图9a至图14详细描述的功率监测模块902和性能跟踪模块904中的一个或更多个接收多个操作参数。例如,压缩机12的多个操作参数可以包括但不限于压缩机12的排出压力、吸入压力和回气温度。基于多个操作参数,dlt确定模块2104确定压缩机12的最小排出管线温度。dlt确定模块2104还基于从系统控制器70(或者压缩机控制器20)最近获得的多个参数周期性地更新最小排出管线温度,以根据压缩机12的当前操作状态来调整最小排出管线温度。

远程控制器74中的压缩机控制模块2106通过将压缩机12的当前排出管线温度与最小排出管线温度进行比较来确定是否关闭压缩机12。例如,压缩机控制模块2106可以确定压缩机12的当前排出管线温度是否小于或等于最小排出管线温度达预定时间段(例如20秒)。此外,压缩机控制模块2106可以确定排出管线温度的变化率是否小于或等于预定阈值(例如0)达预定时间段(例如20秒)。如果压缩机12的当前排出管线温度小于或等于最小排出管线温度并且如果排出管线温度的变化率小于或等于预定阈值达预定时间段(例如20秒),则压缩机控制模块2106可以决定关闭压缩机12。此外,压缩机控制模块2106确定应该使用冲击启动处理来重启压缩机12(例如,如在美国专利9,194,393中描述的)。

此外,远程控制器74中的压缩机控制模块2106可以确定当前在压缩机12中是否发生任何液体注入(例如,用于冷却压缩机12和/或用于调节压缩机12的容量)。如果当前在压缩机12中发生液体注入,则压缩机控制模块2106不关闭压缩机12。

远程控制器74向系统控制器70(或者压缩机控制器20)发送最小排出管线温度和指示是否关闭压缩机和是否使用冲击启动来重启压缩机12的数据以及日期戳,所述日期戳可以用于确定最小排出管线温度的寿命。系统控制器70(或者压缩机控制器20)根据从远程控制器74接收的信息来控制压缩机12,并且向远程控制器74发送关于在压缩机12上执行的动作和压缩机12的状态的反馈。

参照图15c,示出了在压缩机控制器20中实现的回液保护系统2100-3的示例,其中压缩机控制器20包括回液保护模块2102。回液保护模块2102包括dlt确定模块2104和压缩机控制模块2106。回液保护模块2102、dlt确定模块2104和压缩机控制模块2106的操作与参照图15a描述的操作类似,除了它们是在压缩机控制器20中而不是系统控制器70中执行的,为了简洁起见不再重复。

总而言之,不管实现如何,通常,回液保护模块2102包括dlt确定模块2104和压缩机控制模块2106,dlt确定模块2104实时确定最小dlt,压缩机控制模块2106确定是否关闭压缩机12,并且如果关闭,则基于包括排出温度是否小于最小dlt、是否发生液体注入等因素来确定是否使用冲击启动来重启压缩机12。

排出管线温度确定模块2104在压缩机12的操作期间实时监测压缩机机架14中的压缩机12的多个操作参数,并且基于多个操作参数确定最小排出管线温度。最小排出管线温度表示与进入压缩机12的液体制冷剂相对应的排出管线温度。压缩机的多个操作参数包括压缩机12的排出压力、吸入压力和回气温度。压缩机12的多个操作参数还可以包括压缩机12的性能数据和在压缩机12中使用的制冷剂的特性。压缩机12的多个操作参数还可以包括是否在压缩机12中使用液体注入。排出管线温度确定模块2104还基于压缩机12的多个操作参数实时地调整最小排出管线温度。

如果压缩机12的排出管线温度小于或等于最小排出管线温度达预定时间段,则压缩机控制模块2106关闭压缩机12。压缩机控制模块2106通过额外地确定排出管线温度的变化率是否小于或等于预定阈值达预定时间段来关闭压缩机12。压缩机控制模块2106使用冲击启动方法来重启压缩机12。

参照图16a,示出了用于从远程控制器74计算最小排出管线温度和执行回液保护的控制算法2200-1的示例。例如,控制算法2200-1可以通过在图1中示出的远程控制器74来执行。控制算法2200-1在2202处开始。

在2204处,远程控制器74接收压缩机12的操作数据(例如排出压力、吸入压力和回气温度;是否使用液体注入;压缩机12是否被数字化控制,等等)。在2206处,远程控制器74基于压缩机12的操作数据计算最小dlt。在2208处,远程控制器74确定压缩机12的当前排出温度是否大于最小dlt。如果压缩机12的当前排出温度大于最小dlt(或者如果在压缩机12中发生液体注入),则控制算法2200-1返回至2204。

然而,如果压缩机12的当前排出温度不大于最小dlt,则在2210处,远程控制器74向压缩机控制器20(或者系统控制器70)发送包括最小dlt和关闭/冲击启动指令的数据以及日期戳。在2212处,压缩机控制器20(或系统控制器70)根据从远程控制器74接收到的数据关闭压缩机12和使用冲击启动程序来重启压缩机12。在2214处,压缩机控制器20(或系统控制器70)向远程控制器74发送包括压缩机12的操作数据和冲击启动状态的反馈。控制算法2200-1返回至2206。

参照图16b,示出了用于提供来自压缩机控制器20的回液保护的控制算法2200-2的示例。例如,控制算法2200-2可以通过在图1中示出的压缩机控制器20来执行。控制算法2200-2在2200处开始。

在2222处,压缩机控制器20确定是否在压缩机12中发生液体注入。如果在压缩机12中发生液体注入,控制算法2202-2不采取任何行动。如果在压缩机12中没有发生液体注入,则在2224处,压缩机控制器20确定最小dlt数据是否是旧的(例如,60秒以前的数据)。例如,可以通过压缩机控制器20、系统控制器70或远程控制器74周期性地生成最小dlt数据。如果最小dlt数据是旧的(例如,60秒以前的数据),则控制算法2202-2不采取任何行动。如果最小dlt数据不是旧的(例如,不是60秒以前的数据),则在2226处,压缩机控制器20确定压缩机12的当前排出温度是否大于最小dlt。如果压缩压缩机12的当前排出温度大于最小dlt,则控制算法2200-2不采取任何行动。如果压缩机12的当前排出温度不大于最小dlt,则在2228处,压缩机控制器20确定压缩机12的排出温度的变化率是否大于预定阈值(例如,零)。如果压缩机12的排出温度的变化率大于预定阈值(例如,零),则控制算法2200-2不采取任何行动。

如果压缩机12的排出温度的变化率不大于预定阈值(例如,零),则在2230处,压缩机控制器确定排出温度是否不大于最小dlt并且排出温度的变化率是否不大于预定阈值达预定时间段(例如20秒)。如果排出温度不大于最小dlt并且排出温度的变化率不大于预定阈值达预定时间段(例如20秒),则在2232处,压缩机控制器20关闭压缩机12,并且在预定时间段之后使用冲击启动方法重启压缩机12。在2234处,压缩机控制器20将压缩机12的操作数据和状态传送至远程控制器74和/或系统控制器70。控制算法2200-2返回至2222。

在以上参考回液保护提及的预定时间段内,预定意味着已经建立的方法或算法。因此,以上参考回液保护提及的预定时间段可以意味着固定时间段或者例如基于比如反时限算法的方法的时间段。如果实际dlt与最小dlt之间的偏差在不利的方向上增加,则反时限算法将较快地响应。

参照图16c,示出了用于计算最小dlt的控制算法2200-3的示例。例如,控制算法2200-3可以通过图1中示出的压缩机控制器20(优选地)、系统控制器70或者远程控制器74来执行。在以下对控制算法2200-3的描述中,术语控制器是指图1中示出的压缩机控制器20、系统控制器70或者远程控制器74。此外,控制器在执行所指示的计算时使用各种热力学计算。控制算法2200-3在2240处开始。

在2242处,控制器获得压缩机12的额定数据(例如,包括功率消耗、容量、通过蒸发器的质量流量等)。例如,压缩机控制器20可以从压缩机12获得额定数据;系统控制器70可以从压缩机控制器20获得额定数据;以及远程控制器74可以直接从压缩机12、压缩机控制器20或者系统控制器70获得额定数据。

在2244处,控制器确定压缩机12的排出压力和吸入压力的当前值(例如,基于吸入换能器数据和制冷剂特性数据)。在2246处,控制器使用调整因数在目标回流气体状况下调整蒸发器质量流量和功率消耗。在2248处,控制器确定压缩机12是否采用制冷剂注入。如果存在制冷剂注入,则在2250处,控制器计算制冷剂注入的质量流量。在2252处,控制器计算在压缩机12的目标回流气体状况下的排出温度。控制算法2200-3在2254处结束。

参照图16d和图16e,示出了使用远程的、基于系统的控制器(例如远程控制器74)来计算最小dlt和将最小dlt传送至压缩机控制器20以用于做出决策和回液保护的控制算法2200-4的示例。例如,控制算法2200-4可以部分地通过图1中示出的远程控制器74和部分地通过图1中示出的压缩机控制器20来执行。控制算法2200-4在2260处开始。

在2262处确定远程控制器74的可用性。如果远程控制器74不可用,则在2264处,压缩机控制器20从压缩机12接收包括压缩机型号、制冷剂类型等的数据。在2266处,压缩机控制器20读取蒸发和冷凝温度或压力以及压缩机排出温度。在2268处,压缩机控制器20计算压缩机12的最小dlt。在2270处,压缩机控制器20使用回液算法以决定是否继续运行还是关闭压缩机12,如果关闭,是否使用冲击启动方法重启压缩机12。控制算法2200-4在2272处结束。

然而,如果远程控制器74可用,则在2274处,远程控制器74(例如,直接从压缩机12、压缩机控制器20或系统控制器70)获得包括压缩机型号、制冷剂类型等的数据。在2276处,远程控制器74(例如从压缩机控制器20和系统控制器70)接收蒸发和冷凝温度或压力以及压缩机排出温度。在2278处,远程控制器74计算压缩机12的最小dlt。

在2280处,确定远程控制器74是否可以直接从压缩机12读取压缩机排出温度。如果远程控制器74不能直接从压缩机12读取压缩机排出温度,则在2282处,远程控制器74从压缩机控制器20获得排出温度。

在2284处,确定远程控制器74是否可以控制压缩机接触器。如果远程控制器74可以控制压缩机接触器,则在2286处,如果排出温度没有被远程控制器74读取,则排出温度例如通过压缩机控制器20或者通过系统控制器70传送至远程控制器74。在2288处,远程控制器74使用回液算法来决定是否继续运行还是关闭压缩机12;如果关闭,则是否使用冲击启动方法来重启压缩机12。控制算法2200-4在2290处结束。

然而,如果远程控制器74不能控制压缩机接触器,则在2292处,远程控制器74将排出温度发送至压缩机控制器20。在2294处,压缩机控制器20使用回液算法以决定是否继续运行还是关闭压缩机12;如果关闭,则是否使用冲击启动方法来重启压缩机12。控制算法2200-4在2290处结束。

参照图17a,示出了在系统控制器70中实现的用于压缩机识别的系统2300的示例。系统控制器70包括接收模块2302、识别模块2304、设置模块2306、选择模块2308以及传输模块2310。此外,系统控制器70包括以上参照图9a至图16e示出和描述的功率监测模块902、性能跟踪模块904以及回液保护模块2102。以下参照图17b详细描述这些模块。

简而言之,接收模块2302接收压缩机机架14中的压缩机12的识别信息。例如,识别信息包括压缩机12的型号和序列号。识别模块2304基于识别信息确定压缩机12的多个操作特征。例如,压缩机12的多个操作特征包括压缩机12使用的调节的类型、压缩机12使用的注入的类型、压缩机12使用的油的类型、压缩机12使用的电机的一个或更多个特征以及压缩机12的额定数据中的一个或更多个。设置模块2306基于压缩机12的多个操作特征来配置或初始化压缩机12。

如上参照图9a、图9b和图10所描述的,功率监测模块902基于压缩机12的多个操作特征来监测压缩机12的功率消耗。如上参照图11至图14所描述的,性能跟踪模块904基于压缩机12的多个操作特征来跟踪压缩机12的性能。如上参照图16a至图16e所描述的,回液保护模块2102基于压缩机的多个操作特征来计算压缩机12的排出管线温度,并且向压缩机12提供回液保护。

选择模块2308基于压缩机12的多个操作特征来选择一个或更多个控制(例如注入模式)以操作压缩机12。传输模块2310向远程设备(例如,在图1中示出的远程控制器74)发送压缩机12的识别信息和操作数据中的一个或更多个。接收模块2302基于发送至远程设备的压缩机12的识别信息和操作数据中的一个或更多个从远程设备接收用于控制压缩机12的数据。系统控制器70基于从远程设备接收的数据来控制压缩机12。传输模块还将压缩机的识别信息和操作数据发送至远程设备,以用于从远程设备诊断压缩机12和为压缩机12安排服务。

参照图17b,示出了用于压缩机识别的控制算法2350的示例。例如,控制算法2350可以由在图17a中示出的系统控制器70来执行。控制算法2350在2352处开始。

在2354处,接收模块2302从压缩机12接收识别信息。在2356处,识别模块2304基于识别信息来确定压缩机12的操作特征。在2358处,设置模块2306基于操作特征来配置或初始化压缩机12。在2360处,选择模块2308基于操作特征来选择控制(例如注入模式)以操作压缩机12。

在2362处,功率监测模块902执行功率监测,性能跟踪模块904跟踪性能,回液保护模块2102基于操作特征为压缩机12提供回液保护。在2364处,传输模块2310将压缩机12的识别信息和/或操作特征发送至远程控制器74。在2366处,接收模块2302从远程设备74接收用于控制压缩机12的数据,并且基于所接收的数据控制压缩机12。在2368处,远程控制器74诊断压缩机12并且为压缩机12安排服务。控制算法2350在2370处结束。

总而言之,上述系统和方法提供了用于压缩机系统的维护和诊断信息。特别地,系统和方法可以单独为制冷系统10的压缩机12和其他部件中每一者提供健康指标以及为整个制冷系统10整体提供健康指标。系统和方法提供了用于制冷系统10的回液预测和保护以及冲击启动程序。系统和方法可以基于未来状况来预测针对制冷系统10的性能问题。系统和方法提供了基于读取压缩机信息自动设置压缩机12的能力。

前面的描述本质上仅仅是说明性的,决不是为了限制本公开内容,其应用或者使用。本公开内容的广泛教导可以以各种形式来实现。因此,虽然本公开内容包括特定示例,但是本公开内容的真实范围不应该如此受限制,因为在研究附图、说明书和所附权利要求时,其他修改将变得明显。应当理解的是,方法内的一个或更多个步骤可以以不同的顺序(或同时)执行而不改变本公开内容的原理。此外,尽管以上将实施方式中的每一个描述为具有某些特征,但是关于本公开内容的任何实施方式描述的那些特征中的任一个或更多个可以实现为其他实施方式中的任一个的特征和/或与其他实施方式中的任一个的特征组合,即使该组合没有明确描述。换句话说,所描述的实施方式不是相互排斥的,并且一个或更多个实施方式彼此之间的置换仍然在本公开内容的范围内。

使用包括“被连接”、“被接合”、“被耦接”、“邻接”、“相邻”、“在……之上”、“上方”、“下方”、“被布置”的各种术语来描述元件之间(例如,模块、电路元件、半导体层等之间)的空间和功能关系。除非明确描述为“直接”,否则当在上述公开内容中描述第一元件和第二元件之间的关系时,该关系可以是在第一元件与第二元件之间不存在其他介入元件的直接关系,也可以是在第一元件与第二元件之间存在(空间上或功能上)一个或更多个介入元件的间接关系。如本文所使用的,短语“a、b和c中的至少一个”应当被解释为意指使用非排他性逻辑or的逻辑(a或b或c),并且不应当被解释为意指“a中的至少一个、b中的至少一个,以及c中的至少一个”。

在这些图中,如箭头所指示的箭头的方向通常表明要示出的关注信息(例如数据或指令)的流动。例如,当元件a和元件b交换多种信息,但是从元件a发送至元件b的信息与示出相关时,箭头可以从元件a指向元件b。这个单向箭头并不意指没有其他信息从元件b发送至元件a。此外,针对从元件a发送至元件b的信息,元件b可以向元件a发送对信息的请求或对信息的接收确认。

在本申请中,包括下面的定义,术语“模块”或术语“控制器”可以用术语“电路”来代替。术语“模块”可以指代以下内容、作为以下内容的一部分或者包括以下内容:专用集成电路(asic);数字、模拟或混合模拟/数字离散电路;数字、模拟或混合模拟/数字集成电路;组合逻辑电路;现场可编程门阵列(fpga);执行代码的处理器电路(共享、专用或组);存储由处理器电路执行的代码的存储器电路(共享、专用或组);提供所描述的功能的其他合适的硬件部件;或者上述中的一些或全部的组合,例如在片上系统中。

该模块可以包括一个或更多个接口电路。在一些示例中,接口电路可以包括连接至局域网(lan)、因特网、广域网(wan)或其组合的有线或无线接口。本公开内容的任何给定模块的功能可以分布在经由接口电路连接的多个模块中。例如,多个模块可以允许负载平衡。在进一步的示例中,服务器(也称为远程或云)模块可以代表客户端模块实现一些功能。

如上所使用的术语代码可以包括软件、固件和/或微代码,并且可以指代程序、例程、功能、类别、数据结构和/或对象。术语共享处理器电路包括执行来自多个模块的一些或全部代码的单处理器电路。术语组处理器电路包括与另外的处理器电路组合来执行来自一个或更多个模块的一些或全部代码的处理器电路。提及多处理器电路包括离散芯片上的多处理器电路、单个芯片上的多处理器电路、单处理器电路的多核、单处理器电路的多个线程或者上述组合。术语共享存储器电路包括存储来自多个模块的一些或全部代码的单存储器电路。术语组存储器电路包括与另外的存储器组合来存储来自一个或更多个模块的一些或全部代码的存储器电路。

术语存储器电路是术语计算机可读介质的子集。本文使用的术语计算机可读介质不包括通过介质(例如在载波上)传播的暂态电信号或电磁信号;术语计算机可读介质因此可以被认为是有形的和非暂态的。非暂态有形的计算机可读介质的非限制性示例是非易失性存储器电路(例如闪存电路、可擦除可编程只读存储器电路或者掩模只读存储器电路)、易失性存储器电路(例如静态随机存取存储器电路或者动态随机存取存储器电路)、磁存储介质(例如模拟或数字磁带或者硬盘驱动器)以及光存储介质(例如cd、dvd或蓝光光盘)。

本申请中所描述的设备和方法可以通过经由对通用计算机进行配置以执行在计算机程序中实现的一个或更多个特定功能而创建的专用计算机来部分或全部实现。以上描述的功能块、流程图部件和其他元件用作软件规范,其可以通过本领域的技术人员或程序员的日常工作而被翻译成计算机程序。

计算机程序包括存储在至少一个非暂态有形计算机可读介质上的处理器可执行指令。计算机程序还可以包括或者依赖于存储的数据。计算机程序可以包括与专用计算机的硬件交互的基本输入/输出系统(bios)、与专用计算机的特定设备交互的设备驱动器、一个或更多个操作系统、用户应用程序、后台服务、背景应用等。

计算机程序可以包括:(i)要被解析的描述性文本,诸如html(超文本标记语言)或者xml(可扩展标记语言)、(ii)汇编代码、(iii)通过编译器由源代码生成的目标代码、(iv)通过解释器执行的源代码、(v)由即时编译器编译和执行的源代码等。仅作为示例,可以使用包括以下语言的语法来编写源代码:c、c 、c#、objective-c、haskell、go、sql、r、lisp、fortran、perl、pascal、curl、ocaml、html5、ada、asp(活动服务器页面)、php、scala、eiffel、smalltalk、erlang、ruby、visuallua和

权利要求中列举的元件中均不意在成为在35u.s.c.§112(f)的含义内的装置加功能元件,除非使用短语“用于……的装置”或者在使用短语“用于......的操作”或“用于……的步骤”的方法权利要求的情况下明确地列举一个元件。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜