一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于Michelson光纤干涉仪的大范围应变传感器的制作方法

2021-10-24 11:33:00 来源:中国专利 TAG:干涉仪 应变 传感器 光纤 michelson

基于michelson光纤干涉仪的大范围应变传感器
技术领域
1.本发明涉及应变传感器技术领域,具体而言涉及一种基于michelson光纤干涉仪的大范围应变传感器。


背景技术:

2.光纤传感器作为一种将被测对象转换为可测的光信号的仪器,具有极高的灵敏度和精度,并且抗电磁干扰,耐高温高压,耐腐蚀,高绝缘强度,可用于高压、电器噪声、高温、腐蚀和其他恶劣环境,且几何形状具有多方面的适应性,可制成任意形状的传感各种不同物理信息(声、磁、温度、旋转、应变等)的光纤传感器。现有常见的应变传感器大多基于法布里

珀罗干涉仪(fpi),根据已有文献,有人通过二氧化碳激光器将光纤端面形成弧形,然后通过电弧放电的方法制作了fpi,此方法制成的应变传感器虽然灵敏度能够达到几十皮米每微应变,但是二氧化碳激光加工手段复杂,设备昂贵,成本太高不利于推广使用。有人通过放电的手段将两端高敏单模光纤的端面制作成内凹陷型,然后通过熔接机将两根光纤的内陷端面熔接在一起,中间为空气腔,整个结构可以看成是一个法布里

珀罗腔(f

p),灵敏度仅可以达到,虽然成本大大降低,但是传感器的灵敏度也随之下降。目前为止光纤干涉传感器的灵敏度尚未突破;并且高灵敏度传感器的测量范围往往很小,通常为数十至数百微应变,导致实际应用中存在困难。而大范围的应变传感器灵敏度为了实现较大的应变长度,其灵敏度通常不高。
3.例如,专利号为cn106568466a的发明中提出了一种细芯微结构光纤干涉仪传感器及其温度、应变检测方法,包括宽带光源、传感头和光谱仪,传感头为带空气包层的细芯微结构光纤,细芯微结构光纤两端分别通过单模光纤连接宽带光源和光谱仪。宽带光源出射的光经过单模光纤后进入到细芯微结构光纤,由于单模光纤与细芯微结构光纤模场失配,光谱仪输出光谱包括干涉条纹光谱,温度变化或者应变会引起干涉条纹波谷波长漂移,因此在获知干涉条纹波谷波长漂移的情况下,可对应计算出温度变化或应变。该发明中的传感器需要细芯微结构光纤支持,且测量范围较小。
4.综上所示,目前所报道的光纤应变传感器普遍存在造价昂贵、灵敏度低、测量范围小等缺点。


技术实现要素:

5.本发明针对现有技术中的不足,提供一种基于michelson光纤干涉仪的大范围应变传感器,具有高灵敏度,大动态范围,制作过程简单与成本低廉的优点,利于大规模市场应用。
6.为实现上述目的,本发明采用以下技术方案:第一方面,本发明实施例提出了一种基于michelson光纤干涉仪的大范围应变传感器,所述应变传感器包括宽带光源、2
×
2光纤耦合器、传感臂、参考臂和光谱分析仪;所述宽带光源、光谱分析仪、传感臂和参考臂分别连接在2
×
2光纤耦合器的四个
接口上;所述传感臂和参考臂均采用单模光纤;所述宽带光源发出的光束经2
×
2光纤耦合器分为两束相干光分别传输到传感臂和参考臂中,并在两个单模光纤的端面处发生反射,重新回到光纤耦合器;所述传感臂的长度大于参考臂的长度,且两者之间的长度差满足以下条件:使经两者反射后重新回到光纤耦合器的两束反射光发生干涉,且干涉光经光纤耦合器传输至光谱分析仪;所述光谱分析仪对接收到的干涉光进行分析,对传感臂探测到的应变量所属范围进行评估,如果应变量属于第一范围,采用波长解调的方式对干涉光数据进行处理,根据谱线移动量推算得到实际应变量;如果应变量属于第二范围,采用相位解调的方式对干涉光数据进行处理,根据空间频率移动量推算得到实际应变量;所述第一范围和第二范围不重叠且第一范围的取值小于第二范围的取值。
7.可选地,所述传感臂和参考臂的长度差为50um。
8.所述对传感臂探测到的应变量所属范围进行评估的过程包括:根据下述公式计算得到自由光谱范围 fsr:式中,λ为被追踪波谷的波长,l为参考臂与传感臂之间的长度差,n为传感臂和参考臂所使用到的单模光纤的折射率;为m级次的波谷;为m

1次级的波谷;根据下述公式计算波长的移动范围:式中,n代表施加于传感光纤上的应变量;如果波长的移动范围在自由光谱范围内,则应变量属于第一范围,否则,应变量属于第二范围。
9.可选地,当应变量属于第二范围时,根据下述公式计算得到实际应变量:可选地,当应变量属于第二范围时,根据下述公式计算得到实际应变量:式中,f代表反射谱线的空间频率。
10.第二方面,本发明实施例提出了一种基于michelson光纤干涉仪的大范围应变传感器的工作方法,所述工作方法包括以下步骤:s1,取两段长度完全相同的单模光纤放在微位移平台上,在显微镜下观察确定一个起点,从起点向同一个方向截取合适的长度,两段单模光纤截断点相距50um,使两段光纤产生初始的光程差;将较长的那一段单模光纤作为传感臂,短的作为参考臂;s2,将宽带光源和光谱分析仪连接到2
×
2光纤耦合器一端的两个接口上,传感臂和参考臂分别连接到光纤耦合器另一端的两个接口上;s3,通过观察光谱分析仪中所显示谱线的自由光谱范围以确定传感光纤和参考光
纤的长度差,判断切割的是否合适,如果不合适,返回步骤s1重新切割,否则,进入步骤s4;s4, 根据下述公式计算得到自由光谱范围fsr:式中,λ为被追踪波谷的波长,l为参考臂与传感臂之间的长度差,n为传感臂和参考臂所使用到的单模光纤的折射率;为m级次的波谷;为m

1次级的波谷;s5,根据下述公式计算波长的移动范围:式中,n代表施加于传感光纤上的应变量;如果波长的移动范围在自由光谱范围内,结束流程,将计算得到的n作为实际应变量;否则,进入步骤s6;s6,根据下述公式计算得到实际应变量n:s6,根据下述公式计算得到实际应变量n:式中,f代表反射谱线的空间频率。
11.本发明的有益效果是:(1)本发明提出的大范围应变传感器利用两根独立的单模光纤分别作为michelson干涉仪的传感臂与参考臂,通过光纤切割刀与微位移平台给予两根单模光纤不同的初始长度,由此产生恒定的光程差,从而导致干涉现象的发生。在进行应变测量时,传感臂长度的改变导致光程差的改变,造成光的干涉谱线发生移动,从而做到对应变进行高精度测量。
12.(2)本技术提出的大范围应变传感器在较小应变范围内采用高精度波长解调的方式,拥有极高的灵敏度,根据理论测算,约为同类光纤干涉传感器的数千倍;在大范围测量时内采用相位解调的方法,不仅可以实现零至数万微应变的测量范围,还可以规避大范围应变带来的波长漂移与噪声干扰。
13.(3)本发明提出的大范围应变传感器只需要利用单模光纤与简单的熔接、拼接技术就可以实现,成本低廉。
附图说明
14.图1是本发明实施例的基于michelson光纤干涉仪的大范围应变传感器的结构示意图。
15.图2(a)是本发明实施例的传感臂的结构示意图;图2(b)是本发明实施例的标注了截断点的参考臂的原始单模光纤的结构示意图。
16.图3为本发明实施例的光在光纤末端的反射过程示意图。
具体实施方式
17.现在结合附图对本发明作进一步详细的说明。
18.需要注意的是,发明中所引用的如“上”、“下”、“左”、“右”、“前”、“后”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
19.实施例一图1是本发明实施例的基于michelson光纤干涉仪的大范围应变传感器的结构示意图。参见图1,该应变传感器包括宽带光源、2
×
2光纤耦合器、传感臂(传感光纤)、参考臂(参考光纤)和光谱分析仪。
20.宽带光源、光谱分析仪、传感臂和参考臂分别连接在2
×
2光纤耦合器的四个接口上;所述传感臂和参考臂均采用单模光纤。
21.宽带光源发出的光束经2
×
2光纤耦合器分为两束相干光分别传输到传感臂和参考臂中,并在两个单模光纤的端面处发生反射,重新回到光纤耦合器。
22.传感臂的长度大于参考臂的长度,且两者之间的长度差满足以下条件:使经两者反射后重新回到光纤耦合器的两束反射光发生干涉,且干涉光经光纤耦合器传输至光谱分析仪。当应力作用在传感臂上时,这段光纤的腔长发生改变,传感臂与参考臂的光程差随之改变,引起干涉谱线移动,此时,即根据干涉谱线的移动量从而对应变进行高精度测量。另外,该应变传感器仅利用单模光纤,价格低廉,减少成本;并且应变造成的腔长变化,完全作用在传感臂的腔长上,大幅度提高了装置的灵敏度。
23.本实施例创新地利用了两段单模光纤实现michelson干涉仪,一根光纤为传感臂,一根光纤为参考臂。一束光经过2
×
2光纤耦合器之后,分为两束相干光分别传输到传感臂与参考臂中。两束光在光纤的端面处发生反射后,重新回到光纤耦合器并发生干涉,干涉光从耦合器的另一端输出,连接到光谱分析仪。当传感光纤感受到应变时,两束光的光程差随之改变,反映为谱线的移动(小范围)或者自由光谱范围的变化(大范围)。针对两种不同的情况,分别采用波长解调与相位解调对干涉数据进行处理。具体的,光谱分析仪对接收到的干涉光进行分析,对传感臂探测到的应变量所属范围进行评估,如果应变量属于第一范围,采用波长解调的方式对干涉光数据进行处理,根据谱线移动量推算得到实际应变量;如果应变量属于第二范围,采用相位解调的方式对干涉光数据进行处理,根据空间频率移动量推算得到实际应变量;所述第一范围和第二范围不重叠且第一范围的取值小于第二范围的取值。本实施例通过将应力作用产生的微小的形变施加到传感光纤上,使得michelson干涉仪的光程差发生变化。根据干涉图谱的移动量测出两束反射光光程差的改变进而得出外界施加的应力。波长解调与相位解调同时应用的灵活手段既顾及到了小范围精确测量的需求,同时满足了大范围动态测的场景。
24.当光被耦合器分束后,在参考臂与传感臂的末端分别发生反射,如图3所示。两束反射光回到耦合器的位置时由于固定的相位差,发生干涉,干涉光强可以被描述为:其中,i是干涉谱线的强度,i1是参考臂中反射光的光强,i2是传感臂中反射光的光强,是传感臂在施加外力的作用下发生形变而产生的相移,可以被描述为:
其中为光的波长,n为该大范围应变传感器中所使用到的单模光纤的纤芯折射率,l为参考臂与传感臂之间的长度差,为初始相位。一般情况下,初始相位默认为0。当相移满足以下条件:此时位于波谷的波长值可以被表示为:这是一个典型的michelson干涉仪,他的自由光谱范围(fsr)可以被描述为m级次的波谷与其相邻波谷的距离:。
25.当小范围应变作用在传感光纤上时,其波谷的移动代表了传感器的灵敏度,并且可以被描述为:式中,n代表施加于传感光纤上的应变量,它会导致光纤的拉伸,从而造成波谷的平移。这一公式可以被用于描述小范围应变时,波长解调的方式。当应变范围扩大,波长的移动超出仪器的测量范围,则应该采用相位解调的方式,干涉谱线的空间频率可以被描述为:式中,f代表反射谱线的空间频率因此,应变导致空间频率的移动可以被描述为:。
26.实施例二本发明实施例提出了一种基于michelson光纤干涉仪的大范围应变传感器的工作方法,该工作方法包括以下两个阶段:(一)制备过程制备材料需要单模光纤(smf

28, corning),光谱分析仪(aq6370d, yokogawa, optical spectrum analyzer, osa)、宽带光源(benchtop broadband source, bbs)、光纤切割刀(ckfc

1, commking)微位移平台、光纤夹具,显微镜,拉力传感器,2
×
2光纤耦合器。
27.首先如图2(a)和图2(b)所示,取两段长度完全相同的单模光纤放在微位移平台上面,在显微镜下观察确定一个起点,从起点向同一个方向截取合适的长度,两段单模光纤截断点相距50um。两段光纤会产生初始的光程差。同时,将较长的那一段单模光纤作为传感臂,短的作为参考臂。其中,图2(a)是传感臂的结构示意图。图2(b)是标注了截断点的参考臂的原始单模光纤的结构示意图。三角形标记所在位置就是截断点,图2(a)中,截断点维持
在原始单模光纤顶端,图2(b)中,截断点距离原始单模光纤顶端50um,从而截取后的参考臂的长度相对于传感臂短了50um。
[0028]2×
2光纤耦合器两端各有两个接口,连接时,将宽带光源(bbs)和光谱分析仪(osa)连接到一端的两个接口上。传感光纤和参考光纤分别连接到另一端的两个接口上。光会通过耦合器1:1的分配到传感光纤和参考光纤上。两路反射光返回到耦合器中时,发生干涉,并且传播到光谱分析仪(osa)中,如图3所示。由于传感光纤比参考光纤长50um,通过观察光谱分析仪中所显示谱线的自由光谱范围(fsr)确定实际上传感光纤和参考光纤的长度差,判断切割的是否合适,不合适的话,重新切割。
[0029]
该大范围应变传感器中未利用到熔接机等设备,只需要将单模光纤进行割断,加工手段简单,有利于大规模市场应用。
[0030]
(二)测量过程经过上述步骤之后,实验装置连接完成,光从宽带光源(bbs)中发出,经过光耦合器,进入两段光纤,将传感臂去除两侧的smf涂层,将其一侧粘在固定台阶上,另一侧粘贴到距离为20cm的平移阶段,如图1所示。平移阶段移走一段距离,通过光谱分析仪得出在应变范围内的光谱变化,根据干涉图谱的谷值呈现的红移得出应变的大小。
[0031]
两束反射光回到耦合器的位置时由于固定的相位差,发生干涉,干涉光强可以被描述为:其中,i是干涉谱线的强度,i1是参考臂中反射光的光强,i2是传感臂中反射光的光强,是传感臂在施加外力的作用下发生形变而产生的相移,可以被描述为:式中,n为本装置中所使用到的单模光纤的折射率,λ为被追踪波谷的波长,l为参考臂与传感臂之间的长度差。这是一个典型的michelson干涉仪,他的自由光谱范围(fsr)可以被描述为m级次的波谷与其相邻波谷的距离:。
[0032]
当小范围应变作用在传感光纤上时,其波谷的移动代表了传感器的灵敏度,并且可以被描述为:式中,n代表施加于传感光纤上的应变量,它会导致光纤的拉伸,从而造成波谷的平移。这一公式可以被用于描述小范围应变时,波长解调的原理。当应变范围扩大,波长的移动超出仪器的测量范围,则应该采用相位解调的方式,干涉谱线的空间频率可以被描述为:式中,f代表反射谱线的空间频率因此,应变导致空间频率的移动可以被描述为:

[0033]
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜