一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

储能型可调热辐射的电致-热致变色器件及其制备方法与流程

2021-10-09 02:14:00 来源:中国专利 TAG:可调 热辐射 变色 器件 制备方法

储能型可调热辐射的电致

热致变色器件及其制备方法
技术领域
1.本发明涉及储能型可调热辐射的电致

热致变色器件及其制备方法。


背景技术:

2.我国因建筑损失的能耗约占社会总能耗的30%,并且呈现逐年增长的趋势。因此为实现净零排放的目的,节约建筑能源的损耗成为我国必经之路。窗口的隔热性能较差,是建筑能量损失最为严重的部位,改善窗口的构造和类型可有效节约建筑能源的损耗。智能窗作为可响应外界刺激改变自身光学性质的智能窗口,可以选择性的阻挡和透过太阳光及其辐射的热量,相较于传统的商业玻璃具备优异的节能效果,同时色彩的可调节性也满足了人们对于建筑舒适度的要求。目前研究最为广泛的智能窗包括热致变色、电致变色、光致变色智能窗等。
3.热致变色智能窗通过响应环境温度的变化实现相转变,可逆的调节太阳光及其辐射的热量。热致变色材料光谱调节范围广,可有效满足建筑节能的需求,但其相变条件对于环境温度的依赖性过大,无法根据人们的需求实现智能化控制相转变。近年来,通过光热转化材料的引入一定程度上有效缩短了热致变色材料的相变响应时间,但依旧无法满足人们对于智能化调控窗口需求。
4.电致变色智能窗可根据人们的需求通过调控电压的大小可逆的调节窗口的光学性能和色彩变化,同时作为储能单元可将电能存储在电极材料中。但其主要调节太阳光中的可见光部分,忽略占绝大部分太阳光辐射能量的红外光部分(51%),无法从根本上满足近年来对于建筑节能的需求。进一步研究发现,电致变色材料也可作为光热转化材料,并且通过调节电压的大小改变其掺杂状态,可实现不同的热辐射调节。


技术实现要素:

5.本发明的目的是为了解决以上现有技术的不足,提供储能型可调热辐射的电致

热致变色器件及其制备方法。
6.储能型可调热辐射的电致

热致变色器件,从左至右依次为玻璃基底层,离子存储层,电解质层,电致变色层,透明导电层和玻璃基底层,左右两侧的离子存储层与透明导电层之间连接有太阳能电池板光伏器件。
7.作为进一步改进,所述的透明导电层为ito、fto或azo层。
8.作为进一步改进,所述的电致变色层为兼具热辐射的电致变色材料,兼具热辐射的电致变色材料包括有机类材料和无机类材料,有机类材料为聚苯胺(pani)、聚吡咯(ppy)或聚(3,4

乙烯二氧噻吩)(pedot),无机类材料为wo3、v2o5或tio2。
9.作为进一步改进,所述的电解质层为热致变色凝胶电解质,热致变色凝胶电解质由热致变色凝胶材料和电解质盐复合而成,热致变色凝胶材料包括聚n

异丙基丙烯酰胺(pnipam)、羟丙基纤维素(hpc)或羟甲基纤维素(hpmc),电解质盐包括氯化钾、氯化钠或高氯酸锂。
10.储能型可调热辐射的电致

热致变色器件的制备方法,包括以下步骤:
11.(1)电化学沉积法制备pani电致变色材料:配制电沉积液,含酸性掺杂剂和苯胺单体,以ag/agcl为参比电极、铂丝为对电极、洗净的fto/ito/azo导电玻璃为工作电极,设置一定的电压进行沉积;
12.(2)配制凝胶电解质:配制不同浓度的热致变色水凝胶和盐作为混合电解质;
13.(3)组装电致

热致变色器件:将尺寸为12.5
×
45.0mm的fto/ito/azo导电玻璃分别使用丙酮、乙醇、去离子水超声清洗;使用透明3m双面胶带固定空白fto/ito/azo导电玻璃框架,玻璃板的底部边缘、顶部边缘分别留出一定的空隙,便于hpc溶液的加入和导电玻璃中气体的排出;将已沉积pani的导电玻璃压附在上述玻璃基板上,底部空隙使用环氧树脂封装,待完全固化后,用注射器吸取上述配置好的凝胶电解质,从顶部空隙注入,待液体完全浸没夹层,使用环氧树脂封装处理,确保装置内不残留气泡、密封完好。
14.作为进一步改进,酸性掺杂剂为盐酸或硫酸溶液,酸性掺杂剂与苯胺单体的摩尔浓度比为1:1

1:5,沉积的电压为0.8

1.5v,沉积的时间为400

1000s。
15.作为进一步改进,水凝胶为羟丙基纤维素(hpc)、羟甲基纤维素(hpmc)或聚n

异丙基丙烯酰胺(pnipam),浓度为2.5

40g/ml,盐为氯化钾、氯化钠或高氯酸锂,浓度为0

2mol/l。
16.作为进一步改进,所述的导电玻璃清洗时间为10

30min,干燥条件为n2吹干,夹层宽度为1

10mm,固化时间为12

48h。
17.有益效果:
18.本发明设计巧妙,其中电致变色层为兼具热辐射可调、电能存储的电致变色材料组成,通过改变电压的大小实现不同的热辐射和色彩的调节,以及电能的存储,电能由太阳能电池板光伏器件提供,电解质层为具备可调相变温度的热致变色水凝胶盐复合材料组成。该电致

热致变色器件可调相变温度为20

48℃,可调相变速率为2

10min,可调色彩为淡黄色

绿色

蓝色

深蓝色。将其应用于智能窗口领域,与普通商业玻璃对比研究表明,电致

热致变色器件室内温度仅从21.3℃升至32℃,而商业玻璃则升温至高达45.3℃,较该电致

热致变色器件上升13.3℃,从而表明该器件可有效调节室内温度,具备优异的建筑节能效果。同时与太阳能电池板光伏器件联用可实现电能的存储,将其组装应用于耗能小灯泡实验中,小灯泡可持续发光2min,10min后电能完全释放回到初始状态,有效实现电能的存储和释放。在实现窗口储能和建筑节能的同时,色彩的多样性也满足人们对于建筑舒适度的要求。
附图说明
19.图1是储能型可调热辐射的电致

热致变色器件的总体结构示意图;
20.图2是储能型可调热辐射的电致

热致变色器件的制备组装及应用流程图;
21.图3是储能型可调热辐射的电致

热致变色器件的恒流充放电图;
22.图4是储能型可调热辐射的电致

热致变色器件在实际太阳能电池板供电下,器件的电压变化情况示意图;
23.图5是储能型可调热辐射的电致

热致变色器件在存储电能后应用于小灯泡中,灯泡变化情况示意图;
24.图6是储能型可调热辐射的电致

热致变色器件在施加不同电压下的升温速率;
25.图7是能型可调热辐射的电致

热致变色器件与商业玻璃,电致变色玻璃,热致变色玻璃建筑节能测试对比图。
具体实施方式
26.为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
27.储能型可调热辐射的电致

热致变色器件,从左至右依次为玻璃基底层,离子存储层,电解质层,电致变色层,透明导电层和玻璃基底层,左右两侧的离子存储层与透明导电层之间连接有太阳能电池板光伏器件。
28.其中,所述的透明导电层为ito、fto或azo层。
29.其中,所述的电致变色层为兼具热辐射的电致变色材料,兼具热辐射的电致变色材料包括有机类材料和无机类材料,有机类材料为聚苯胺(pani)、聚吡咯(ppy)或聚(3,4

乙烯二氧噻吩)(pedot),无机类材料为wo3、v2o5或tio2。
30.其中,所述的电解质层为热致变色凝胶电解质,热致变色凝胶电解质由热致变色凝胶材料和电解质盐复合而成,热致变色凝胶材料包括聚n

异丙基丙烯酰胺(pnipam)、羟丙基纤维素(hpc)或羟甲基纤维素(hpmc),电解质盐包括氯化钾、氯化钠或高氯酸锂。
31.储能型可调热辐射的电致

热致变色器件的制备方法,包括以下步骤:
32.(1)电化学沉积法制备pani电致变色材料:配制电沉积液,含酸性掺杂剂和苯胺单体,以ag/agcl为参比电极、铂丝为对电极、洗净的fto/ito/azo导电玻璃为工作电极,设置一定的电压进行沉积;
33.(2)配制凝胶电解质:配制不同浓度的热致变色水凝胶和盐作为混合电解质;
34.(3)组装电致

热致变色器件:将尺寸为12.5
×
45.0mm的fto/ito/azo导电玻璃分别使用丙酮、乙醇、去离子水超声清洗;使用透明3m双面胶带固定空白fto/ito/azo导电玻璃框架,玻璃板的底部边缘、顶部边缘分别留出一定的空隙,便于hpc溶液的加入和导电玻璃中气体的排出;将已沉积pani的导电玻璃压附在上述玻璃基板上,底部空隙使用环氧树脂封装,待完全固化后,用注射器吸取上述配置好的凝胶电解质,从顶部空隙注入,待液体完全浸没夹层,使用环氧树脂封装处理,确保装置内不残留气泡、密封完好。
35.其中,酸性掺杂剂为盐酸或硫酸溶液,酸性掺杂剂与苯胺单体的摩尔浓度比为1:1

1:5,沉积的电压为0.8

1.5v,沉积的时间为400

1000s。
36.其中,水凝胶为羟丙基纤维素(hpc)、羟甲基纤维素(hpmc)或聚n

异丙基丙烯酰胺(pnipam),浓度为2.5

40g/ml,盐为氯化钾、氯化钠或高氯酸锂,浓度为0

2mol/l。
37.其中,所述的导电玻璃清洗时间为10

30min,干燥条件为n2吹干,夹层宽度为1

10mm,固化时间为12

48h。
38.储能型可调热辐射的电致

热致变色器件在建筑节能储能窗口中的应用,包括以下步骤:
39.步骤一:组装到模拟建筑窗口中。其特征在于,步骤一种模拟建筑采用建筑水泥堆砌而成,尺寸为15.0
×
15.0
×
12.5cm,模拟实际生产生活中建筑墙体。采用太阳光辐照窗口,太阳能电池板光伏器件作为电能供给单元。在自制建筑中放入比色皿,添加1

2ml去离
子水,太阳辐照窗口。温度传感器记录比色皿中水温的变化情况,从而反映窗口对于建筑的节能保温效果。
40.步骤二:对比研究与商业玻璃,电致变色玻璃,热致变色玻璃节能效果上的差异,测试太阳能辐照30min和冷却30min后比色皿中水温的变化。
41.步骤三:将电致

热致变色器件与太阳能电池板光伏器件相联用,将太阳能转化为电能并存储于电致

热致变色器件中。将其应用于耗能小灯泡实验中,观察小灯泡点亮和熄灭情况反映电致

热致变色器件的电能存储和释放性能。
42.实施例1
43.(1)电化学沉积法制备pani电致变色材料:配制电沉积液,含硫酸掺杂剂和苯胺单体,硫酸与苯胺单体的摩尔浓度比为1:1,以ag/agcl为参比电极、铂丝为对电极、洗净的fto导电玻璃为工作电极,沉积的电压为0.8v,沉积的时间为1000s。
44.(2)配制凝胶电解质:配制2.5

40g/ml浓度的hpc,得到最优hpc浓度,将0

2mol/l浓度的氯化钾与其混合。
45.(3)玻璃基底的清洗:将尺寸为12.5
×
45.0mm的fto导电玻璃分别使用丙酮、乙醇、去离子水分别超声清洗10min,n2条件下吹干。
46.(4)组装电致

热致变色器件:使用透明3m双面胶带固定空白fto导电玻璃框架,玻璃板的底部边缘,顶部边缘分别留出一定的空隙,便于电解质溶液的加入和导电玻璃中气体的排出。将已沉积pani的导电玻璃压附在上述玻璃基板上,底部空隙使用环氧树脂封装,固化12h。用注射器吸取上述配置好的复合凝胶电解质,从顶部空隙注入,待液体完全浸没夹层,使用环氧树脂封装处理,固化12h。
47.(5)组装到采用建筑水泥堆砌而成的模拟建筑窗口中。尺寸为15.0
×
15.0
×
12.5cm,模拟实际生产生活中建筑墙体。太阳光辐照窗口(5
×
6cm),在自制建筑中放入比色皿,添加1ml去离子水。温度传感器记录比色皿中水温的变化情况,从而反映窗口对于建筑的节能保温效果。
48.(6)对比研究与商业玻璃,电致变色玻璃,热致变色玻璃节能效果上的差异,测试辐照30min和冷却30min后比色皿中水温的变化,结果如图6所示。辐照30分钟后,由于热致变色玻璃和电致

热致变色玻璃的不透明性使模拟房屋的温度变化较小,仅从21.3℃升至32℃和33.2℃,而普通玻璃与电致变色窗口则升温至45.3℃和43.9℃,表明电致

热致变色器件具备优异的节能效果。
49.(7)将电致

热致变色器件与太阳能电池板光伏器件相联用,通过太阳光辐照将其转化为电能并存储于电致

热致变色器件中。电压可达到1.18v,随着自放电60min,电压降为0.37v。将其组装应用于耗能小灯泡实验中,小灯泡可持续发光2min,10min后电能完全释放回到初始状态。
50.实施例2
51.(1)电化学沉积法制备pani电致变色材料:配制电沉积液,含硫酸掺杂剂和苯胺单体,硫酸与苯胺单体的摩尔浓度比为1:2,以ag/agcl为参比电极、铂丝为对电极、洗净的fto导电玻璃为工作电极,沉积的电压为1v,沉积的时间为800s。
52.(2)配制凝胶电解质:配制2.5

40g/ml浓度的hpc,得到最优浓度,将0

2mol/l浓度的氯化钾与其混合。
53.(3)玻璃基底的清洗:将尺寸为12.5
×
45.0mm的fto导电玻璃分别使用丙酮、乙醇、去离子水分别超声清洗20min,n2条件吹干。
54.(4)组装电致

热致变色器件如附图2所示:使用透明3m双面胶带固定空白fto导电玻璃框架,玻璃板的底部边缘,顶部边缘分别留出一定的空隙,便于电解质溶液的加入和导电玻璃中气体的排出。将已沉积pani的导电玻璃压附在上述玻璃基板上,底部空隙使用环氧树脂封装,固化24h。用注射器吸取上述配置好的复合凝胶电解质,从顶部空隙注入,待液体完全浸没夹层,使用环氧树脂封装处理,固化24h。附图4对比电致

热致变色器件在不同电压(

0.2,0,1v)下以及与商业玻璃的升温速率作比较,与普通商业玻璃相比,电致

热致变色器件温度随着电压升高呈现明显的上升趋势,6min温度分别升高6.8,18.9,27.5,30.1℃。主要归结于pani掺杂状态的变化导致pani吸收峰发生红移,增强对于光的吸收,从而实现人工调节电压改变窗口温度的目的。
55.(5)组装到采用建筑水泥堆砌而成的模拟建筑窗口中。尺寸为15.0
×
15.0
×
12.5cm,模拟实际生产生活中建筑墙体。太阳光辐照窗口(5
×
6cm),在自制建筑中放入比色皿,添加1.5ml去离子水。温度传感器记录比色皿中水温的变化情况,从而反映窗口对于建筑的节能保温效果。
56.(6)对比研究与商业玻璃,电致变色玻璃,热致变色玻璃节能效果上的差异,测试辐照30min和关闭光源冷却30min后比色皿中水温的变化。
57.(7)将电致

热致变色器件与太阳能电池板光伏器件相联用,通过太阳光辐照将其转化为电能并存储于电致

热致变色器件中。电压可达到1.23v,随着自放电80min,电压降为0.19v。将其组装应用于耗能小灯泡实验中,小灯泡可持续发光3min,15min后电能完全释放回到初始状态。
58.实施例3
59.(1)电化学沉积法制备pani电致变色材料:配制电沉积液,含硫酸掺杂剂和苯胺单体,硫酸与苯胺单体的摩尔浓度比为1:5,以ag/agcl为参比电极、铂丝为对电极、洗净的fto导电玻璃为工作电极,沉积的电压为1.5v,沉积的时间为400s。
60.(2)配制凝胶电解质:配制2.5

40g/ml浓度的pnipam,得到最优浓度,将0

2mol/l浓度的氯化钾与其混合。
61.(3)玻璃基底的清洗:将尺寸为12.5
×
45.0mm的fto导电玻璃分别使用丙酮、乙醇、去离子水分别超声清洗30min,n2条件吹干。
62.(4)组装电致

热致变色器件:使用透明3m双面胶带固定空白fto导电玻璃框架,玻璃板的底部边缘,顶部边缘分别留出一定的空隙,便于电解质溶液的加入和导电玻璃中气体的排出。将已沉积pani的导电玻璃压附在上述玻璃基板上,底部空隙使用环氧树脂封装,固化48h。用注射器吸取上述配置好的复合凝胶电解质,从顶部空隙注入,待液体完全浸没夹层,使用环氧树脂封装处理,固化48h。
63.(5)组装到采用建筑水泥堆砌而成的模拟建筑窗口中如附图2所示。尺寸为15.0
×
15.0
×
12.5cm,模拟实际生产生活中建筑墙体。太阳光辐照窗口(5
×
6cm),在自制建筑中放入比色皿,添加2ml去离子水。温度传感器记录比色皿中水温的变化情况,从而反映窗口对于建筑的节能保温效果。
64.(6)对比研究与商业玻璃,电致变色玻璃,热致变色玻璃节能效果上的差异,测试
辐照30min和关闭光源冷却30min后比色皿中水温的变化。
65.(7)将电致

热致变色器件与太阳能电池板光伏器件相联用如附图4所示,通过太阳光辐照将其转化为电能并存储于电致

热致变色器件中。电压可达到1.26v,随着自放电90min,电压降为0.26v。将其组装应用于耗能小灯泡实验中,小灯泡可持续发光3.5min,20min后电能完全释放回到初始状态。
66.本发明将热致变色材料与兼具储能型可调热辐射的电致变色材料相联用,通过改变电压调节电致变色材料的掺杂状态,从而得到动态的热辐射调节,可根据实际需求加快或减缓热致变色材料的相变速率,实现热致变色窗口的智能化调控。此外,本发明与太阳能电池板光伏器件联用,将太阳能转化为电能,一方面可调节电致

热致变色器件的状态,另一方面掺杂态的电致

热致变色器件作为电能存储单元,可实现电能的存储和释放,应用于建筑耗能元件可有效节约建筑能耗,色彩的多样性同时也可满足人们对于建筑舒适度的要求。
67.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜