一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种埃洛石-羟基磷灰石-纳米纤维素纤维复合阻燃材料的制备方法与流程

2021-10-24 06:04:00 来源:中国专利 TAG:
min后以200

300rpm的转速磁力搅拌1

2.5h,洗涤后冷冻干燥18

22h;
9.有机污染物的存在会对后续hnt的包覆造成负面影响,采用h2o2溶液可有效去除有机杂质,使埃洛石进一步纯化。
10.2)埃洛石纳米管羟基化改性:将步骤1)中得到的粉末超声分散于室温下ph为 12

12.5的naoh溶液中,磁力搅拌24

27h,将得到的悬浮液离心分离,沉淀物用去离子水洗涤至ph呈中性,干燥后得到羟基化改性的埃洛石纳米管,记作h

hnt。
11.未改性的埃洛石的胶体稳定性在水悬浮液中十分有限,易于发生聚集而沉降, naoh可与埃洛石的外表面的四面体硅酸盐反应生成si

oh,增加其外表面负电荷基团的数量,使埃洛石粒子之间产生静电排斥力,从而提高悬浮液的胶体稳定性;更为重要的是,埃洛石表面羟基增加,也利于后续步骤的进行。
12.本发明团队在研究过程中发现,naoh溶液的ph非常关键。使用naoh对埃洛石进行羟基化改性时,当naoh溶液浓度较高时(>1mol/l),长时间处理可能会溶解埃洛石外表面,使其结构完整性和机械性能遭到破坏。本发明使用ph=12

12.5的naoh 溶液对埃洛石进行改性,条件温和,既可以起到修饰外表面的作用,也能使管腔和整个管状结构的破坏最小化。另一方面,埃洛石中未处理干净的长英等杂质也可溶于 naoh除去。
13.3)聚乙烯亚胺(pei)包覆羟基化埃洛石纳米管:将h

hnt超声分散于水中,制得 0.1

0.2g/ml的悬浮液。量取10

20ml悬浮液,加入45mg

100mg pei,使pei与埃洛石保持一定的质量比,室温下200

300rpm搅拌18

22min后,离心,干燥得到的粉末记作pei

hnt。
14.埃洛石外表面因存在硅氧烷基(si

o

si)而带负电荷,经naoh改性后,表面具有更多的负电荷,而pei带正电荷。本发明用pei对初步改性的埃洛石进行包覆,使其外表面带正电荷,从而促进其后续与纳米纤维素纤维和羟基磷灰石纤维交联。
15.4)纳米纤维素纤维制备:称取6~8.5g经预处理的柚皮用1~1.5wt%的naoh溶液在加热条件下搅拌3~4h,其中柚皮与naoh溶液具有一定的料液比,趁热以 13000~15000rpm的转速离心7~10min,去除上清液,沉淀物充分洗涤后75

85℃干燥6~9h得到粉末a,然后用柠檬汁浸泡粉末a1

1.5h,以12000

13000rpm的转速离心10

13min得到的沉淀物直接球磨20

25min,洗涤至ph呈中性后干燥得到粉末b,最后用1.5

1.7wt%的naclo2溶液浸泡粉末b 0.5

1h,去离子水洗涤3

4次后,75

85℃干燥6

9h得到纳米纤维素纤维,将其超声分散于水中制备成质量分数为1.5%

1.8%的纳米纤维素纤维悬浮液备用;
16.植物细胞壁主要由半纤维素、纤维素、木质素组成,有效去除半纤维素和木质素是从植物中提取纤维素的关键。naoh水溶液可促使生成很多单水分子,促进碱液进入原料内部,使纤维素、半纤维素、木质素间相互结合的价键松散,可明显削弱纤维素和半纤维素间的氢键;naoh还可与半纤维素反应,破坏半纤维素中的乙酰基使其溶于水被除去;此外,naoh还能去除部分木质素:木质素与碳水化合物通过共价键连接,在细胞壁中以复杂的方式分布,难以与生物质明确分离,而在naoh溶液中, oh

可作为亲核试剂破坏木质素大分子中的β

o
‑4′
醚键,na

可与木质素中的羟基反应,生成可溶性酚盐,同时在木质素中引入亲水基团,使裂解后木质素溶于碱液除去。在加热条件下,naoh还可皂化木质素和半纤维素间的酯键,利于木质素溶出。本发明在加热条件下以1~1.5wt%的naoh溶液对样品进行预处理,一方面可以有效去除部分木质素和半纤维素等杂质,另一方面所用碱溶液浓度低于目前研究的用于提取纤维素的碱溶液浓度,水洗即可从样品中被完全去除,对环境影响也较
小。
17.酸从植物中提取纤维素中具有三个作用1)h

可与半纤维素中的糖苷键上的氧原子形成碳鎓离子;2)酸可破坏木质素中的醚键和碳

碳键,使其转变为单环芳香族化合物被除去;3)天然纤维素包括晶区与非晶区,稀酸处理也可与纤维素非晶区的β

1,4 糖苷键反应,使非晶区的纤维素被破坏,从而提高结晶度。本发明利用柠檬汁作为酸解剂,柠檬汁中除含有常见的柠檬酸外,还有抗坏血酸,其分子中第2及第3位上两个相邻的烯醇式羟基极易解离而释出h

,两种酸同时进行酸解,所需量少,成本低,环保效益好。
18.本发明使用采用3种直径的研磨珠,可以与样品充分接触且能产生较大的剪切力,从而产生机械

化学效应,可以破坏植物细胞壁中部分未被酸和碱处理除去的生物半纤维素的主链和侧链,使半纤维素解聚,转变为可溶于水的低聚糖和单糖,另一方面,可以降低植物细胞壁中木质素刚性,促进木质素解离。
19.本发明使用球磨对样品进一步处理,可以在不对提取的纤维素晶型和结晶度产生明显影响的条件下,使得到的样品尺寸明显减小、分散。
20.本发明采用naclo2溶液进一步处理样品,可以脱除酸不溶性木质素,纯化样品。
21.5)埃洛石

羟基磷灰石

纳米纤维素纤维阻燃气凝胶的制备:称取步骤3)得到的 pei

hnt 0.4

0.55g,加入45

60mg/ml的羟基磷灰石纤维悬浮液和步骤4)得到的纳米纤维素纤维悬浮液,室温下700

800rpm搅拌6

8h后干燥。
22.埃洛石是一种外表面存在硅氧烷基团,内表面存在铝醇基团的硅酸盐矿物,本发明将改性埃洛石作为阻燃成分制备气凝胶,其在聚合物的燃烧过程中可以对热和氧起到明显的阻隔作用,从而延缓聚合物的燃烧过程。
23.埃洛石具有类似碳纳米管的双层的中空管状结构,本发明将埃洛石作为阻燃成分制备气凝胶,其纳米管腔可以吸附聚合物降解产生的自由基等初等产物,通过延缓传质过程而达到阻燃的效果。
24.本发明将羟基磷灰石作为阻燃的成分,羟基磷灰石具有一定催化成碳的优点,有望提高炭层的形成速度和成炭量,也可作为物理屏障可抑制氧向纤维素纤维的扩散,限制挥发性产物的逸出,从而抑制纳米纤维素纤维的燃烧。
25.羟基磷灰石纤维的悬浮液带有大量的负电荷,而pei包覆的埃洛石表面带有大量的正电荷,二者可利用静电吸引力交联在一起;羟基磷灰石纤维表面的羟基可与纳米纤维素纤维表面的羟基形成氢键连接;纳米纤维素纤维的羟基可与pei中

nh2上的氢形成氢键连接,三者交联在一起形成阻燃复合材料。
26.作为优选,步骤1)中所述的埃洛石原矿初步纯化的方法如下:将埃洛石原矿中加水配制成质量分数15%

20%固含量的料浆,以转速为8000r/min

10000r/min的高速分散机捣浆1

2h,将分散好的料浆过170或200或230目筛进行湿法筛分;筛下的浆料静置6~8h,将上层的悬浮液以1200

1500r/min的转速离心10

13min得到的沉淀物在 90

100℃的条件下烘干10

12h后用球磨机球磨后备用,其中球磨参数为:球料比 1:18

1:20,球磨频率:10

15hz,球磨时间1~1.5h。
27.作为优选,步骤1)中所述h2o2溶液浓度为27

30wt%,h2o2浸泡过的埃洛石用去离子水冲洗3

4次。
28.作为优选,步骤2)中所述超声时间为10

15min,naoh溶液浓度具体为0.0114 mol/
l

0.0126mol/l。
29.作为优选,步骤2)所述干燥具体为先110

115℃鼓风干燥10

12h,后60

65℃真空干燥10

12h。
30.作为优选,步骤3)中所述超声分散具体参数为超声时间为15

20min,超声功率为 200

400w,超声模式设置为关2s,开1s。
31.作为优选,步骤3)中,所述pei相对分子质量为10000

12000g/mol,pei与埃洛石的质量比为:m(pei):m(埃洛石)=45mg/g

50mg/g。
32.作为优选,步骤3)中所述产物在10000

12000rpm离心13

15min,弃去上清液后收集,干燥方式为冷冻干燥12

15h。
33.作为优选,步骤4)所述柚皮预处理如下:将新鲜柚皮去掉黄皮后,清洗干净, 75

85℃于鼓风干燥箱中干燥24

32h,将干燥后的样品于粉碎机中粉碎,过35

45目筛。
34.作为优选,步骤4)中,naoh溶液与柚皮的料液比为38∶1

40∶1,加热条件是指naoh 溶液浸泡的柚皮粉置于95

110℃的油浴锅中,搅拌速度为200

220r/min。
35.作为优选,步骤4)中所述充分洗涤过程具体如下:将去离子水加入沉淀物中, 300

400rpm搅拌3

7min使水与沉淀物充分接触,然后以13000~15000rpm的转速离心7

10min,此步骤重复4

6次。
36.作为优选,步骤4)柠檬汁具体制备过程如下:新鲜柠檬去皮去籽后榨汁,过滤收集滤液,将滤液以14000

15000rpm离心15

20min,弃去沉淀物,将上清液置于6

8℃冰箱中保存。
37.作为优选,步骤4)中,柠檬汁与粉末a的料液比为1∶10

1∶12。
38.作为优选,步骤4)中所述球磨,球料比为1∶12

1∶16,使用三种研磨珠型号,直径分别为2mm、6mm和10mm,其数量比为(5.9~6.1)∶(1.4~1.6)∶1,研磨珠的总体积不应超过球磨罐容积的1/3,球磨机频率设置为25

30hz。
39.作为优选,步骤4)中,naclo2溶液与粉末b的料液比为1∶20

1∶25。
40.作为优选,步骤5)中羟基磷灰石纳米纤维制备可根据已公开的专利(朱英杰、李恒、吴进,羟基磷灰石纳米线、纳米线组装网状结构及其制备方法。)制备并稍加调整:在室温下,将0.222克cacl2溶于25毫升去离子水中形成a液,将2.440克油酸钠溶于25毫升去离子水中形成b液,搅拌中将a液逐滴滴加到b液中,制备反应前驱体,并在室温下持续搅拌30分钟后,然后加入25毫升0.072摩尔/升的磷酸二氢钠溶液,再将混合物转入水热反应釜中(容量为100毫升),密封,在200℃水热处理36小时,冷冻干燥12

15h后得到羟基磷灰石纤维。
41.作为优选,步骤5)中羟基磷灰石纤维悬浮液的加入量为60

80ml,纳米纤维素纤维悬浮液的加入量为50

65ml,干燥方式为先冷冻干燥35

40h,再在20pa以下的真空干燥箱中100

115℃干燥30

45min。
42.与现有技术对比,本发明的有益效果是:
43.1、本发明将化学预处理和机械球磨法相结合从果皮垃圾中提取纳米纤维素纤维。所使用的碱和漂白剂浓度均较低,水洗即可除去,不会引入其他杂质,采用柠檬汁作为酸解剂,成本低,效率高,环保效益好;使用球磨减小尺寸及进一步纯化纤维素,低耗高效;本发明所采用的制备纳米纤维素纤维的方法设备简单,不会腐蚀设备,成本低,绿色环保。
44.2、本发明从埃洛石天然原矿中纯化改性得到羟基化埃洛石,再使用聚乙烯亚胺 (pei)包覆羟基化后的埃洛石,使其表面带大量正电荷,从而使其能与具有优异阻燃性的羟基磷灰石和具有较好隔热性能的纳米纤维素纤维复合在一起获得一种低重量、无毒性、具有优异耐火性能的阻燃材料,高效阻燃的同时不会对人体和环境造成危害。
45.3.本发明将从果皮垃圾中提取的纳米纤维素纤维与羟基磷灰石及天然矿石埃洛石复合制备阻燃材料,变废为宝,所使用的设备简单,能耗低,环保效益高,符合可持续发展观。
具体实施方式
46.下面结合实施例对本发明作进一步的描述。
47.实施例1:
48.1)将埃洛石原矿中加水配制成质量分数17%固含量的料浆,以转速为8000r/min 的高速分散机捣浆1.5h,将分散好的料浆过170目筛进行湿法筛分;筛下的浆料静置7h,将上层的悬浮液以1200r/min的转速离心10min得到的沉淀物在95℃的条件下烘干10.5h后用球磨机球磨后备用,其中球磨参数为:球料比1∶18,球磨频率:12hz,球磨时间1.5h;将进行初步纯化的埃洛石原矿32g浸没于325ml浓度为27wt%的 h2o2溶液中,超声28min后以200rpm的转速磁力搅拌1h,用去离子水冲洗3次后冷冻干燥18h;
49.2)埃洛石纳米管羟基化改性:将步骤1)中得到的粉末超声13min使其分散于室温下ph为12的naoh溶液(摩尔浓度为0.0114mol/l)中,磁力搅拌24h,将得到的悬浮液离心分离,沉淀物用去离子水洗涤至ph呈中性,先110℃鼓风干燥10h,后 60℃真空干燥11h,得到羟基化改性的埃洛石纳米管,记作h

hnt;
50.3)聚乙烯亚胺(pei)包覆羟基化埃洛石纳米管:将h

hnt超声分散于水中,制备0.12g/ml的悬浮液,其中超声分散具体参数分别是超声时间为16min,超声功率为 230w,超声模式设置为关2s,开1s。量取13ml悬浮液,加入70.2mg相对分子质量为10000g/mol的pei,使pei与埃洛石质量比保持为:m(pei)∶m(埃洛石)=45mg/g,室温下220rpm搅拌18min后,以10000r/min离心15min,弃去上清液,冷冻干燥 13h得到的粉末记作pei

hnt;
51.4)纳米纤维素纤维制备:将新鲜柚皮去掉黄皮后,清洗干净,75℃于鼓风干燥箱中干燥28h,将干燥后的样品于粉碎机中粉碎,过35目筛,得到预处理后的柚皮。称取6g预处理后的柚皮用1.2wt%的naoh溶液在100℃下以200r/min搅拌处理 3.5h,其中柚皮与naoh的料液比为38∶1,趁热以13000rpm的转速离心8min,去除上清液,将沉淀物进行充分洗涤:将去离子水加入沉淀物中,320rpm搅拌5min使水与沉淀物充分接触,然后以13000rpm的转速离心9min,此步骤重复5次后,80℃干燥8h得到粉末a;新鲜柠檬去皮去籽后榨汁,过滤收集滤液,将滤液以15000rpm 离心15min,弃去沉淀物,得到柠檬汁,用柠檬汁浸泡粉末a1h,其中柠檬汁与粉末 a的料液比为1∶10,以12000rpm的转速离心12min得到的沉淀物直接球磨23min,其中球磨参数为:球料比为1∶13,使用三种研磨珠型号,直径分别为2mm、6mm和 10mm,其数量比为6∶1.4∶1,研磨珠的总体积不应超过球磨罐容积的1/3,球磨机频率设置为26hz,球磨得到的样品洗涤至ph呈中性后干燥得到粉末b,最后用1.5wt%的naclo2溶液浸泡粉末b 0.5h,其中naclo2溶液与粉末b的料液比为1∶20,去离子水洗涤3次后,80℃干燥7h得到纳米纤维素纤维,将其超声分散于水中制备成质量分数为1.5%的纳米纤维素纤维悬
浮液备用;
52.5)埃洛石

羟基磷灰石

纳米纤维素纤维阻燃气凝胶的制备:在室温下,将0.222 克cacl2溶于25毫升去离子水中形成a液,将2.440克油酸钠溶于25毫升去离子水中形成b液,搅拌中将a液逐滴滴加到b液中,制备反应前驱体,并在室温下持续搅拌30分钟后,然后加入25毫升0.072摩尔/升的磷酸二氢钠溶液,再将混合物转入水热反应釜中(容量为100毫升),密封,在200℃水热处理36小时,冷冻干燥13.5h得到羟基磷灰石纤维。称取步骤3)得到的pei

hnt 0.4g,加入60ml 60mg/ml的羟基磷灰石纤维悬浮液和50ml步骤4)得到的纳米纤维素纤维悬浮液,室温下700rpm搅拌8h后,先冷冻干燥36h,再在20pa以下的真空干燥箱中110℃干燥35min得到阻燃复合材料。
53.对制得的样品进行锥形量热,其最大放热率为17kw/m2,热释放量为1.10mj/m2,比只有纳米纤维素纤维直接冷冻干燥制得的阻燃泡沫的最大放热率(324kw/m2)和热释放量(9.25mj/m2)要小的多,表明该复合材料对燃烧过程有较强的抑制作用。
54.实施例2:
55.1)将埃洛石原矿中加水配制成质量分数18%固含量的料浆,以转速为8 500r/min 的高速分散机捣浆1.2h,将分散好的料浆过170目筛进行湿法筛分;筛下的浆料静置 6.5h,将上层的悬浮液以1300r/min的转速离心12min得到的沉淀物在90℃的条件下烘干11.5h后用球磨机球磨后备用,其中球磨参数为:球料比1∶19,球磨频率:13hz,球磨时间1h;将进行初步纯化的埃洛石原矿31g浸没于330ml浓度为27.5wt%的 h2o2溶液中,超声28min后以230rpm的转速磁力搅拌2h,用去离子水冲洗3次后冷冻干燥20h;
56.2)埃洛石纳米管羟基化改性:将步骤1)中得到的粉末超声10min使其分散于室温下ph为12。2的naoh溶液(摩尔浓度为0.0116mol/l中,磁力搅拌24.5h,将得到的悬浮液离心分离,沉淀物用去离子水洗涤至ph呈中性,先112℃鼓风干燥10.5h,后62℃真空干燥12h,得到羟基化改性的埃洛石纳米管,记作h

hnt;
57.3)聚乙烯亚胺(pei)包覆羟基化埃洛石纳米管:将h

hnt超声分散于水中,制备 0.15g/ml的悬浮液,其中超声分散具体参数为超声时间为17min,超声功率为240w,超声模式设置为关2s,开1s。量取13ml悬浮液,加入93.6mg相对分子质量为12000 g/mol的pei,使pei与埃洛石质量比保持为:m(pei)∶m(埃洛石)=48mg/g,室温下200 rpm搅拌22min后,以11000r/min离心14min,弃去上清液,冷冻干燥14h得到的粉末记作pei

hnt;
58.4)纳米纤维素纤维制备:将新鲜柚皮去掉黄皮后,清洗干净,80℃于鼓风干燥箱中干燥26h,将干燥后的样品于粉碎机中粉碎,过40目筛,得到预处理后的柚皮。称取6.5g预处理后的柚皮用1.2wt%的naoh溶液在95℃下以210r/min搅拌处理 4h,其中柚皮与naoh的料液比为39∶1,趁热以14000rpm的转速离心8min,去除上清液,将沉淀物进行充分洗涤:将去离子水加入沉淀物中,350rpm搅拌5min使水与沉淀物充分接触,然后以14000rpm的转速离心8min,此步骤重复6次后,85℃干燥6h得到粉末a;新鲜柠檬去皮去籽后榨汁,过滤收集滤液,将滤液以15000rpm 离心16min,弃去沉淀物,得到柠檬汁,用柠檬汁浸泡粉末a 1.3h,其中柠檬汁与粉末a的料液比为1∶11,以12000rpm的转速离心13min得到的沉淀物直接球磨24min,其中球磨参数为:球料比为1∶13,使用三种研磨珠型号,直径分别为2mm、6mm和 10mm,其数量比为5.9∶1.4∶1,研磨珠的总体积不应超过球磨罐容积的1/3,球磨机频率设置为27hz,球磨得到的样品洗涤至ph呈中性后干燥得到粉末b,最后用1.6wt%的naclo2溶液
浸泡粉末b 0.6h其中naclo2溶液与粉末b的料液比为1∶22,去离子水洗涤4次后,75℃干燥9h得到纳米纤维素纤维,将其超声分散于水中制备成质量分数为1.6%的纳米纤维素纤维悬浮液备用;
59.5)埃洛石

羟基磷灰石

纳米纤维素纤维阻燃气凝胶的制备:在室温下,将0.222 克cacl2溶于25毫升去离子水中形成a液,将2.440克油酸钠溶于25毫升去离子水中形成b液,搅拌中将a液逐滴滴加到b液中,制备反应前驱体,并在室温下持续搅拌30分钟后,然后加入25毫升0.072摩尔/升的磷酸二氢钠溶液,再将混合物转入水热反应釜中(容量为100毫升),密封,在200℃水热处理36小时,冷冻干燥15h得到羟基磷灰石纤维。称取步骤3)得到的pei

hnt 0.45g,加入65ml 55mg/ml的羟基磷灰石纤维悬浮液和60ml步骤4)得到的纳米纤维素纤维悬浮液,室温下750rpm搅拌8h后,先冷冻干燥38h,再在20pa以下的真空干燥箱中100℃干燥45min得到阻燃复合材料。
60.对制得的样品进行锥形量热,其最大放热率为18.1kw/m2,热释放量为1.18 mj/m2,比只有纳米纤维素纤维直接冷冻干燥制得的阻燃泡沫的最大放热率(324 kw/m2)和热释放量(9.25mj/m2)要小的多,表明该复合材料对燃烧过程有较强的抑制作用。
61.实施例3:
62.1)将埃洛石原矿中加水配制成质量分数16.5%固含量的料浆,以转速为8500 r/min的高速分散机捣浆1.2h,将分散好的料浆过200目筛进行湿法筛分;筛下的浆料静置7h,将上层的悬浮液以1200r/min的转速离心13min得到的沉淀物在92℃的条件下烘干10h后用球磨机球磨后备用,其中球磨参数为:球料比1∶19,球磨频率:13 hz,球磨时间1.2h;将进行初步纯化的埃洛石原矿35g浸没于345ml浓度为29wt%的h2o2溶液中,超声28min后以230rpm的转速磁力搅拌2h,用去离子水冲洗4次后冷冻干燥20h;
63.2)埃洛石纳米管羟基化改性:将步骤1)中得到的粉末超声14min使其分散于室温下ph为12.5的naoh溶液(摩尔浓度为0.0126mol/l)中,磁力搅拌25h,将得到的悬浮液离心分离,沉淀物用去离子水洗涤至ph呈中性,先113℃鼓风干燥11.5h,后65℃真空干燥10h,得到羟基化改性的埃洛石纳米管,记作h

hnt;
64.3)聚乙烯亚胺(pei)包覆羟基化埃洛石纳米管:将h

hnt超声分散于水中,制备0.18g/ml的悬浮液,其中超声分散具体参数为超声时间为17min,超声功率为300w,超声模式设置为关2s,开1s。量取16ml悬浮液,加入129.6mg相对分子质量为 12000g/mol的pei,使pei与埃洛石质量比保持为:m(pei):m(埃洛石)=45mg/g,室温下300rpm搅拌18min后,以12000r/min离心13min,弃去上清液,冷冻干燥13.5 h得到的粉末记作pei

hnt;
65.4)纳米纤维素纤维制备:将新鲜柚皮去掉黄皮后,清洗干净,82℃于鼓风干燥箱中干燥26h,将干燥后的样品于粉碎机中粉碎,过40目筛,得到预处理后的柚皮。称取7.5g预处理后的柚皮用1.3wt%的naoh溶液在102℃下以210r/min搅拌处理 4h,其中柚皮与naoh的料液比为39∶1,趁热以14000rpm的转速离心9min,去除上清液,将沉淀物进行充分洗涤:将去离子水加入沉淀物中,330rpm搅拌5min使水与沉淀物充分接触,然后以13500rpm的转速离心8min,此步骤重复6次后,83℃干燥8.5h得到粉末a;新鲜柠檬去皮去籽后榨汁,过滤收集滤液,将滤液以15000rpm 离心16min,弃去沉淀物,得到柠檬汁,用柠檬汁浸泡粉末a1.2h,其中柠檬汁与粉末a的料液比为1∶12,以13000rpm的转速离心11min得到的沉淀物直接球磨25min,其中球磨参数为:球料比为1∶12,使用三种研磨珠型号,直径分别为2mm、6mm
和 10mm,其数量比为6.1∶1.5∶1,研磨珠的总体积不应超过球磨罐容积的1/3,球磨机频率设置为28hz,球磨得到的样品洗涤至ph呈中性后干燥得到粉末b,最后用1.6wt%的naclo2溶液浸泡粉末b 1h其中naclo2溶液与粉末b的料液比为1∶23,去离子水洗涤4次后,85℃干燥9h得到纳米纤维素纤维,将其超声分散于水中制备成质量分数为1.7%的纳米纤维素纤维悬浮液备用;
66.5)埃洛石

羟基磷灰石

纳米纤维素纤维阻燃气凝胶的制备:在室温下,将0.222 克cacl2溶于25毫升去离子水中形成a液,将2.440克油酸钠溶于25毫升去离子水中形成b液,搅拌中将a液逐滴滴加到b液中,制备反应前驱体,并在室温下持续搅拌30分钟后,然后加入25毫升0.072摩尔/升的磷酸二氢钠溶液,再将混合物转入水热反应釜中(容量为100毫升),密封,在200℃水热处理36小时,冷冻干燥14.5h得到羟基磷灰石纤维。称取步骤3)得到的pei

hnt 0.48g,加入75ml 50mg/ml的羟基磷灰石纤维悬浮液和60ml步骤4)得到的纳米纤维素纤维悬浮液,室温下760rpm 搅拌7.5h后,先冷冻干燥39.5h,再在20pa以下的真空干燥箱中112℃干燥38min 得到阻燃复合材料。
67.对制得的样品进行锥形量热,其最大放热率为17.82kw/m2,热释放量为1.16 mj/m2,比只有纳米纤维素纤维直接冷冻干燥制得的阻燃泡沫的最大放热率(324 kw/m2)和热释放量(9.25mj/m2)要小的多,表明该复合材料对燃烧过程有较强的抑制作用。
68.实施例4:
69.1)将埃洛石原矿中加水配制成质量分数18%固含量的料浆,以转速为9000 r/min的高速分散机捣浆1

2h,将分散好的料浆过230目筛进行湿法筛分;筛下的浆料静置8h,将上层的悬浮液以1400r/min的转速离心11min得到的沉淀物在95℃的条件下烘干11.5h后用球磨机球磨后备用,其中球磨参数为:球料比1∶18,球磨频率: 15hz,球磨时间1h;将进行初步纯化的埃洛石原矿34g浸没于340ml浓度为30 wt%的h2o2溶液中,超声25min后以200rpm的转速磁力搅拌2h,用去离子水冲洗4 次后冷冻干燥21h;
70.2)埃洛石纳米管羟基化改性:将步骤1)中得到的粉末超声14min使其分散于室温下ph为12.4的naoh溶液(摩尔浓度为0.0120mol/l)中,磁力搅拌24.5h,将得到的悬浮液离心分离,沉淀物用去离子水洗涤至ph呈中性,先114℃鼓风干燥11h,后65℃真空干燥12h,得到羟基化改性的埃洛石纳米管,记作h

hnt;
71.3)聚乙烯亚胺(pei)包覆羟基化埃洛石纳米管:将h

hnt超声分散于水中,制备 0.15g/ml的悬浮液,其中超声分散具体参数为超声时间为16min,超声功率为200

400 w,超声模式设置为关2s,开1 s。量取12ml悬浮液,加入90mg相对分子质量为 12000g/mol的pei,使pei与埃洛石质量比保持为:m(pei)∶m(埃洛石)=50mg/g,室温下280rpm搅拌20min后,以12000r/min离心13min,弃去上清液,冷冻干燥15h 得到的粉末记作pei

hnt;
72.4)纳米纤维素纤维制备:将新鲜柚皮去掉黄皮后,清洗干净,79℃于鼓风干燥箱中干燥25h,将干燥后的样品于粉碎机中粉碎,过35目筛,得到预处理后的柚皮。称取6.5g预处理后的柚皮用1.4wt%的naoh溶液在105℃下以200r/min搅拌处理 3.5h,其中柚皮与naoh的料液比为40∶1,趁热以14000rpm的转速离心10min,去除上清液,将沉淀物进行充分洗涤:将去离子水加入沉淀物中,360rpm搅拌5min使水与沉淀物充分接触,然后以13800rpm的转速离心10min,此步骤重复4

6次后, 83℃干燥7.5h得到粉末a;新鲜柠檬去皮去籽后榨汁,过滤收集滤液,将滤液以14800 rpm离心18min,弃去沉淀物,得到柠檬汁,用柠檬汁浸泡粉
末a1.2h,其中柠檬汁与粉末a的料液比为1∶10,以13000rpm的转速离心11min得到的沉淀物直接球磨20 min,其中球磨参数为:球料比为1∶16,使用三种研磨珠型号,直径分别为2mm、6mm 和10mm,其数量比为6∶1.5∶1,研磨珠的总体积不应超过球磨罐容积的1/3,球磨机频率设置为30hz,球磨得到的样品洗涤至ph呈中性后干燥得到粉末b,最后用1.7 wt%的naclo2溶液浸泡粉末b 1h,其中naclo2溶液与粉末b的料液比为1∶23,去离子水洗涤3次后,85℃干燥6h得到纳米纤维素纤维,将其超声分散于水中制备成质量分数为1.6%的纳米纤维素纤维悬浮液备用;
73.5)埃洛石

羟基磷灰石

纳米纤维素纤维阻燃气凝胶的制备:在室温下,将0.222 克cacl2溶于25毫升去离子水中形成a液,将2.440克油酸钠溶于25毫升去离子水中形成b液,搅拌中将a液逐滴滴加到b液中,制备反应前驱体,并在室温下持续搅拌30分钟后,然后加入25毫升0.072摩尔/升的磷酸二氢钠溶液,再将混合物转入水热反应釜中(容量为100毫升),密封,在200℃水热处理36小时,冷冻干燥13.5h得到羟基磷灰石纤维。称取步骤3)得到的pei

hnt 0.5g,加入75ml 48mg/ml的羟基磷灰石纤维悬浮液和58ml步骤4)得到的纳米纤维素纤维悬浮液,室温下720rpm搅拌7h后,先冷冻干燥40h,再在20pa以下的真空干燥箱中110℃干燥45min得到阻燃复合材料。
74.对制得的样品进行锥形量热,其最大放热率为18.15kw/m2,热释放量为1.20 mj/m2,比只有纳米纤维素纤维直接冷冻干燥制得的阻燃泡沫的最大放热率(324 kw/m2)和热释放量(9.25mj/m2)要小的多,表明该复合材料对燃烧过程有较强的抑制作用。
75.实施例5:
76.1)将埃洛石原矿中加水配制成质量分数20%固含量的料浆,以转速为10000r/min 的高速分散机捣浆2h,将分散好的料浆过230目筛进行湿法筛分;筛下的浆料静置8h,将上层的悬浮液以1500r/min的转速离心12min得到的沉淀物在100℃的条件下烘干 11h后用球磨机球磨后备用,其中球磨参数为:球料比1∶19,球磨频率:12hz,球磨时间1.5h;将进行初步纯化的埃洛石原矿30g浸没于320ml浓度为28wt%的h2o2溶液中,超声27min后以240rpm的转速磁力搅拌1.5h,用去离子水冲洗3次后冷冻干燥22h;
77.2)埃洛石纳米管羟基化改性:将步骤1)中得到的粉末超声15min使其分散于室温下ph为12.5的naoh溶液(摩尔浓度为0.0126mol/l)中,磁力搅拌26.5h,将得到的悬浮液离心分离,沉淀物用去离子水洗涤至ph呈中性,先110

115℃鼓风干燥 12h,后64℃真空干燥10h,得到羟基化改性的埃洛石纳米管,记作h

hnt;
78.3)聚乙烯亚胺(pei)包覆羟基化埃洛石纳米管:将h

hnt超声分散于水中,制备 0.17g/ml的悬浮液,其中超声分散具体参数为超声时间为19min,超声功率为350w,超声模式设置为关2s,开1s。量取10ml悬浮液,加入78.2mg相对分子质量12000 g/mol的pei,使pei与埃洛石质量比保持为:m(pei)∶m(埃洛石)=46mg/g,室温下280 rpm搅拌21min后,以11800r/min离心14min,弃去上清液,冷冻干燥13.5h得到的粉末记作pei

hnt;
79.4)纳米纤维素纤维制备:将新鲜柚皮去掉黄皮后,清洗干净,85℃于鼓风干燥箱中干燥24h,将干燥后的样品于粉碎机中粉碎,过45目筛,得到预处理后的柚皮。称取8.5g预处理后的柚皮用1.5wt%的naoh溶液在100℃下以200r/min搅拌处理 4h,其中柚皮与naoh的料液比为39∶1,趁热以15000rpm的转速离心7min,去除上清液,将沉淀物进行充分洗涤:将去离子水加入沉淀物中,400rpm搅拌5min使水与沉淀物充分接触,然后以15000rpm的转速
离心9min,此步骤重复4次后,84℃干燥8.5h得到粉末a;新鲜柠檬去皮去籽后榨汁,过滤收集滤液,将滤液以14000rpm 离心17min,弃去沉淀物,得到柠檬汁,用柠檬汁浸泡粉末a1.5h,其中柠檬汁与粉末a的料液比为1∶12,以13000rpm的转速离心12min得到的沉淀物直接球磨25min,其中球磨参数为:球料比为1∶15,使用三种研磨珠型号,直径分别为2mm、6mm和 10mm,其数量比为5.9∶1.5∶1,研磨珠的总体积不应超过球磨罐容积的1/3,球磨机频率设置为27hz,球磨得到的样品洗涤至ph呈中性后干燥得到粉末b,最后用1.6wt%的naclo2溶液浸泡粉末b 0.5h其中naclo2溶液与粉末b的料液比为1∶25,去离子水洗涤4次后,85℃干燥9h得到纳米纤维素纤维,将其超声分散于水中制备成质量分数为1.8%的纳米纤维素纤维悬浮液备用;
80.5)埃洛石

羟基磷灰石

纳米纤维素纤维阻燃气凝胶的制备:在室温下,将0.222 克cacl2溶于25毫升去离子水中形成a液,将2.440克油酸钠溶于25毫升去离子水中形成b液,搅拌中将a液逐滴滴加到b液中,制备反应前驱体,并在室温下持续搅拌30分钟后,然后加入25毫升0.072摩尔/升的磷酸二氢钠溶液,再将混合物转入水热反应釜中(容量为100毫升),密封,在200℃水热处理36小时,冷冻干燥14h得到羟基磷灰石纤维。称取步骤3)得到的pei

hnt 0.55g,加入80ml 45mg/ml的羟基磷灰石纤维悬浮液和65ml步骤4)得到的纳米纤维素纤维悬浮液,室温下700rpm搅拌7.5h后,先冷冻干燥38.5h,再在20pa以下的真空干燥箱中115℃干燥37min 得到阻燃复合材料。
81.对制得的样品进行锥形量热,其最大放热率为17.91kw/m2,热释放量为1.19 mj/m2,比只有纳米纤维素纤维直接冷冻干燥制得的阻燃泡沫的最大放热率(324 kw/m2)和热释放量(9.25mj/m2)要小的多,表明该复合材料对燃烧过程有较强的抑制作用。
82.对比例1
83.1)将埃洛石原矿中加水配制成质量分数17%固含量的料浆,以转速为8 000r/min 的高速分散机捣浆1.5h,将分散好的料浆过170目筛进行湿法筛分;筛下的浆料静置 7h,将上层的悬浮液以1200r/min的转速离心10min得到的沉淀物在95℃的条件下烘干10.5h后用球磨机球磨后备用,其中球磨参数为:球料比1∶18,球磨频率:12hz,球磨时间1.5h;将进行初步纯化的埃洛石原矿32g浸没于325ml浓度为27wt%的 h2o2溶液中,超声28min后以200rpm的转速磁力搅拌1h,用去离子水冲洗3次后冷冻干燥18h;
84.2)埃洛石纳米管羟基化改性:将步骤1)中得到的粉末超声13min使其分散于室温下ph为12的naoh溶液(摩尔浓度为0.0114mol/l)中,磁力搅拌24h,将得到的悬浮液离心分离,沉淀物用去离子水洗涤至ph呈中性,先110℃鼓风干燥10h,后 60℃真空干燥11h,得到羟基化改性的埃洛石纳米管,记作h

hnt;
85.3)纳米纤维素纤维制备:将新鲜柚皮去掉黄皮后,清洗干净,75℃于鼓风干燥箱中干燥28h,将干燥后的样品于粉碎机中粉碎,过35目筛,得到预处理后的柚皮。称取6g预处理后的柚皮用1.2wt%的naoh溶液在100℃下以200r/min搅拌处理 3.5h,其中柚皮与naoh的料液比为38∶1,趁热以13000rpm的转速离心8min,去除上清液,将沉淀物进行充分洗涤:将去离子水加入沉淀物中,320rpm搅拌5min使水与沉淀物充分接触,然后以13000rpm的转速离心9min,此步骤重复5次后,80℃干燥8h得到粉末a;新鲜柠檬去皮去籽后榨汁,过滤收集滤液,将滤液以15000rpm 离心15min,弃去沉淀物,得到柠檬汁,用柠檬汁浸泡粉末a1h,其中柠檬汁与粉末 a的料液比为1∶10,以12000rpm的转速离心12min得到的沉淀物直接球磨
23min,其中球磨参数为:球料比为1∶13,使用三种研磨珠型号,直径分别为2mm、6mm和 10mm,其数量比为6∶1.4∶1,研磨珠的总体积不应超过球磨罐容积的1/3,球磨机频率设置为26hz,球磨得到的样品洗涤至ph呈中性后干燥得到粉末b,最后用1.5wt%的naclo2溶液浸泡粉末b 0.5h,其中naclo2溶液与粉末b的料液比为1∶20,去离子水洗涤3次后,80℃干燥7h得到纳米纤维素纤维,将其超声分散于水中制备成质量分数为1.5%的纳米纤维素纤维悬浮液备用;
86.4)埃洛石

羟基磷灰石

纳米纤维素纤维阻燃气凝胶的制备:在室温下,将0.222 克cacl2溶于25毫升去离子水中形成a液,将2.440克油酸钠溶于25毫升去离子水中形成b液,搅拌中将a液逐滴滴加到b液中,制备反应前驱体,并在室温下持续搅拌30分钟后,然后加入25毫升0.072摩尔/升的磷酸二氢钠溶液,再将混合物转入水热反应釜中(容量为100毫升),密封,在200℃水热处理36小时,冷冻干燥13.5h得到羟基磷灰石纤维。称取步骤2)得到的h

hnt 0.4g,加入60ml 60mg/ml的羟基磷灰石纤维悬浮液和50ml步骤4)得到的纳米纤维素纤维悬浮液,室温下700rpm搅拌 8h后,先冷冻干燥36h,再在20pa以下的真空干燥箱中110℃干燥35min得到阻燃复合材料。
87.对制得的样品进行锥形量热,其最大放热率为28.71kw/m2,热释放量为2.34 mj/m2,比只有纳米纤维素纤维直接冷冻干燥制得的阻燃泡沫的最大放热率(324 kw/m2)和热释放量(9.25mj/m2)要小的多,表明该复合材料对燃烧过程有较强的抑制作用,但与实施例1相比,使用pei包覆hnt制备的阻燃泡沫的最大放热率(28.71 kw/m2)和热释放量(2.34mj/m2)要高,出现这种现象的原因主要有两个:
88.(1)hnt外表面为硅羟基,带负电荷,而纳米纤维素纤维和羟基磷灰石纤维的分散液也均带负电,不使用pei包覆,会因静电作用力而减少氢键交联的几率,使三者不能很好的交联在一起,而使用pei包覆hnt后,一方面可以使三者因静电作用力促进交联,另一方面pei上的

nh2的氢可与纳米纤维素纤维和羟基磷灰石纤维表面的羟基氢形成氢键交联,因此,相比较而言,hnt包覆pei处理,可使阻燃成分羟基磷灰石纤维和hnt与纳米纤维素纤维交联的更为紧密,起到较好的阻燃作用。
89.(2)pei作为一种含氮较多的物质,其自身就具有阻燃性。含氮的pei作为气源和碳源燃烧时会生成n2、nh3等不可燃性气体,产生的氨基也可捕捉材料热分解时产生的自由基,在一定程度上稀释氧气等可燃性气体的同时,也可稀释气凝胶的表面热,形成膨胀型保护层。
90.本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。
91.以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜