一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

与风力涡轮机叶片制造相关的改进的制作方法

2021-09-23 01:16:00 来源:中国专利 TAG:腹板 涡轮机 结构 风力 叶片


1.本公开涉及一种风力涡轮机叶片的结构腹板并且涉及一种形成结构腹板的方法。本公开还涉及一种使用非破坏性超声测试技术来评估结构腹板与风力涡轮机叶片壳体之间的粘性结合的完整性的方法。


背景技术:

2.典型地,风力涡轮机叶片被制造成两个半部或壳体,这两个半部或壳体沿着前缘和尾缘粘性地结合在一起。通常在壳体半部之间提供有一个或多个结构腹板。
3.使用粘合剂将壳体的内表面结合至剪切腹板结构,并且将壳体的外边缘结合至一起。将理解,粘性结合在叶片的各种部件之间提供关键连接,且结合因此必须具有极高的完整性以承受在运行中经历的高力和疲劳载荷。为此,在风力涡轮机叶片的制造过程中形成并且评估粘性结合的过程必须是高度稳健的。
4.应当理解,风力涡轮机叶片的组成部分之间的粘性结合中的任何缺陷都是使用中裂纹扩展和/或失效的潜在来源。因此,希望粘性结合中的任何缺陷都是可使用非破坏性分析技术来检测的,使得它们可以在将风力涡轮机叶片投入使用之前得到补救。
5.针对这个背景开发了本发明。


技术实现要素:

6.本发明的一个方面提供了一种形成用于风力涡轮机叶片的结构腹板的方法。该方法包括:提供腹板构件,所述腹板构件具有腹板部分和远离所述腹板部分延伸的凸缘部分,其中,所述腹板构件包括位于所述腹板部分与所述凸缘部分之间的大致曲线形式的踵状部;以及提供大致平面形式的凸缘扩展件,其中,所述凸缘扩展件包括固化的复合材料。将所述凸缘扩展件与所述腹板构件一起布置成使得所述凸缘扩展件被定位成邻近所述凸缘部分,并且使得所述凸缘扩展件的一部分突出经过所述踵状部并远离所述腹板部分。在树脂基体中将所述凸缘扩展件与所述腹板构件集成在一起或者利用粘合剂将所述凸缘扩展件与所述腹板构件集成在一起,以形成所述结构腹板。
7.可选地,该方法包括在腹板构件与凸缘扩展件之间施加粘合剂。粘合剂的施加可以优选地在踵状部的区域中进行。
8.优选地,施加粘合剂的步骤包括大致同时将粘合剂施加至腹板构件和凸缘扩展件。
9.在优选示例中,填充材料被布置在腹板构件与凸缘扩展件之间。填充材料可以包括大致邻近踵状部定位的绳索。
10.施加粘合剂的步骤可以可选地包括:将一粒粘合剂施加至凸缘部分;使凸缘扩展件与粘合剂接触;以及在凸缘部分与凸缘扩展件之间施加压缩力。
11.可选地,在凸缘扩展件与腹板构件集成为一体之前,腹板构件可以包括未固化的复合材料。
12.优选地,在粘合剂中形成有圆角。
13.凸缘扩展件可具有在0.5mm与1mm之间的厚度,优选地大约0.8mm。腹板构件的凸缘部分可具有在1mm与5mm之间、优选地在2mm与3mm之间的厚度。腹板构件的凸缘部分可以是凸缘扩展件的至少两倍厚。“厚度”是指部件的两个主表面之间的尺寸。
14.腹板构件可以包括两个凸缘部分并且可以具有大致c形的截面。
15.每个凸缘部分都优选地与凸缘扩展件集成为一体。
16.在另一方面,本发明提供了一种形成风力涡轮机叶片的方法,所述方法包括:使用上述方法形成结构腹板;将结构腹板定位在顺风风力涡轮机叶片壳体与背风风力涡轮机叶片壳体之间;以及将结构腹板结合至顺风风力涡轮机叶片壳体和背风风力涡轮机叶片壳体。
17.在另一方面,本发明提供了一种用于风力涡轮机叶片的结构腹板,所述结构腹板包括:腹板构件,所述腹板构件具有腹板部分和远离所述腹板部分延伸的凸缘部分,其中,所述腹板构件包括位于所述腹板部分与所述凸缘部分之间的大致曲线形式的踵状部;以及与所述腹板构件的所述凸缘部分集成为一体的凸缘扩展件,其中,所述凸缘扩展件的第一区段覆盖所述凸缘部分,并且所述凸缘扩展件的第二区段延伸经过所述踵状部并远离所述腹板构件的所述腹板部分延伸。
18.优选地,所述腹板构件的所述踵状部与所述凸缘扩展件之间定位有一粒粘合剂。
19.绳索填充材料可被嵌入所述一粒粘合剂内或位于所述一粒粘合剂下方。
20.在又一个方面,本发明提供了一种包括所述结构腹板的风力涡轮机叶片。
附图说明
21.现在将参见以下附图通过非限制性示例来描述本发明,在附图中:
22.图1示出了现有技术结构腹板的截面的示意图;
23.图2a示出了图1的结合至风力涡轮机叶片壳体的内表面的结构腹板组件的截面的示意图;
24.图2b示出了在图1的腹板组件与风力涡轮机叶片壳体之间形成的不良粘性结合的截面的示意图;
25.图3a示出了根据本发明的结构腹板的截面的示意图;
26.图3b示出了用于形成图3a的结构腹板的制造工艺的示意图;
27.图4示出了根据本发明的可替代的结构腹板的截面的示意图;
28.图5a示出了图3a的结合在第一风力涡轮机叶片壳体与第二风力涡轮机叶片壳体之间的结构腹板的示意性截面图;
29.图5b示出了用于将图3a的结构腹板结合至风力涡轮机叶片壳体的内表面的方法的示意图;
30.图6a示出了图5a的经结合的结构腹板的截面的示意性截面图;并且
31.图6b示出了与风力涡轮机叶片壳体的内表面具有不良结合的经结合的结构腹板的截面的示意性截面图。
具体实施方式
32.图1示出了现有技术结构腹板组件1的截面的示意图,该结构腹板组件包括具有腹板部分3和凸缘部分4的腹板构件2。大致为曲线的踵状部5位于腹板部分3与凸缘部分4之间。腹板构件2由复合材料(诸如玻璃纤维复合材料)制成。塑料胶捕集器6通过塑料刮板7附接至腹板部分3。
33.现在参见图2a,示出了结合至风力涡轮机叶片壳体8的内表面的结构腹板组件1的截面的示意图。为了避免附图的混乱,省略了刮板7。在现有的叶片制造工艺中,在将一粒粘合剂9施加至腹板构件2的凸缘部分4之后,使风力涡轮机叶片壳体8与粘合剂9接触并施加压力以使粘合剂9沿着凸缘部分4的宽度在两个方向上被推动并且从两侧被推出。然后固化粘合剂以在腹板构件2与风力涡轮机叶片壳体8之间形成粘性结合。在固化期间保持压力以改善粘合的强度和完整性。在一种可替代的方法中,粘合剂9被施加至风力涡轮机叶片壳体8的内表面,并且腹板构件2的凸缘部分4被施加至该粘合剂并且如上所述在压力下固化。
34.图2a描绘了粘性结合的理想化视图,在这样的粘性结合中,粘合剂9已经从凸缘部分4与风力涡轮机叶片壳体8之间被推出,使得在凸缘部分4的自由边缘11处形成了第一粘合剂积聚体10,并且使得在腹板构件2的踵状部5与胶捕集器6和风力涡轮机叶片壳体8的内表面之间的空间13中形成了第二粘合剂积聚体12。
35.胶捕集器6的目的是防止粘合剂9随着在腹板构件2与风力涡轮机叶片壳体8之间施加压力而从踵状部5流出。应理解,必要的是,在踵状部5的区域中具有足够的用以确保腹板1与壳体8之间的良好结合的粘合剂9。胶捕集器6的目的是防止粘合剂9随着其从腹板构件2与风力涡轮机叶片壳体8之间被推出而从踵状部5流出,并且目的是将粘合剂保持在空间13中。以这种方式,足够的粘合剂9位于腹板构件2的踵状部5与风力涡轮机叶片壳体8之间,以提供对踵状部5的足够覆盖并且避免形成潜在的裂纹扩展锐利界面。
36.图2b示出了在腹板组件1与风力涡轮机叶片壳体8之间形成的不良粘性结合的截面的示意图。在该示例中,粘合剂9没有沿着凸缘部分4在踵状部5的方向上被推出得足够远,使得在空间13中没有形成积聚体。
37.在图2a中,粘合剂9被布置在踵状部5与叶片壳体8之间。换言之,粘合剂9覆盖踵状部5的半径。这确保了腹板组件1与叶片壳体8之间的良好粘性结合。相比之下,在图2b中,在踵状部5与叶片壳体8之间不存在粘合剂9,即,没有粘合剂9覆盖踵状部5的半径。当图2b的腹板组件1处于负载下时,腹板组件1在踵状部5的区域中可能会失效,这是因为踵状部5尚未被粘性地结合至壳体8。
38.现有技术的制造方法的问题之一在于,不可能知道空间13中是否存在足够的用以确保形成牢固的结合的粘合剂9。胶捕集器6非常柔韧,而且刮板7较弱。正因为如此,可能的情况是,粘合剂9已经将胶捕集器6推开,而且/或者,随着粘合剂9从腹板构件2与风力涡轮机叶片壳体8之间被推出,刮板7已经在因推靠在胶捕集器6上的粘合剂9而引起的拉伸载荷下破裂。
39.一旦结构腹板组件1被结合在风力涡轮机叶片壳体之间,就不可能视觉地检查粘性结合。此外,也不可能使用超声非破坏性测试(ndt)设备来审视踵状部5的区域中的粘性结合的完整性,这是因为在该区域中不存在可通过超声ndt检查来可靠地识别的内部特征。
40.一起参见图2a和图2b,不可能使用超声ndt分析来告知所示的两种结合配置之间
的差异。如在风力涡轮机叶片粘性结合的超声ndt分析领域中很好地理解的,为了确定经结合的区域的特定区域中是否存在粘合剂9,有必要在风力涡轮机叶片结构的内部中存在可以被确切识别的可识别特征。这通常是内表面。
41.在ndt过程中,超声换能器被定位在叶片壳体8的外部(即,在图2a和图2b的定向上定位在叶片壳体下方)。换能器将超声脉冲发射到叶片壳体8中。超声波将穿过叶片并且将在后壁或结构中的缺陷处反射。
42.参见图2b,在凸缘部分4的宽度上从其自由边缘11延伸至刚好在踵状部5之前的位置19的区域15中,因为超声波信号从内表面16与叶片内部中的空气填充空间之间的界面反射出来,所以可以通过ndt分析来识别凸缘部分4的内表面16。这在可预测的/一致的深度(对应于信号返回时间)处发生,使得表面16可以被确切识别。这个表面被确切识别提供了一个强有力的指示:凸缘部分4与风力涡轮机叶片壳体8的内表面之间的区域填充有粘合剂9并且因此存在良好结合。如果区域15的任何部分中在较低深度处存在异常信号返回(或较短的信号返回时间),那么这表明在表面16下方的某处存在气穴,且因此存在不良粘性结合。
43.与此相反,在从刚好位于踵状部5的起点之前的位置19延伸至胶捕集器6的自由端18的区域17中,不存在可以通过超声ndt分析来确切识别的内表面。由于踵状部5和胶捕集器6的弯曲形状,以及胶捕集器6的柔性和粘合剂12的积聚体的不可预测的形成,不可能在区域17中确切识别内部叶片结构的任何部分。对于ndt技术而言,图2a的良好粘性结合将不能与图2b的不良粘性结合区分开。
44.现在参见图3a,示出了示例性结构腹板20的截面的示意图。为了简单起见,贯穿本说明书,相同的附图标记用于标识相同的特征。
45.结构腹板20包括腹板构件2,该腹板构件具有腹板部分3和位于腹板部分3的两侧的两个凸缘部分4。凸缘部分4从腹板部分3横向地延伸。踵状部5位于每个凸缘部分4和腹板部分3之间。两个凸缘扩展件21通过粘性结合与凸缘部分4集成为一体。在该示例中,粘合剂9位于凸缘扩展件21与凸缘部分4之间。
46.腹板部分3和两个凸缘部分4一起形成“c”形腹板。通过添加这些凸缘扩展件21,产生了“i”形的腹板组件。踵状部5是腹板部分3与凸缘部分4之间的过渡部,并且是弯曲的,使得其具有半径。为了确保腹板部分3与凸缘部分4之间的良好负载路径,踵状部5的曲率半径可以是例如20mm。
47.图3b示出了用于形成结构腹板20的制造方法的示意图。固化的玻璃纤维复合腹板构件2是与两个大致平面的固化的玻璃纤维复合凸缘扩展件21一起提供的。凸缘扩展件21可以是刚性的或大致刚性的。在该示例中,凸缘扩展件21由大致平面的固化的玻璃纤维复合材料的片材形成。
48.腹板构件2被放置在模具(未示出)上,并且一粒24粘合剂9被施加至每个凸缘部分4的外表面。凸缘扩展件21被定位成邻近凸缘部分4,使得凸缘扩展件21的一部分22突出超过踵状部5并远离腹板部分3。施加压力以使凸缘扩展件21与粘合剂9接触并且迫使粘合剂9沿着凸缘部分4的宽度流动,使得在凸缘扩展件21与凸缘部分4之间形成一层粘合剂9。
49.如图3a所示,在凸缘部分4的自由边缘11处形成了粘合剂的积聚体10,并且在腹板构件2与凸缘扩展件21之间在踵状部5的区域中形成了粘合剂的积聚体12。在可选但推荐的
步骤中,在踵状部5的区域中在粘合剂的积聚体12中形成了圆角轮廓23。以此方式,可以精确地控制粘合剂9在这个区域中的形状以及它与凸缘扩展件21、踵状部5以及腹板部分3的界面,以防止形成可能导致成品风力涡轮机叶片中的应力集中的任何尖锐的界面。在图3a所示的示例中,在踵状部5的区域中,凸缘扩展件21与腹板构件2之间的区域完全填充了粘合剂9。
50.一旦粘合剂具有了合适的轮廓23,就进行固化,使得凸缘扩展件21与腹板构件2的凸缘部分4集成为一体而形成结构腹板20。在粘合剂进行固化的持续时间内保持施加在凸缘扩展件21与腹板构件2的凸缘部分4之间的压力,以更好地确保粘性结合的完整性。
51.凸缘部分4与凸缘扩展件21之间的粘性结合可以被视觉地检查。如可以看到的,在凸缘部分4的自由边缘11处存在粘合剂9的积聚体10,并且在腹板构件2与凸缘扩展件21之间在踵状部5的区域中存在粘合剂的积聚体12。这表明在凸缘部分4的整个宽度上都将存在粘合剂。此外,在凸缘扩展件21由玻璃纤维增强塑料形成的情况下,其将是半透明的,所以还可以通过穿过凸缘扩展件21进行观察来简单地进行粘性结合的视觉检查。这些简单的视觉检查使得可将结构腹板20用在风力涡轮机叶片制造工艺中。
52.在腹板构件2与凸缘扩展件21之间在踵状部5的区域中形成的粘合剂9(例如,图3a中的12)可以更一般地称为“踵状部覆盖物”14。踵状部覆盖物14覆盖踵状部5的半径;特别地,其覆盖踵状部的外半径。该踵状部覆盖物14确保了踵状部5与凸缘扩展件21之间的良好粘性结合。
53.图4示出了可替代的示例性结构腹板20的制造工艺的示意图。在该示例中,在成品结构腹板20中,在腹板构件2的凸缘部分4与凸缘扩展件21之间不存在单独的粘合剂9。相反,凸缘扩展件21与凸缘部分4在固化的树脂基体中集成为一体。
54.在踵状部5的区域中,踵状部覆盖物14设置在腹板构件2与凸缘扩展件21之间,以提供没有尖锐边缘或过渡部的合适的载荷传递路径。
55.在图4的示例中,未固化的腹板构件2被放置在模具(未示出)上,并且凸缘扩展件21被定位成邻近腹板构件2的凸缘部分4,使得凸缘扩展件21的一部分22突出超过踵状部5并且远离腹板部分3。在该示例中,凸缘扩展件21可以是干燥的或预浸渍的纤维的未固化纤维复合材料叠层。然而,推荐凸缘扩展件21包括预固化的纤维复合材料。
56.如果腹板构件2包括干纤维材料的叠层,则将组件封闭在真空袋中,并且在真空辅助树脂传递模塑技术(vartm)中固化之前将树脂灌注到纤维叠层中。如果腹板构件2包括预浸渍纤维材料的叠层,则不需要树脂灌注步骤,并且树脂在常规的预浸工艺中固化。在树脂固化期间,凸缘扩展件21变得与腹板构件2的凸缘部分4集成为一体而形成结构腹板20。
57.在图4的示例中,踵状部覆盖物14可以作为一粒粘合剂9来提供。可替代地,踵状部覆盖物14可以作为与树脂集成为一体的填充材料来提供。
58.例如,当踵状部覆盖物14是一粒粘合剂时,可以在树脂(在vartm或预浸工艺中)固化之前施加粘合剂9,使得粘合剂9就位并且与树脂一起固化。可替代地,可以在树脂固化之后施加粘合剂9。然后在单独的步骤中固化粘合剂9。可以使用这两种方法的组合,使得在树脂固化之前施加粘合剂9中的一些,并且在树脂固化之后进行粘合剂9的后续施加。在任一情况下,粘合剂9都优选地被成形为具有圆角轮廓23,以确保在粘合剂9与腹板构件2或凸缘扩展件21之间没有尖锐的过渡部。
59.当踵状部覆盖物14是填充材料时,这可以作为vartm工艺的一部分被并入。填充材料,例如纤维绳索,在踵状部5的区域中布置在腹板构件2与凸缘扩展件21之间。在树脂灌注步骤期间,树脂将灌注到填充材料中以提供踵状部覆盖物14。
60.无论踵状部覆盖物14是一粒粘合剂还是注入了树脂的填充材料,最终结果是相同的。即,粘合剂或树脂的区域覆盖踵状部5的半径并且确保了踵状部5与凸缘扩展件21之间的良好粘性结合。
61.图5a示出了结合在第一风力涡轮机叶片壳体30与第二风力涡轮机叶片壳体31之间的结构腹板20的示意性截面图。如图所示,结构腹板20通过粘合剂9粘性地结合至风力涡轮机叶片壳体30、31的内表面。图5a所示的结构腹板20对应于图3a的结构腹板20。然而,应当理解,上述任何结构腹板构造都可以用于代替所示的结构腹板20。
62.图5b示出了用于将结构腹板20结合至风力涡轮机叶片壳体30、31的内表面的方法的示意图。在第一步骤中,将一粒34粘合剂9施加至第一风力涡轮机叶片壳体30的内表面。然后将结构腹板20放置在粘合剂9的顶部并且施加压力以使粘合剂9在凸缘扩展件21与第一风力涡轮机叶片30的内表面之间流动。在施加的压力的作用下,粘合剂9在凸缘扩展件21与第一风力涡轮机叶片30的内表面之间形成层35。粘合剂9还在凸缘扩展件21的每个自由端处形成积聚体32、33。然后在整个固化期间保持压力的情况下固化粘合剂9。
63.在结构腹板20与第一风力涡轮机叶片壳体30之间的粘性结合固化之后,将一粒36粘合剂9施加至剩余的未经结合的凸缘扩展件21的最外表面。将第二风力涡轮机叶片壳体31放置在粘合剂9的顶部上并且施加压力以使粘合剂9在凸缘扩展件21与第二风力涡轮机叶片31的内表面之间流动。在施加的压力的作用下,粘合剂9在凸缘扩展件21与第二风力涡轮机叶片31的内表面之间形成层35,并且在凸缘扩展件21的每个自由端处形成积聚体32、33。粘合剂9在固化期间保持压力的情况下固化。
64.已经关于两阶段接合工艺对图5b进行了描述,在两阶段结合过程中,结构腹板在被结合至上壳体之前首先被结合至下壳体。然而,还可使用结构腹板被同时结合至两个壳体的一阶段接合工艺。
65.图6a示出了图5a的经结合的结构腹板20和第一风力涡轮机叶片壳体30的截面的示意性截面图。在遍及凸缘部分4和凸缘扩展件21的宽度从第一自由边缘41延伸至刚好在踵状部5之前的位置19的区域40中,因为超声波信号从内表面16与叶片内部中的空气填充空间之间的界面反射出来,所以可以通过ndt分析来识别凸缘部分4的内表面16。这在可预测的/一致的深度(对应于信号返回时间)处发生,使得表面16可以被确切识别。这个表面被确切识别提供了一个强有力的指示:凸缘扩展件21与第一风力涡轮机叶片壳体30的内表面之间的区域填充有粘合剂并且区域40中存在良好结合。如果区域40的任何部分中在较低深度处存在异常信号返回(或较短的信号返回时间),那么这表明在表面16下方的某处存在气穴,且因此存在不良粘性结合。凸缘部分4与凸缘扩展件21之间的结合线中不应存在任何缺陷,因为这已经如上所述进行了视觉检查。然而,如果在凸缘部分4与凸缘扩展件21之间的结合线中存在任何缺陷,那么这将可以通过ndt分析识别出来。
66.类似地,在从踵状部覆盖物14的自由边缘43延伸至凸缘扩展件21的第二自由边缘44的区域42中,因为超声波信号从凸缘扩展件的内表面45与叶片内部中的空气填充空间之间的界面反射出来,所以可以通过ndt分析来识别凸缘扩展件21的内表面45。再一次,这在
可预测的/一致的深度(对应于信号返回时间)处发生,使得表面45可以被确切识别。如前所述,这个表面被确切识别提供了一个强有力的指示:凸缘扩展件21与第一风力涡轮机叶片壳体30的内表面之间的区域42填充有粘合剂并且因此存在良好结合。如果区域42的任何部分中在较低深度处存在异常信号返回(或较短的信号返回时间),那么这表明在表面45下方的某处存在气穴,且因此存在不良粘性结合。
67.与以上相反,在从踵状部5开始处的位置19延伸至踵状部覆盖物14的自由边缘43的区域46中,不存在可以通过超声ndt分析被确切识别的内表面。由于在该区域中踵状部5和踵状部覆盖物14的弯曲形状,不能在区域46中确切识别内部叶片结构的任何部分。然而,鉴于已经可以确定在相邻区域40和42中存在良好粘性结合的事实,可以推测在所有可能性中,区域46中的结合也是良好的。
68.作为对比,图6b示出了经结合的结构腹板20在凸缘扩展件21与风力涡轮机叶片30的内表面之间具有不良结合的一个区段的示意性截面图。在这种情况下,可以通过超声波ndt分析确定区域40中的结合是良好的而区域42中的结合是不良的。不能确定区域46中的结合的状况。由于区域42中的结合是不良的,所以这表明区域46中也可能存在不良结合;并且,如上所述,如果踵状部5与叶片壳体8之间的结合线是不良的,那么这可能导致失效。因此,因为已知区域42中的结合是不良的,所以能够防止风力涡轮机叶片通过质量控制工序,并且能够确保在叶片投入使用之前解决该结合不良的问题。
69.作为上述结构腹板20的构造和制造工艺的结果,对于风力涡轮机叶片在结构腹板20与风力涡轮机叶片壳体30、31之间的粘性结合是稳健的这一点,可以具有高度的确定性。这是因为在结构腹板20结合至风力涡轮机叶片中之前,结构腹板20中的粘性结合是可见的或者适合于超声ndt分析,并且因为可以通过超声波ndt分析来审视结构构件20与风力涡轮机叶片壳体30、31之间的粘性结合,使得为该结合在其整个宽度上是稳健的这一点提供了足够的确定性。
70.在所描述的示例中,腹板20由玻璃纤维增强塑料(gfrp)形成。例如,塑料基体可以是环氧树脂基体。例如,用于将凸缘部分4结合至凸缘扩展件21的粘合剂可以是环氧树脂或聚氨酯粘合剂。用于将凸缘扩展件21结合至叶片壳体的粘合剂还可以是例如环氧树脂或聚氨酯粘合剂。风力涡轮机叶片壳体可以由gfrp形成并且还可以包括碳纤维增强塑料(cfrp)。
71.在以上描述的示例中,首先将结构腹板20形成为“c”形腹板,并且然后添加凸缘扩展件,这导致“i”形腹板。然而,还可以在腹板的单侧而不是在附图中所示的两侧使用凸缘扩展件21。
72.如上所述,凸缘扩展件21是附接至腹板的凸缘部分4的预固化的复合部件。凸缘扩展件可以具有在0.5mm与1mm之间的厚度,优选地大约0.8mm。腹板的凸缘部分4可以具有在1mm与5mm之间、优选地在2mm与3mm之间的厚度。因此,可以看到,作为用于将结构腹板20粘性结合至叶片壳体的加工助剂,凸缘扩展件21是附接到凸缘部分4的相对薄的部件。换言之,除了确保腹板与壳体之间的稳健结合之外,凸缘扩展件并不会有助于增强腹板的结构强度。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜