一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于制造微机械装置的组合式激光钻孔和等离子蚀刻方法以及微机械装置与流程

2021-10-26 12:45:45 来源:中国专利 TAG:空腔 衬底 通道 微机 通往
用于制造微机械装置的组合式激光钻孔和等离子蚀刻方法以及微机械装置与流程

本发明涉及一种微机械装置,具有第一衬底、具有至少一个第一空腔、具有通往第一空腔的封闭通道,其中,该通道穿过第一衬底延伸。



背景技术:

由文献wo2015/120939al已知一种用于有针对性地调整mems元件的空腔中的内压力的方法。在此,在罩晶片中或传感器晶片中产生狭窄的、通往mems空腔的进入通道。空腔通过进入通道被灌注以希望的气体和希望的内压力。之后,通过激光局部加热围绕进入通道的区域。在此,衬底材料局部液化并且在凝固时严密地封闭进入通道。

当想要在具有两个空腔的一个mems元件中要在两个空腔中产生不同的内压力时,大多利用这种方法(图1)。

当例如想要将加速度传感器和旋转速度传感器组合时,这是必要的。加速度传感器为了优化的工作方式需要高的内压力,相反,旋转速度传感器需要小得多的内压力。该方法允许在每个空腔中设定各自的优化的内压力。

当在空腔中由于在过程进行期间的气化而不能达到很低的内压力时,也可以利用该方法,因而能够事后调整该内压力。

在离散的布置中仅实现mems元件并且分析处理电路单独设置,在该布置中可以同时进行进入通道(1)的产生和电接触面(2)的空出。在这样的布置中通常使用相对薄的罩晶片。在罩晶片(3)键合到传感器晶片(4)上之后可以通过光掩模和沟道方法在一个步骤中既产生通往第一空腔的狭窄通道开口、又产生到接触面的大通道开口。

在德国专利de102011103516b4中提出,mems结构借助沉积多晶硅层来包封并且然后借助激光钻孔工艺在多晶硅层中产生进入通道。然后在mems空腔中设定限定的气氛并且借助激光封闭工艺来封闭该进入通道。这样施加进入通道与仅施加一个进入通道的单纯沟道工艺相比是成本有利的。缺点是,在激光钻孔过程中总是形成浓烟,该浓烟能够危害mems结构。进一步不利的是,激光钻孔工艺不能针对不同材料很有选择性。也就是说,在激光钻孔时,与材料无关地不但产生通过多晶硅层的通道孔,而且同时在位于其下面的层中钻出孔。



技术实现要素:

找到了允许在厚的衬底中成本有利地制造进入通道的一种方法或一种布置。该进入通道应在空腔中终止并且在那里在制造过程中不产生浓烟和其它脏物。该方法也应该一旦达到空腔就停止并且不继续钻入位于空腔下面的材料中。此外,该方法应在衬底表面上产生一些很小的进入孔,这些进入孔可以借助激光熔化方法来封闭。

本发明涉及一种微机械装置,具有第一衬底、具有至少一个第一空腔、具有通往第一空腔的封闭通道,其中,所述通道穿过第一衬底延伸。本发明的核心在于,该通道具有激光钻孔的第一部分区段和等离子蚀刻的第二部分区段,其中,等离子蚀刻的第二部分区段具有通到第一空腔的开口,其中,该通道在第一部分区段中通过由至少第一衬底的熔化物构成的熔化封口部来封闭。

本发明的有利构型设置,第一衬底具有附加层并且该通道也通过附加层的熔化物来封闭。

有利地,该微机械装置是混合集成的微机械装置,其中,该装置具有带有asic电路的第二衬底。

本发明还涉及用于制造微机械装置的组合式激光钻孔和等离子蚀刻方法。

有利地,通过根据本发明的方法完全避免空腔中的浓烟。有利地,昂贵的用于等离子蚀刻过程的光掩模不是必要的。激光钻孔过程产生为沟道工艺所必需的掩模。有利地,激光钻孔工艺和沟道工艺之间的校准通过附加层而自校准地进行,排除错位。有利地,可以通过两种去除方法即激光钻孔和沟槽蚀刻的结合,达到进入通道的在总和上更大的长径比。通过合适地选择附加层,有利地可以在激光钻孔过程中实现更小的通道开口。有利地,可以同时利用附加层来产生更稳定的激光再封闭过程,例如其方式是,附加层的材料能够更容易地熔化,或者与衬底的材料、尤其硅形成共晶体。有利地,根据本发明的组合式激光钻孔和等离子蚀刻方法可以与限定地引入合适的气氛以及在每个任意位置上封闭一起集成在整个mems制造工艺中。该步骤次序尤其也可以完全集成在晶片制造工艺的末尾。因此,不必改变本来的制造工艺。

根据本发明的方法的有利构型设置,在步骤(c)之后去除附加层。有利地,附加层可以直接在步骤(c)之后去除或者在之后的方法步骤中去除。

根据本发明的方法的有利构型设置,在步骤(e)之后在第一空腔中设定具有确定的组成的气氛和确定的压力。

根据本发明的方法的有利构型设置,在步骤(f)中也进行附加层的材料的激光熔化。

有利地,所述通道也通过附加层的熔化物来封闭。

根据本发明的方法的有利构型设置,步骤(c)和/或步骤(d)基本上在大气压力下执行。

根据本发明的方法的有利构型设置,在步骤(c)中以第一激光或者也以第一激光运行参数、尤其以很短的波长或很强的聚焦或以很短的脉冲长度执行激光钻孔,在步骤(d)中以第二激光或者也以与第一激光运行参数不同的第二激光运行参数、尤其以较长的波长或以较弱的聚焦或以较长的脉冲长度执行激光钻孔。

根据本发明的方法的有利构型设置,在步骤(d)中,首先以第一激光运行参数执行激光钻孔直至确定的深度,接着以第二激光运行参数执行激光钻孔。

附图说明

图1示出现有技术中的具有带有封闭通道的空腔的微机械装置;

图2a到2g示出根据本发明的用于制造微机械装置的组合式激光钻孔和等离子蚀刻方法的实施例;

图3示意性地示出根据本发明的用于制造微机械装置的激光钻孔和等离子蚀刻方法。

具体实施方式

图1示出现有技术中的具有带封闭通道的空腔的微机械装置。示意性地示出具有mems晶片4和罩晶片3的微机械装置。罩晶片3具有进入通道1,该进入通道借助熔化封口部5封闭。在罩晶片3的槽口中布置电接触面2。该微机械装置具有第一空腔100和第二空腔200,该第一空腔例如包含旋转速度传感器,该第二空腔例如包含加速度传感器。空腔200基本含有带压力的大气和在键合mems晶片4和罩晶片3时的过程气体的组合。由此确保加速度传感器的良好减振。空腔100已经通过通道1抽真空并且通道1接着借助熔化封口部5封闭。由此确保旋转速度传感器的振动器的高品质。箭头标记用于制造熔化封口部5的激光封闭过程的作用方向。

在微机械传感器或其它微机械装置的离散布置中仅一个实现mems元件而分析处理电路或其它控制电路单独设置,在该离散布置中,可以在空出电接触面2的同时制造进入通道1。在这种布置中大多使用相对薄的罩晶片3。在将罩晶片3键合在传感器晶片4上之后,可以通过光掩模和沟道方法在一个共同的步骤中既产生通往第一空腔100的狭窄的通道开口1,又产生到接触面2的大的通道开口。

在罩晶片厚的情况下难以制造通往第一空腔100的通道开口1。通道开口1不允许太大,因为否则不再能通过局部熔化和接着凝固来封闭。产生狭窄的通道并且同时达到很深、即具有高的长径比的沟道方法是困难的,并且随着长径比增加而越来越缓慢和费事。

如果不与接触区域2的打开同时制造通往第一空腔100的通道1,则必须针对两个过程分别设置自己的光掩模。这是费事和昂贵的,并且部分地也在技术上难以实施。

图2a到g示出根据本发明的用于制造微机械装置的组合式激光钻孔和等离子蚀刻方法的一个实施例。图2a首先示出所提供的晶片复合体,具有mems晶片和带asic分析处理电路的衬底。为了应用所谓的混合集成,在晶片层面上将带有asic分析处理电路的第二衬底15直接与带有第一衬底11的mems晶片7组合。替代地,在asic分析处理电路上施加mems元件并且将该晶片用罩衬底包封。为了得到尽可能紧凑的构件,也可以通过asic衬底15或mems衬底11设置敷镀通孔(transsiliconvias,tsv’s经硅通孔)8,以便产生在asic电路、尤其mems传感器分析处理电路与周围之间的电连接。图2b示出施加附加层9到衬底11上。根据图2c,借助用脉冲激光能量进行的激光钻孔方法在附加层9中钻出孔10。进一步地,然后根据图2d,同样借助脉冲激光使该孔加深到第一衬底11的处于附加层下面的材料中并且向前推进到第一衬底11的第一部分区段12中。在达到位于下面的第一空腔100之前,如图2e所示,转换到等离子蚀刻方法,尤其沟道方法。附加层9用作等离子蚀刻方法的掩模。借助作为掩模的该层,用等离子蚀刻方法将进入通道1穿过第一衬底11的第二部分区段13一直蚀刻到第一空腔100,在该第一空腔中例如存在mems功能元件。箭头在这里标记沟道方法的作用方向。在该空腔中,尤其在该空腔的与进入通道1对置的壁上,可以可选地设置停止层14,使得等离子蚀刻方法不继续蚀刻到mems功能元件或asic电路中或者进入到第二衬底中。然后,将该空腔经过进入通道以希望的气体和希望的内压力灌注。图2f示出本发明方法的一个变型方案,在该变型方案中,附加层9随后被去除。附加层9例如可以由氧化物构成并且通过蚀刻去除。箭头在这里标记用于去除附加层9的蚀刻过程的作用。替代地,附加层9也可以在以后的方法步骤中去除或者保留。图2g示出最后怎样通过激光来局部加热第一衬底11的围绕进入通道1的区域。第一衬底11的衬底材料局部液化并且在凝固时在已经激光钻孔的第一部分区段12中用熔化封口部5将进入通道1严密地封闭。如果附加层9还没有被去除,则也可以通过激光来加热附加层的一部分。附加层9的材料局部液化并且在凝固时也封闭进入通道1。

图3示意性地示出根据本发明的用于制造微机械装置的激光钻孔和等离子蚀刻方法,具有以下方法步骤:

(a)提供具有第一衬底11和至少一个第一空腔10的微型机械初级产品,其中,第一空腔100至少由第一衬底11限界;

(b)施加附加层9到第一衬底11上,

(c)穿过附加层9激光钻孔并因此制造掩模,

(d)穿过掩模对第一衬底11的第一部分区段12进行激光钻孔,

(e)穿过掩模并且穿过第一部分区段12对第一衬底11的第二部分区段13进行等离子蚀刻,这样进行:使得构建穿过第一衬底11通往空腔100的通道1,

(f)使第一部分区段12的衬底材料激光熔化并用熔化物封闭通道1。

根据本发明的方法的基本工艺步骤可以概括如下:

1.为mems晶片堆栈设置至少一个附加层。

2.借助激光钻孔方法在附加层中和衬底材料中钻出盲孔。

3.借助等离子蚀刻,尤其借助沟道方法,将孔继续蚀刻到空腔中。

4.可选地,现在可以去除附加层(图2f)。

5.经过进入通道以希望的气体和希望的内压力灌注空腔。

6.通过激光来局部加热围绕进入通道的区域,衬底材料局部液化并且在凝固时严密地封闭进入通道。

本发明的其它实施例:

有利的是,激光钻孔过程借助两个不同的激光或激光设定进行。第一种激光钻孔过程是优化的,以便向附加层中钻孔。例如可以有意识地使用具有很短波长的激光,该激光很强地聚焦和/或具有很短的脉冲长度。因此可以在附加层中产生非常小的进入孔。第二种激光钻孔过程可以被优化,以便在衬底中钻孔。尤其可以使附加层和第二激光这样结合,使得激光功率的一部分被反射。例如可以使用金属层如尤其是铝作为附加层,该金属层和激光波长结合,使得光的大部分被反射。或者使用部分透明的层,例如氧化物,然而该透明层在厚度方面这样选择,使得激光的大部分被反射。通过这样布置使穿过附加层的激光除了正常聚焦之外还可以在空间上进一步局域化,因此也能够以大的深度钻出很小的进入通道。该方法有利的是,也可以使用具有较大波长和/或较大脉冲长度的激光用于第二激光钻孔过程,该激光允许更快的钻孔速率。

此外可以有利的是,借助第一激光钻孔过程不但在附加层9中钻出孔,而且在第一衬底11的上部分中钻出孔,该部分以后要通过熔化方法来封闭。然后,可以在衬底的中间部分使用第二激光钻孔过程,该第二激光钻孔过程钻出更大的开口并且为此更快地工作。上部衬底区域中的狭窄通道开口对随后的封闭过程是有利的。因此,有利的是,狭窄的第一孔钻得如在封闭过程中进入衬底中的熔化区域一样深或者更深。

此外有利的是,首先在空气中、也就是说在大气压力下执行激光钻孔过程,以便允许简单、成本有利的过程进行。接着,在真空腔室中执行等离子蚀刻方法。然后晶片直接地从真空设备中带出,借助激光再封闭过程进行封闭。该流程有利的是,在接下来通风时不会有脏物进入空腔中。此外也不会有湿气和其它吸收性气体进入空腔中。这些气体一部分只能通过加热来去除。因为在工艺进行中不需要加热,所以根据本发明的方法可以在任意的位置、尤其也可以完全在用于制造微机械装置的工艺链的末尾进行。例如当焊接球已经被放置到晶片上并且因此不再能进行热处理时,也还可以进行。

通过根据本发明的方法,mems衬底也可以选择得比asic衬底明显更厚。这尤其在mems结构机械地耦合到mems衬底上时是有利的。

该方法对于混合集成的mems元件是特别有利的。

尤其有利的是,在一个衬底上设置mems结构并且在另一衬底上设置asic分析处理电路,使两个衬底彼此键合。然后有利的是,选择根据所说明的方法穿过带有mems结构的衬底的进入通道。在这种情况下,可以使用asic功能层如钝化层(氧化物)或布线层(铝或铜)作为用于等离子蚀刻方法的蚀刻停止层,而不必在系统中施加附加层。

本方法特别有利于制造具有至少两个具有不同内压力的空腔的混合集成式mems元件。

本方法此外有利于制造设计为裸芯片结构的混合集成式mems元件,即直接设置有焊接球并且不铸造到塑料块中。

附图标记列表

1进入通道

2电接触面

3罩晶片

4传感器晶片

5熔化封口部

6asic晶片

7mems晶片

8tsv(穿硅通孔)

9附加层

10附加层中的激光钻出的孔

11第一衬底

12第一衬底中的进入通道的激光钻出的第一部分区段

13第一衬底中的进入通道的等离子蚀刻出的第二部分区段

14停止层

15第二衬底

20焊接球

100第一空腔

200第二空腔

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜