一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

成像透镜组与成像镜头模块的制作方法

2021-11-15 17:56:00 来源:中国专利 TAG:


1.本揭示内容是关于一种成像透镜组与成像镜头模块,且特别是一种应用在可携式电子装置上的成像透镜组与成像镜头模块。


背景技术:

2.近年来,可携式电子装置发展快速,例如智能电子装置、平板电脑等,已充斥在现代人的生活中,而装载在可携式电子装置上的成像镜头模块与其成像透镜组也随之蓬勃发展。但随着科技愈来愈进步,使用者对于成像透镜组的品质要求也愈来愈高。因此,发展一种兼具微型化、易于制造及良好成像效果的成像透镜组遂成为产业上重要且急欲解决的问题。


技术实现要素:

3.本揭示内容提供一种成像透镜组与成像镜头模块,通过双色模造透镜达到取代成像镜头模块的塑胶镜筒的前端,提供其微型化的可行性。
4.依据本揭示内容一实施方式提供一种成像透镜组,其包含一双色模造透镜元件。双色模造透镜元件包含一透明部、一光线吸收部及一阶差结构。透明部由中心至周边依序包含一光学有效区与一透明外围区,其中成像透镜组的一光轴通过光学有效区,且透明外围区环绕光学有效区。光线吸收部环绕光学有效区,并设置于透明外围区的物侧,且包含一物端面与一外斜面。物端面朝向光线吸收部的物侧。外斜面由物端面往光线吸收部的像侧延伸且逐渐远离光轴。阶差结构连接光线吸收部的一第一外径面与透明部的一第二外径面。物端面至阶差结构的距离为ld,第一外径面的直径为ψd,光线吸收部的一最小开孔的直径为ψd,其满足下列条件:0.6<ld/((ψd-ψd)/2)<2.5。
5.依据前段所述实施方式的成像透镜组,其中第一外径面的直径为ψd,物端面的外径为ψo,其可满足下列条件:0.40<ψo/ψd<0.75。
6.依据前段所述实施方式的成像透镜组,其中光学有效区的中心厚度为ct,光学有效区的像侧中心至物端面的距离为ft,其可满足下列条件:1.0<ft/ct<1.2。
7.依据前段所述实施方式的成像透镜组,其中光学有效区的中心厚度为ct,透明外围区的最小厚度为etmin,其可满足下列条件:etmin/ct<0.35。另外,其可满足下列条件:etmin/ct≤0.25。
8.依据前段所述实施方式的成像透镜组,其中物端面至阶差结构的距离为ld,其可满足下列条件:0.5mm<ld<2.0mm。
9.依据前段所述实施方式的成像透镜组,其中物端面至阶差结构的距离为ld,第一外径面的直径为ψd,光线吸收部的最小开孔的直径为ψd,其可满足下列条件:0.8<ld/((ψd-ψd)/2)<2.2。
10.依据前段所述实施方式的成像透镜组,其中双色模造透镜元件可还包含至少一切痕结构,切痕结构由光线吸收部延伸至透明外围区。
11.依据本揭示内容一实施方式提供一种成像镜头模块,包含前述实施方式的成像透镜组与一塑胶镜筒,其中成像透镜组的双色模造透镜元件的光线吸收部的最小开孔包含一尖端最小开孔与二渐缩面。尖端最小开孔形成成像镜头模块的一光圈。渐缩面分别由光线吸收部的物侧与像侧往尖端最小开孔渐缩。
12.依据前段所述实施方式的成像镜头模块,其中光学有效区可包含一物侧表面与一像侧表面,物侧表面与像侧表面中其中一者为非球面。
13.依据前段所述实施方式的成像镜头模块,其中物侧表面的外径为ψy,光线吸收部的最小开孔的直径为ψd,其可满足下列条件:0.7<ψd/ψy≤1。
14.依据前段所述实施方式的成像镜头模块,其中尖端最小开孔沿平行光轴的方向往透明部的物侧至物侧表面的距离为d1,尖端最小开孔沿平行光轴的方向往透明部的像侧至像侧表面的距离为d2,其可满足下列条件:0≤d1/(d1 d2)<0.8。
15.依据前段所述实施方式的成像镜头模块,其中光线吸收部可包含至少一消光结构,消光结构由复数条状凹沟组成,且条状凹沟以沿圆周方向排列与条状凹沟以成像透镜组的光轴为中心环绕中的至少一方式设置。
16.依据前段所述实施方式的成像镜头模块,其中消光结构可设置于渐缩面中至少一面。
17.依据前段所述实施方式的成像镜头模块,其中塑胶镜筒可包含一顶面朝向成像镜头模块的物侧,且物端面位于顶面的物侧,物端面至顶面的距离为lo,其可满足下列条件:0.3mm<lo<1.5mm。
18.依据前段所述实施方式的成像镜头模块,其中成像透镜组可还包含一成像透镜元件,成像透镜元件设置于双色模造透镜元件的像侧,双色模造透镜元件可包含一轴向连接结构,轴向连接结构位于透明外围区且对应成像透镜元件,轴向连接结构可包含一环平面与一斜锥面,环平面与斜锥面用以与成像透镜元件轴向连接。
19.依据本揭示内容一实施方式提供一种成像镜头模块,其包含一成像透镜组与一塑胶镜筒。成像透镜组包含一双色模造透镜元件,其中双色模造透镜元件包含一透明部与一光线吸收部。透明部由中心至周边依序包含一光学有效区与一透明外围区,其中成像透镜组的一光轴通过光学有效区,且透明外围区环绕光学有效区。光线吸收部环绕光学有效区,并设置于透明外围区的物侧,且包含一物端面与一外斜面,其中物端面朝向物侧,外斜面由物端面往光线吸收部的像侧延伸且逐渐远离光轴。塑胶镜筒用以装载成像透镜组,且包含一顶面,其中顶面朝向成像镜头模块的物侧。物端面位于顶面的物侧,物端面至顶面的距离为lo,其满足下列条件:0.3mm<lo<1.5mm。
20.依据前段所述实施方式的成像镜头模块,其中塑胶镜筒的最小孔径为ψb,物端面的外径为ψo,其可满足下列条件:0.5<ψo/ψb≤0.95。
21.依据前段所述实施方式的成像镜头模块,其中光学有效区的中心厚度为ct,光学有效区的像侧中心至物端面的距离为ft,其可满足下列条件:1.0<ft/ct<1.2。
22.依据前段所述实施方式的成像镜头模块,其中成像透镜组的焦距为f,光线吸收部的最小开孔的直径为ψd,其可满足下列条件:1.15<f/ψd<2.80。另外,其可满足下列条件:1.45≤f/ψd≤2.50。
23.依据前段所述实施方式的成像镜头模块,其中成像透镜组可还包含一成像透镜元
件,成像透镜元件设置于双色模造透镜元件的像侧,双色模造透镜元件可包含一轴向连接结构,轴向连接结构位于透明外围区且对应成像透镜元件,轴向连接结构可包含一环平面与一斜锥面,环平面与斜锥面用以与成像透镜元件轴向连接。
24.依据前段所述实施方式的成像镜头模块,其中光学有效区的中心厚度为ct,透明外围区的最小厚度为etmin,其可满足下列条件:etmin/ct<0.35。另外,其可满足下列条件:etmin/ct≤0.25。
附图说明
25.图1a绘示依照本发明第一实施例中成像镜头模块的立体图;
26.图1b绘示图1a第一实施例中成像镜头模块的示意图;
27.图1c绘示图1a第一实施例中成像镜头模块的部分剖视图;
28.图1d绘示图1a第一实施例中双色模造透镜元件的物侧示意图;
29.图1e绘示图1a第一实施例中双色模造透镜元件的立体图;
30.图1f绘示图1a第一实施例中双色模造透镜元件的另一立体图;
31.图1g绘示图1a第一实施例中双色模造透镜元件的剖视示意图;
32.图1h绘示图1a第一实施例中双色模造透镜元件的参数示意图;
33.图1i绘示图1a第一实施例中双色模造透镜元件的另一参数示意图;
34.图2a绘示依照本发明第二实施例中成像镜头模块的示意图;
35.图2b绘示图2a第二实施例中双色模造透镜元件的物侧示意图;
36.图2c绘示图2a第二实施例中双色模造透镜元件的参数示意图;
37.图2d绘示图2a第二实施例中双色模造透镜元件的另一参数示意图;
38.图3a绘示依照本发明第三实施例中成像镜头模块的示意图;
39.图3b绘示图3a第三实施例中双色模造透镜元件的物侧示意图;
40.图3c绘示图3a第三实施例中双色模造透镜元件的参数示意图;
41.图3d绘示图3a第三实施例中双色模造透镜元件的另一参数示意图;
42.图4a绘示依照本发明第四实施例中成像镜头模块的示意图;
43.图4b绘示图4a第四实施例中双色模造透镜元件的物侧示意图;
44.图4c绘示图4a第四实施例中双色模造透镜元件的参数示意图;
45.图4d绘示图4a第四实施例中双色模造透镜元件的另一参数示意图;
46.图5a绘示依照本发明第五实施例中成像镜头模块的示意图;
47.图5b绘示图5a第五实施例中双色模造透镜元件的物侧示意图;
48.图5c绘示图5a第五实施例中双色模造透镜元件的参数示意图;
49.图5d绘示图5a第五实施例中双色模造透镜元件的另一参数示意图;
50.图6a绘示依照本揭示内容第六实施例中电子装置的示意图;
51.图6b绘示依照图6a第六实施例中电子装置的方块图;
52.图6c绘示依照图6a第六实施例中自拍场景的示意图;以及
53.图6d绘示依照图6a第六实施例中拍摄的影像的示意图。
54.【符号说明】
55.10,20,30,40,50,61:成像镜头模块
56.11,21,31,41,51:双色模造透镜元件
57.12,22,32,42,52:塑胶镜筒
58.12a,22a,32a,42a,52a:顶面
59.13,14,15,16,17,23,24,25,26,27,33,34,35,36,37,43,44,45,53,54,55:成像透镜元件
60.110,210,310,410,510:透明部
61.111,211,311,411,511:光学有效区
62.112,212,312,412,512:透明外围区
63.113,213,313,413,513:第二外径面
64.114,214,314,414,514:物侧表面
65.115,215,315,415,515:像侧表面
66.120,220,320,420,520:光线吸收部
67.121,221,321,421,521:物端面
68.122,222,322,422,522:外斜面
69.123,223,323,423,523:最小开孔
70.124,224,324,424,524:第一外径面
71.125,325,425,525:消光结构
72.126,226,326,426,526:物侧承靠面
73.127,227,327,427,527:尖端最小开孔
74.128,228,328,428,528:渐缩面
75.129:条状凹沟
76.130,230,330,430,530:阶差结构
77.140,240,340,440,540:切痕结构
78.150,250,350:轴向连接结构
79.151,251,351:环平面
80.152,252,352:斜锥面
81.60:电子装置
82.61a:成像透镜组
83.61b:电子感光元件
84.62:使用者界面
85.63:成像信号处理元件
86.64:光学防手震组件
87.65:感测元件
88.66:闪光灯模块
89.67:对焦辅助模块
90.x:光轴
91.ld:物端面至阶差结构的距离
92.ψd:第一外径面的直径
93.ψd:光线吸收部的最小开孔的直径
94.ψo:物端面的外径
95.ft:光学有效区的像侧中心至物端面的距离
96.ct:光学有效区的中心厚度
97.etmin:透明外围区的最小厚度
98.ψy:物侧表面的外径
99.d1:尖端最小开孔沿平行光轴的方向往透明部的物侧至物侧表面的距离
100.d2:尖端最小开孔沿平行光轴的方向往透明部的像侧至像侧表面的距离
101.lo:物端面至顶面的距离
102.ψb:塑胶镜筒的最小孔径
103.f:成像透镜组的焦距
具体实施方式
104.本揭示内容提供一种成像透镜组,包含一双色模造透镜元件。双色模造透镜元件包含一透明部与一光线吸收部。透明部由中心至周边依序包含一光学有效区与一透明外围区,其中成像透镜组的一光轴通过光学有效区,且透明外围区环绕光学有效区。光线吸收部环绕光学有效区,并设置于透明外围区的物侧,且包含一物端面与一外斜面,其中物端面朝向光线吸收部的物侧,且外斜面由物端面往光线吸收部的像侧延伸且逐渐远离光轴。借此,提供一种具有小头结构的双色模造透镜元件,提供成像镜头模块微型化的可行性。进一步来说,物端面与外斜面可取代习知镜筒的外围遮光功能,进而简化镜筒的结构复杂度,还可防止组装时双色模造透镜元件与镜筒之间的碰撞与干涉。
105.成像透镜组还包含一阶差结构,阶差结构连接光线吸收部的一第一外径面与透明部的一第二外径面。借此,可简化射出成型的模具设计,并提高尺寸精度的稳定性。具体而言,阶差结构会因不同模具设计与不同注料方式,使其设置位置可位于光线吸收部上或透明外围区上。
106.具体而言,双色模造透镜元件可由二次射出成型一体制成,首先第一次射出将透明部成型,接着第二次射出将光线吸收部成型,并且光线吸收部与透明部的透明外围区于成型时紧密接合,但成型顺序并不以此为限。透明部可为透明塑料材质,光线吸收部可为黑色塑料材质,其中光线吸收部可吸收非成像光线。
107.外斜面与光轴形成一夹角(图未标示),其夹角的角度可介于1度至40度的范围之间,提供成型时的离型角(draft angle),但不以此角度范围为限。
108.光线吸收部的最小开孔包含一尖端最小开孔与二渐缩面,其中尖端最小开孔与光学有效区互相接触,并且形成成像镜头模块的一光圈,而渐缩面分别由光线吸收部的物侧与像侧往尖端最小开孔渐缩。具体来说,尖端最小开孔为成像镜头模块的光圈,可用于控制成像镜头模块的进光量,且尖端最小开孔的直径即为光线吸收部的最小开孔的直径。再者,光圈的设计可通过模具精度的控制,使得双色模造透镜元件成型后光圈能直接与光学有效区同心设置。因此,有别于传统镜头中以组装遮光元件做为光圈的方式,透过本揭示内容所述的配置可直接避免组装公差。
109.双色模造透镜元件可还包含至少一切痕结构,切痕结构由光线吸收部延伸至透明外围区。具体而言,切痕结构的表面性质与其周围区域的表面不相同,且切痕结构的形状无
特定形式。借此,提供二次射出成型中互相匹配的成型模具设计,可简化制程工序并提高产能。详细来说,切痕结构的表面可为透明塑料、黑色塑料、部分透明塑料与部分黑色塑料或透明塑料与黑色塑料混合,但并不以此为限。
110.光学有效区可包含一物侧表面与一像侧表面,物侧表面与像侧表面中其中一者为非球面。借此,提供高精度的光线曲折力,减少光学像差。进一步来说,尖端最小开孔可因为与光学有效区的物侧表面互相接触,所以可直接定义出光学有效区的物侧表面的范围。
111.光线吸收部可包含至少一消光结构,消光结构由复数条状凹沟组成,且条状凹沟以沿圆周方向排列与条状凹沟以成像透镜组的光轴为中心环绕中的至少一方式设置。借此,可增强光线吸收部吸收杂散光的能力,并维持成型可行性。具体而言,透过条状凹沟以成像透镜组的光轴为中心环绕的方式,消光结构设置于透明部与光线吸收部连接处。借此,可使二次射出成型的塑料更紧密的接合。
112.消光结构可设置于渐缩面中至少一面。具体而言,消光结构可设置于尖端最小开孔的物侧或像侧的渐缩面。详细来说,尖端最小开孔周围容易产生高强度的杂散光,因此渐缩面需要有较高效率的光线吸收能力。因此,透过消光结构设置于渐缩面,可提升尖端最小开孔周围消除杂散光的效率。
113.进一步来说,光线吸收部可具有倒钩设计。借此,可使二次射出成型的塑料更紧密的接合。
114.成像透镜组可还包含一成像透镜元件,成像透镜元件设置于双色模造透镜元件的像侧。具体而言,双色模造透镜元件设置于成像透镜组的最物侧。双色模造透镜元件可还包含一轴向连接结构,轴向连接结构位于透明外围区且对应成像透镜元件,其中轴向连接结构可包含一环平面与一斜锥面,环平面与斜锥面用以与成像透镜元件轴向连接。详细来说,轴向连接结构用以将双色模造透镜元件与其相邻的成像透镜元件沿平行光轴方向上中心对正,即中心位置皆位于光轴上。借此,增加双色模造透镜元件与成像透镜元件之间的同轴度,并提高组装效率。
115.物端面至阶差结构的距离为ld,第一外径面的直径为ψd,光线吸收部的一最小开孔的直径为ψd,其满足下列条件:0.6<ld/((ψd-ψd)/2)<2.5。借此,借此,可使光线吸收部发挥较高的遮光效率。进一步来说,其可满足下列条件:0.8<ld/((ψd-ψd)/2)<2.2。借此,光线吸收部可有更高遮光效率的比例范围。
116.第一外径面的直径为ψd,物端面的外径为ψo,其可满足下列条件:0.40<ψo/ψd<0.75。借此,在微型化的结构下有较佳的遮光效果。
117.光学有效区的中心厚度为ct,光学有效区的像侧中心至物端面的距离为ft,其可满足下列条件:1.0<ft/ct<1.2。借此,在维持光学规格的条件下,仍可有效防止机构干涉的结构设计。
118.光学有效区的中心厚度为ct,透明外围区的最小厚度为etmin,其可满足下列条件:etmin/ct<0.35。具体而言,外周窄化结构可改善射出成型时塑料填充不均匀的问题,提升成型良率。进一步来说,其可满足下列条件:etmin/ct≤0.25。具体而言,窄化结构在特定的比例下塑料的流速与流向会更趋稳定,并且降低透明外围区产生杂散光的机率。
119.物端面至阶差结构的距离为ld,其可满足下列条件:0.5mm<ld<2.0mm。借此,可提供大范围遮光,防止外周区域的非成像光线进入成像透镜组的成像系统中。
120.物侧表面的外径为ψy,光线吸收部的最小开孔的直径为ψd,其可满足下列条件:0.7<ψd/ψy≤1。借此,可降低双色模造透镜元件与成像透镜元件产生内部面反射的机率。
121.尖端最小开孔沿平行光轴的方向往透明部的物侧至物侧表面的距离为d1,尖端最小开孔沿平行光轴的方向往透明部的像侧至像侧表面的距离为d2,其可满足下列条件:0≤d1/(d1 d2)<0.8。具体而言,传统光学设计皆是将光圈遮光位置设计在镜片外部,并且会与光学镜面至少保持一特定距离,而本揭示内容的尖端最小开孔可贴附在透明部的物侧表面上,或可埋入在透明部之中。借此,可提供光学设计上光圈位置更弹性的设计方案。
122.上述本揭示内容成像透镜组中的各技术特征皆可组合配置,而达到对应的功效。
123.本揭示内容提供一种成像镜头模块,包含前述的成像透镜组与一塑胶镜筒,其中塑胶镜筒装载成像透镜组。进一步来说,光线吸收部可还包含一物侧承靠面,物侧承靠面朝向物侧,且较外斜面远离光轴,用于与塑胶镜筒承靠组装。借此,尖端最小开孔可取代塑胶镜筒的开孔遮光,借此简化塑胶镜筒的开孔结构,降低塑胶镜筒的制造成本。
124.塑胶镜筒包含一顶面,其中顶面朝向成像镜头模块的物侧,且光线吸收部的物端面位于顶面的物侧。进一步来说,物端面与顶面实质上皆与光轴垂直。
125.双色模造透镜元件可还包含与塑胶镜筒对应的轴向连接结构,与塑胶镜筒对应的轴向连接结构位于光线吸收部。借此,用以将双色模造透镜元件与塑胶镜筒沿平行光轴方向中心对正。
126.物端面至顶面的距离为lo,其满足下列条件:0.3mm<lo<1.5mm。借此,使小头结构不受限于塑胶镜筒的空间配置,达到双色模造透镜元件前推的设计。
127.塑胶镜筒的最小孔径为ψb,物端面的外径为ψo,其可满足下列条件:0.5<ψo/ψb≤0.95。借此,可有效防止组装时发生碰撞,并保持双色模造透镜元件的结构完整性。
128.成像透镜组的焦距为f,光线吸收部的最小开孔的直径为ψd,其可满足下列条件:1.15<f/ψd<2.80。借此,可于成像镜头模块微型化的设计下,保持高规格的光学品质。进一步来说,其可满足下列条件:1.45≤f/ψd≤2.50。借此,可维持成像镜头模块的光学品质与小型化的平衡下,配置较合适的范围。
129.根据上述实施方式,以下提出具体实施例并配合附图予以详细说明。
130.<第一实施例>
131.请参照图1a至图1c,图1a绘示依照本发明第一实施例中成像镜头模块10的立体图,图1b绘示图1a第一实施例中成像镜头模块10的示意图,图1c绘示图1a第一实施例中成像镜头模块10的部分剖视图。由图1a至图1c可知,成像镜头模块10包含一成像透镜组(图未标示)与一塑胶镜筒12。成像透镜组包含一双色模造透镜元件11。塑胶镜筒12装载成像透镜组,且塑胶镜筒12包含一顶面12a,其中顶面12a朝向成像镜头模块10的物侧。
132.进一步来说,成像透镜组还包含一成像透镜元件,成像透镜元件设置于双色模造透镜元件11的像侧。第一实施例中,成像透镜组由物侧至像侧依序包含双色模造透镜元件11、成像透镜元件13、14、15、16、17,其中双色模造透镜元件11设置于成像透镜组的最物侧。再者,成像透镜元件的数量、结构、面形等光学特征可依照不同成像需求配置,且更可依需求设置其他光学元件,并不以此为限。
133.图1d绘示图1a第一实施例中双色模造透镜元件11的物侧示意图,图1e绘示图1a第一实施例中双色模造透镜元件11的立体图,图1f绘示图1a第一实施例中双色模造透镜元件
11的另一立体图,图1g绘示图1a第一实施例中双色模造透镜元件11的剖视示意图。由图1d至图1g可知,双色模造透镜元件11包含一透明部110、一光线吸收部120及一阶差结构130。
134.具体而言,双色模造透镜元件11可由二次射出成型一体制成,首先第一次射出将透明部110成型,接着第二次射出将光线吸收部120成型,并且光线吸收部120与透明部110的透明外围区112于成型时紧密接合,但成型顺序并不以此为限。透明部110可为透明塑料材质,光线吸收部120可为黑色塑料材质,其中光线吸收部120可吸收非成像光线。借此,本揭示内容提供一种具有小头结构的双色模造透镜元件11,提供成像镜头模块10微型化的可行性。
135.透明部110由中心至周边依序包含一光学有效区111与一透明外围区112,其中成像透镜组的一光轴x通过光学有效区111,且透明外围区112环绕光学有效区111。进一步来说,成像透镜组的一成像光线(图未绘示)通过光学有效区111。
136.光线吸收部120环绕光学有效区111,并设置于透明外围区112的物侧,且包含一物端面121、一外斜面122及一最小开孔123,其中物端面121朝向物侧,且外斜面122由物端面121往光线吸收部120的像侧延伸且逐渐远离光轴x。借此,物端面121与外斜面122可取代塑胶镜筒12的外围遮光功能,进而简化塑胶镜筒12的结构复杂度,还可防止组装时双色模造透镜元件11、成像透镜元件13、14、15、16、17与塑胶镜筒12之间的碰撞与干涉。
137.进一步来说,物端面121位于顶面12a的物侧,而物端面121与顶面12a实质上皆与光轴x垂直。外斜面122与光轴x形成一夹角(图未标示),其夹角的角度可介于1度至40度的范围之间,提供成型时的离型角(draft angle),但不以此角度范围为限。
138.由图1c与图1g可知,阶差结构130连接光线吸收部120的一第一外径面124与透明部110的一第二外径面113。借此,可简化射出成型的模具设计,并提高尺寸精度的稳定性。具体而言,阶差结构130会因不同模具设计与不同注料方式,使其设置位置可位于光线吸收部120上或透明外围区112上。第一实施例中,阶差结构130位于光线吸收部120上。
139.由图1d至图1g可知,双色模造透镜元件11可还包含至少一切痕结构,第一实施例中,切痕结构140的数量为二,但并不以此为限。切痕结构140由光线吸收部120延伸至透明外围区112。具体而言,切痕结构140的表面性质与其周围区域的表面不相同,且切痕结构140的形状无特定形式。第一实施例中,切痕结构140为矩形,但并不以此为限。借此,提供二次射出成型中互相匹配的成型模具设计,可简化制程工序并提高产能。详细来说,切痕结构140的表面可为透明塑料、黑色塑料、部分透明塑料与部分黑色塑料或透明塑料与黑色塑料混合,但并不以此为限。
140.光线吸收部120的最小开孔123包含一尖端最小开孔127与二渐缩面128,其中尖端最小开孔127与光学有效区111互相接触,并且形成成像镜头模块的一光圈,而渐缩面128分别由光线吸收部120的物侧与像侧往尖端最小开孔127渐缩。
141.具体来说,尖端最小开孔127为成像镜头模块10的光圈,可用于控制成像镜头模块10的进光量,且尖端最小开孔127的直径即为光线吸收部120的最小开孔123的直径。借此,尖端最小开孔127可取代塑胶镜筒12的开孔遮光,借此简化塑胶镜筒12的开孔结构,降低塑胶镜筒12的制造成本。
142.再者,光圈的设计可通过模具精度的控制,使得双色模造透镜元件11成型后光圈能直接与光学有效区111同心设置。因此,有别于传统镜头中以组装遮光元件做为光圈的方
式,透过本揭示内容所述的配置可直接避免组装公差。
143.由图1a至图1d及图1g可知,光线吸收部120包含至少一消光结构,第一实施例中,消光结构125的数量为二。消光结构125由复数条状凹沟129组成,且条状凹沟129以沿圆周方向排列与条状凹沟129以成像透镜组的光轴x为中心环绕中的至少一方式设置。借此,可增强光线吸收部120吸收杂散光的能力,并维持成型可行性。第一实施例中,靠近双色模造透镜元件11物侧的消光结构125的条状凹沟129以沿圆周方向排列,而靠近双色模造透镜元件11像侧的消光结构125的条状凹沟129以成像透镜组的光轴x为中心环绕,但并不以此为限。具体而言,透过条状凹沟129以成像透镜组的光轴x为中心环绕的方式,消光结构125设置于透明部110与光线吸收部120连接处。借此,可使二次射出成型的塑料更紧密的接合。
144.消光结构125可设置于渐缩面128中至少一面。具体而言,第一实施例中,靠近双色模造透镜元件11物侧的消光结构125设置于尖端最小开孔127物侧的渐缩面128。详细来说,尖端最小开孔127周围容易产生高强度的杂散光,因此渐缩面128需要有较高效率的光线吸收能力。因此,透过消光结构125设置于渐缩面128,可提升尖端最小开孔127周围消除杂散光的效率。
145.进一步来说,由图1b可知,光线吸收部120还包含一物侧承靠面126,物侧承靠面126朝向物侧,且较外斜面122远离光轴x,用于与塑胶镜筒12承靠组装。
146.光学有效区111包含一物侧表面114与一像侧表面115,物侧表面114与像侧表面115中其中一者为非球面。第一实施例中,物侧表面114与像侧表面115皆为非球面。借此,提供高精度的光线曲折力,减少光学像差。第一实施例中,尖端最小开孔127因为与光学有效区111的物侧表面114互相接触,所以可直接定义出光学有效区111的物侧表面114的范围。
147.详细来说,传统光学设计皆是将光圈遮光位置设计在镜片外部,并且会与光学镜面至少保持一特定距离,而本揭示内容的尖端最小开孔127可贴附在透明部110的物侧表面114上,尖端最小开孔127也可埋入在透明部110之中。第一实施例中,尖端最小开孔127贴附在透明部110的物侧表面114上,但并不以此为限。
148.由图1b可知,双色模造透镜元件11还包含一轴向连接结构150,轴向连接结构150位于透明外围区112且对应成像透镜元件13。具体来说,双色模造透镜元件11透过轴向连接结构150与成像透镜元件13对应连接。
149.详细来说,双色模造透镜元件11的轴向连接结构150包含一环平面151与一斜锥面152,环平面151与斜锥面152用以与成像透镜元件13轴向连接。详细来说,轴向连接结构150用以将双色模造透镜元件11与其相邻的成像透镜元件13沿平行光轴x方向上中心对正,即中心位置皆位于光轴x上。借此,增加双色模造透镜元件11与成像透镜元件13之间的同轴度,并提高组装效率。
150.图1h绘示图1a第一实施例中双色模造透镜元件11的参数示意图,图1i绘示图1a第一实施例中双色模造透镜元件11的另一参数示意图。由图1b、图1h及图1i可知,物端面121至阶差结构130的距离为ld,第一外径面124的直径为ψd,光线吸收部120的最小开孔123的直径为ψd,物端面121的外径为ψo,光学有效区111的中心厚度为ct,光学有效区111的像侧中心至物端面121的距离为ft,透明外围区112的最小厚度为etmin,物侧表面114的外径为ψy,尖端最小开孔127沿平行光轴x的方向往透明部110的物侧至物侧表面114的距离为d1,尖端最小开孔127沿平行光轴x的方向往透明部110的像侧至像侧表面115的距离为d2,物端面
121至顶面12a的距离为lo,塑胶镜筒12的最小孔径为ψb,成像透镜组的焦距为f,而所述参数满足下列表一条件。
[0151][0152]
值得一提的是,第一实施例中,ψd=ψy。
[0153]
<第二实施例>
[0154]
请参照图2a,图2a绘示依照本发明第二实施例中成像镜头模块20的示意图。由图2a可知,成像镜头模块20包含一成像透镜组(图未标示)与一塑胶镜筒22。成像透镜组包含一双色模造透镜元件21。塑胶镜筒22装载成像透镜组,且塑胶镜筒22包含一顶面22a,其中顶面22a朝向成像镜头模块20的物侧。
[0155]
进一步来说,成像透镜组还包含一成像透镜元件,成像透镜元件设置于双色模造透镜元件21的像侧。第二实施例中,成像透镜组由物侧至像侧依序包含双色模造透镜元件21、成像透镜元件23、24、25、26、27,其中双色模造透镜元件21设置于成像透镜组的最物侧。再者,成像透镜元件的数量、结构、面形等光学特征可依照不同成像需求配置,且更可依需求设置其他光学元件,并不以此为限。
[0156]
图2b绘示图2a第二实施例中双色模造透镜元件21的物侧示意图,图2c绘示图2a第二实施例中双色模造透镜元件21的参数示意图,图2d绘示图2a第二实施例中双色模造透镜元件21的另一参数示意图。由图2b至图2d可知,双色模造透镜元件21包含一透明部210、一光线吸收部220及一阶差结构230。
[0157]
具体而言,双色模造透镜元件21可由二次射出成型一体制成,首先第一次射出将透明部210成型,接着第二次射出将光线吸收部220成型,并且光线吸收部220与透明部210的透明外围区212于成型时紧密接合,但成型顺序并不以此为限。透明部210可为透明塑料材质,光线吸收部220可为黑色塑料材质,其中光线吸收部220可吸收非成像光线。借此,本揭示内容提供一种具有小头结构的双色模造透镜元件21,提供成像镜头模块20微型化的可行性。
[0158]
透明部210由中心至周边依序包含一光学有效区211与一透明外围区212,其中成像透镜组的一光轴x通过光学有效区211,且透明外围区212环绕光学有效区211。进一步来
说,成像透镜组的一成像光线(图未绘示)通过光学有效区211。
[0159]
光线吸收部220环绕光学有效区211,并设置于透明外围区212的物侧,且包含一物端面221、一外斜面222及一最小开孔223,其中物端面221朝向物侧,且外斜面222由物端面221往光线吸收部220的像侧延伸且逐渐远离光轴x。借此,物端面221与外斜面222可取代塑胶镜筒22的外围遮光功能,进而简化塑胶镜筒22的结构复杂度,还可防止组装时双色模造透镜元件21、成像透镜元件23、24、25、26、27与塑胶镜筒22之间的碰撞与干涉。
[0160]
进一步来说,物端面221位于顶面22a的物侧,而物端面221与顶面22a实质上皆与光轴x垂直。外斜面222与光轴x形成一夹角(图未标示),其夹角的角度可介于1度至40度的范围之间,提供成型时的离型角(draft angle),但不以此角度范围为限。
[0161]
由图2c与图2d可知,阶差结构230连接光线吸收部220的一第一外径面224与透明部210的一第二外径面213。借此,可简化射出成型的模具设计,并提高尺寸精度的稳定性。具体而言,阶差结构230会因不同模具设计与不同注料方式,使其设置位置可位于光线吸收部220上或透明外围区212上。第二实施例中,阶差结构230位于光线吸收部220上。
[0162]
由图2b至图2c可知,双色模造透镜元件21可还包含至少一切痕结构,第二实施例中,切痕结构240的数量为一,但并不以此为限。切痕结构240由光线吸收部220延伸至透明外围区212。具体而言,切痕结构240的表面性质与其周围区域的表面不相同,且切痕结构240的形状无特定形式。第二实施例中,切痕结构240为矩形,但并不以此为限。借此,提供二次射出成型中互相匹配的成型模具设计,可简化制程工序并提高产能。详细来说,切痕结构240的表面可为透明塑料、黑色塑料、部分透明塑料与部分黑色塑料或透明塑料与黑色塑料混合,但并不以此为限。
[0163]
光线吸收部220的最小开孔223包含一尖端最小开孔227与二渐缩面228,其中尖端最小开孔227与光学有效区211互相接触,并且形成成像镜头模块的一光圈,而渐缩面228分别由光线吸收部220的物侧与像侧往尖端最小开孔227渐缩。
[0164]
具体来说,尖端最小开孔227为成像镜头模块20的光圈,可用于控制成像镜头模块20的进光量,且尖端最小开孔227的直径即为光线吸收部220的最小开孔223的直径。借此,尖端最小开孔227可取代塑胶镜筒22的开孔遮光,借此简化塑胶镜筒22的开孔结构,降低塑胶镜筒22的制造成本。
[0165]
再者,光圈的设计可通过模具精度的控制,使得双色模造透镜元件21成型后光圈能直接与光学有效区211同心设置。因此,有别于传统镜头中以组装遮光元件做为光圈的方式,透过本揭示内容所述的配置可直接避免组装公差。
[0166]
进一步来说,由图2a可知,光线吸收部220还包含一物侧承靠面226,物侧承靠面226朝向物侧,且较外斜面222远离光轴x,用于与塑胶镜筒22承靠组装。
[0167]
光学有效区211包含一物侧表面214与一像侧表面215,物侧表面214与像侧表面215中其中一者为非球面。第二实施例中,物侧表面214与像侧表面215皆为非球面。借此,提供高精度的光线曲折力,减少光学像差。第二实施例中,尖端最小开孔227因为与光学有效区211的物侧表面214互相接触,所以可直接定义出光学有效区211的物侧表面214的范围。
[0168]
详细来说,传统光学设计皆是将光圈遮光位置设计在镜片外部,并且会与光学镜面至少保持一特定距离,而本揭示内容的尖端最小开孔227可贴附在透明部210的物侧表面214上,尖端最小开孔227也可埋入在透明部210之中。第二实施例中,尖端最小开孔227贴附
在透明部210的物侧表面214上,但并不以此为限。
[0169]
由图2a可知,双色模造透镜元件21还包含一轴向连接结构,轴向连接结构位于透明外围区212且对应成像透镜元件23。第二实施例中,双色模造透镜元件21包含二轴向连接结构250,轴向连接结构250分别位于透明外围区212与光线吸收部220,位于透明外围区212的轴向连接结构250对应成像透镜元件23,而位于光线吸收部220的轴向连接结构250对应塑胶镜筒22。具体来说,双色模造透镜元件21透过轴向连接结构250分别与成像透镜元件23与塑胶镜筒22对应连接。详细来说,位于透明外围区212的轴向连接结构250包含一环平面251与一斜锥面252,环平面251与斜锥面252用以与成像透镜元件23轴向连接。详细来说,位于透明外围区212的轴向连接结构250用以将双色模造透镜元件21与其相邻的成像透镜元件23沿平行光轴x方向上中心对正,即中心位置皆位于光轴x上,而位于光线吸收部220的轴向连接结构250用以将双色模造透镜元件21与塑胶镜筒22沿平行光轴x方向中心对正。借此,增加双色模造透镜元件21与成像透镜元件23之间的同轴度,并提高组装效率。
[0170]
由图2a、图2c及图2d可知,物端面221至阶差结构230的距离为ld,第一外径面224的直径为ψd,光线吸收部220的最小开孔223的直径为ψd,物端面221的外径为ψo,光学有效区211的中心厚度为ct,光学有效区211的像侧中心至物端面221的距离为ft,透明外围区212的最小厚度为etmin,物侧表面214的外径为ψy,尖端最小开孔227沿平行光轴x的方向往透明部210的物侧至物侧表面214的距离为d1,尖端最小开孔227沿平行光轴x的方向往透明部210的像侧至像侧表面215的距离为d2,物端面221至顶面22a的距离为lo,塑胶镜筒22的最小孔径为ψb,成像透镜组的焦距为f,而所述参数满足下列表二条件。
[0171][0172][0173]
值得一提的是,第二实施例中,ψd=ψy。
[0174]
<第三实施例>
[0175]
请参照图3a,图3a绘示依照本发明第三实施例中成像镜头模块30的示意图。由图3a可知,成像镜头模块30包含一成像透镜组(图未标示)与一塑胶镜筒32。成像透镜组包含一双色模造透镜元件31。塑胶镜筒32装载成像透镜组,且塑胶镜筒32包含一顶面32a,其中
顶面32a朝向成像镜头模块30的物侧。
[0176]
进一步来说,成像透镜组还包含一成像透镜元件,成像透镜元件设置于双色模造透镜元件31的像侧。第三实施例中,成像透镜组由物侧至像侧依序包含双色模造透镜元件31、成像透镜元件33、34、35、36、37,其中双色模造透镜元件31设置于成像透镜组的最物侧。再者,成像透镜元件的数量、结构、面形等光学特征可依照不同成像需求配置,且更可依需求设置其他光学元件,并不以此为限。
[0177]
图3b绘示图3a第三实施例中双色模造透镜元件31的物侧示意图,图3c绘示图3a第三实施例中双色模造透镜元件31的参数示意图,图3d绘示图3a第三实施例中双色模造透镜元件31的另一参数示意图。由图3b至图3d可知,双色模造透镜元件31包含一透明部310、一光线吸收部320及一阶差结构330。
[0178]
具体而言,双色模造透镜元件31可由二次射出成型一体制成,首先第一次射出将透明部310成型,接着第二次射出将光线吸收部320成型,并且光线吸收部320与透明部310的透明外围区312于成型时紧密接合,但成型顺序并不以此为限。透明部310可为透明塑料材质,光线吸收部320可为黑色塑料材质,其中光线吸收部320可吸收非成像光线。借此,本揭示内容提供一种具有小头结构的双色模造透镜元件31,提供成像镜头模块30微型化的可行性。
[0179]
透明部310由中心至周边依序包含一光学有效区311与一透明外围区312,其中成像透镜组的一光轴x通过光学有效区311,且透明外围区312环绕光学有效区311。进一步来说,成像透镜组的一成像光线(图未绘示)通过光学有效区311。
[0180]
光线吸收部320环绕光学有效区311,并设置于透明外围区312的物侧,且包含一物端面321、一外斜面322及一最小开孔323,其中物端面321朝向物侧,且外斜面322由物端面321往光线吸收部320的像侧延伸且逐渐远离光轴x。借此,物端面321与外斜面322可取代塑胶镜筒32的外围遮光功能,进而简化塑胶镜筒32的结构复杂度,还可防止组装时双色模造透镜元件31、成像透镜元件33、34、35、36、37与塑胶镜筒32之间的碰撞与干涉。
[0181]
进一步来说,物端面321位于顶面32a的物侧,而物端面321与顶面32a实质上皆与光轴x垂直。外斜面322与光轴x形成一夹角(图未标示),其夹角的角度可介于1度至40度的范围之间,提供成型时的离型角(draft angle),但不以此角度范围为限。
[0182]
由图3c与图3d可知,阶差结构330连接光线吸收部320的一第一外径面324与透明部310的一第二外径面313。借此,可简化射出成型的模具设计,并提高尺寸精度的稳定性。具体而言,阶差结构330会因不同模具设计与不同注料方式,使其设置位置可位于光线吸收部320上或透明外围区312上。第三实施例中,阶差结构330位于透明外围区312上。
[0183]
由图3b至图3c可知,双色模造透镜元件31可还包含至少一切痕结构,第三实施例中,切痕结构340的数量为一,但并不以此为限。切痕结构340由光线吸收部320延伸至透明外围区312。具体而言,切痕结构340的表面性质与其周围区域的表面不相同,且切痕结构340的形状无特定形式。第三实施例中,切痕结构340为矩形,但并不以此为限。借此,提供二次射出成型中互相匹配的成型模具设计,可简化制程工序并提高产能。详细来说,切痕结构340的表面可为透明塑料、黑色塑料、部分透明塑料与部分黑色塑料或透明塑料与黑色塑料混合,但并不以此为限。
[0184]
光线吸收部320的最小开孔323包含一尖端最小开孔327与二渐缩面328,其中尖端
最小开孔327与光学有效区311互相接触,并且形成成像镜头模块的一光圈,而渐缩面328分别由光线吸收部320的物侧与像侧往尖端最小开孔327渐缩。
[0185]
具体来说,尖端最小开孔327为成像镜头模块30的光圈,可用于控制成像镜头模块30的进光量,且尖端最小开孔327的直径即为光线吸收部320的最小开孔323的直径。借此,尖端最小开孔327可取代塑胶镜筒32的开孔遮光,借此简化塑胶镜筒32的开孔结构,降低塑胶镜筒32的制造成本。
[0186]
再者,光圈的设计可通过模具精度的控制,使得双色模造透镜元件31成型后光圈能直接与光学有效区311同心设置。因此,有别于传统镜头中以组装遮光元件做为光圈的方式,透过本揭示内容所述的配置可直接避免组装公差。
[0187]
由图3a至图3d可知,光线吸收部320包含至少一消光结构,第三实施例中,消光结构325的数量为一。消光结构325由复数条状凹沟(图未绘示)组成,且条状凹沟以沿圆周方向排列与条状凹沟以成像透镜组的光轴x为中心环绕中的至少一方式设置。借此,可增强光线吸收部320吸收杂散光的能力,并维持成型可行性。第三实施例中,光线吸收部320的消光结构325的条状凹沟以沿圆周方向排列,但并不以此为限。借此,可使二次射出成型的塑料更紧密的接合。
[0188]
消光结构325可设置于渐缩面328中至少一面。具体而言,第三实施例中,消光结构325设置于尖端最小开孔327物侧的渐缩面328。详细来说,尖端最小开孔327周围容易产生高强度的杂散光,因此渐缩面328需要有较高效率的光线吸收能力。因此,透过消光结构325设置于渐缩面328,可提升尖端最小开孔327周围消除杂散光的效率。
[0189]
进一步来说,由图3a可知,光线吸收部320还包含一物侧承靠面326,物侧承靠面326朝向物侧,且较外斜面322远离光轴x,用于与塑胶镜筒32承靠组装。
[0190]
光学有效区311包含一物侧表面314与一像侧表面315,物侧表面314与像侧表面315中其中一者为非球面。第三实施例中,物侧表面314与像侧表面315皆为非球面。借此,提供高精度的光线曲折力,减少光学像差。
[0191]
详细来说,传统光学设计皆是将光圈遮光位置设计在镜片外部,并且会与光学镜面至少保持一特定距离,而本揭示内容的尖端最小开孔327可贴附在透明部310的物侧表面314上,尖端最小开孔327也可埋入在透明部310之中。第三实施例中,尖端最小开孔327埋入在透明部310之中,但并不以此为限。
[0192]
由图3a可知,双色模造透镜元件31还包含一轴向连接结构350,轴向连接结构350位于透明外围区312且对应成像透镜元件33。具体来说,双色模造透镜元件31透过轴向连接结构350与成像透镜元件33对应连接。
[0193]
详细来说,轴向连接结构350包含一环平面351与一斜锥面352,环平面351与斜锥面352用以与成像透镜元件33轴向连接。详细来说,轴向连接结构350用以将双色模造透镜元件31与其相邻的成像透镜元件33沿平行光轴x方向上中心对正,即中心位置皆位于光轴x上。借此,增加双色模造透镜元件31与成像透镜元件33之间的同轴度,并提高组装效率。
[0194]
由图3a、图3c及图3d可知,物端面321至阶差结构330的距离为ld,第一外径面324的直径为ψd,光线吸收部320的最小开孔323的直径为ψd,物端面321的外径为ψo,光学有效区311的中心厚度为ct,光学有效区311的像侧中心至物端面321的距离为ft,透明外围区312的最小厚度为etmin,物侧表面314的外径为ψy,尖端最小开孔327沿平行光轴x的方向往
透明部310的物侧至物侧表面314的距离为d1,尖端最小开孔327沿平行光轴x的方向往透明部310的像侧至像侧表面315的距离为d2,物端面321至顶面32a的距离为lo,塑胶镜筒32的最小孔径为ψb,成像透镜组的焦距为f,而所述参数满足下列表三条件。
[0195][0196]
<第四实施例>
[0197]
请参照图4a,图4a绘示依照本发明第四实施例中成像镜头模块40的示意图。由图4a可知,成像镜头模块40包含一成像透镜组(图未标示)与一塑胶镜筒42。成像透镜组包含一双色模造透镜元件41。塑胶镜筒42装载成像透镜组,且塑胶镜筒42包含一顶面42a,其中顶面42a朝向成像镜头模块40的物侧。
[0198]
进一步来说,成像透镜组还包含一成像透镜元件,成像透镜元件设置于双色模造透镜元件41的像侧。第四实施例中,成像透镜组由物侧至像侧依序包含双色模造透镜元件41、成像透镜元件43、44、45,其中双色模造透镜元件41设置于成像透镜组的最物侧。再者,成像透镜元件的数量、结构、面形等光学特征可依照不同成像需求配置,且更可依需求设置其他光学元件,并不以此为限。
[0199]
图4b绘示图4a第四实施例中双色模造透镜元件41的物侧示意图,图4c绘示图4a第四实施例中双色模造透镜元件41的参数示意图,图4d绘示图4a第四实施例中双色模造透镜元件41的另一参数示意图。由图4b至图4d可知,双色模造透镜元件41包含一透明部410、一光线吸收部420及一阶差结构430。
[0200]
具体而言,双色模造透镜元件41可由二次射出成型一体制成,首先第一次射出将透明部410成型,接着第二次射出将光线吸收部420成型,并且光线吸收部420与透明部410的透明外围区412于成型时紧密接合,但成型顺序并不以此为限。透明部410可为透明塑料材质,光线吸收部420可为黑色塑料材质,其中光线吸收部420可吸收非成像光线。借此,本揭示内容提供一种具有小头结构的双色模造透镜元件41,提供成像镜头模块40微型化的可行性。
[0201]
透明部410由中心至周边依序包含一光学有效区411与一透明外围区412,其中成像透镜组的一光轴x通过光学有效区411,且透明外围区412环绕光学有效区411。进一步来
说,成像透镜组的一成像光线(图未绘示)通过光学有效区411。
[0202]
光线吸收部420环绕光学有效区411,并设置于透明外围区412的物侧,且包含一物端面421、一外斜面422及一最小开孔423,其中物端面421朝向物侧,且外斜面422由物端面421往光线吸收部420的像侧延伸且逐渐远离光轴x。借此,物端面421与外斜面422可取代塑胶镜筒42的外围遮光功能,进而简化塑胶镜筒42的结构复杂度,还可防止组装时双色模造透镜元件41、成像透镜元件43、44、45与塑胶镜筒42之间的碰撞与干涉。
[0203]
进一步来说,物端面421位于顶面42a的物侧,而物端面421与顶面42a实质上皆与光轴x垂直。外斜面422与光轴x形成一夹角(图未标示),其夹角的角度可介于1度至40度的范围之间,提供成型时的离型角(draft angle),但不以此角度范围为限。
[0204]
由图4c与图4d可知,阶差结构430连接光线吸收部420的一第一外径面424与透明部410的一第二外径面413。借此,可简化射出成型的模具设计,并提高尺寸精度的稳定性。具体而言,阶差结构430会因不同模具设计与不同注料方式,使其设置位置可位于光线吸收部420上或透明外围区412上。第四实施例中,阶差结构430位于光线吸收部420上。
[0205]
由图4b至图4c可知,双色模造透镜元件41可还包含至少一切痕结构,第四实施例中,切痕结构440的数量为一,但并不以此为限。切痕结构440由光线吸收部420延伸至透明外围区412。具体而言,切痕结构440的表面性质与其周围区域的表面不相同,且切痕结构440的形状无特定形式。第四实施例中,切痕结构440为矩形,但并不以此为限。借此,提供二次射出成型中互相匹配的成型模具设计,可简化制程工序并提高产能。详细来说,切痕结构440的表面可为透明塑料、黑色塑料、部分透明塑料与部分黑色塑料或透明塑料与黑色塑料混合,但并不以此为限。
[0206]
光线吸收部420的最小开孔423包含一尖端最小开孔427与二渐缩面428,其中尖端最小开孔427与光学有效区411互相接触,并且形成成像镜头模块的一光圈,而渐缩面428分别由光线吸收部420的物侧与像侧往尖端最小开孔427渐缩。
[0207]
具体来说,尖端最小开孔427为成像镜头模块40的光圈,可用于控制成像镜头模块40的进光量,且尖端最小开孔427的直径即为光线吸收部420的最小开孔423的直径。借此,尖端最小开孔427可取代塑胶镜筒42的开孔遮光,借此简化塑胶镜筒42的开孔结构,降低塑胶镜筒42的制造成本。
[0208]
再者,光圈的设计可通过模具精度的控制,使得双色模造透镜元件41成型后光圈能直接与光学有效区411同心设置。因此,有别于传统镜头中以组装遮光元件做为光圈的方式,透过本揭示内容所述的配置可直接避免组装公差。
[0209]
由图4a至图4d可知,光线吸收部420包含至少一消光结构,第四实施例中,消光结构425的数量为一。消光结构425由复数条状凹沟(图未绘示)组成,且条状凹沟以沿圆周方向排列与条状凹沟以成像透镜组的光轴x为中心环绕中的至少一方式设置。借此,可增强光线吸收部420吸收杂散光的能力,并维持成型可行性。第四实施例中,光线吸收部420的消光结构425的条状凹沟以沿圆周方向排列,但并不以此为限。借此,可使二次射出成型的塑料更紧密的接合。
[0210]
第四实施例中,光线吸收部420可具有倒钩设计。借此,可使二次射出成型的塑料更紧密的接合。
[0211]
消光结构425可设置于渐缩面428中至少一面。具体而言,第四实施例中,消光结构
425设置于尖端最小开孔427像侧的渐缩面428。详细来说,尖端最小开孔427周围容易产生高强度的杂散光,因此渐缩面428需要有较高效率的光线吸收能力。因此,透过消光结构425设置于渐缩面428,可提升尖端最小开孔427周围消除杂散光的效率。
[0212]
进一步来说,由图4a可知,光线吸收部420还包含一物侧承靠面426,物侧承靠面426朝向物侧,且较外斜面422远离光轴x,用于与塑胶镜筒42承靠组装。
[0213]
光学有效区411包含一物侧表面414与一像侧表面415,物侧表面414与像侧表面415中其中一者为非球面。第四实施例中,物侧表面414与像侧表面415皆为非球面。借此,提供高精度的光线曲折力,减少光学像差。
[0214]
详细来说,传统光学设计皆是将光圈遮光位置设计在镜片外部,并且会与光学镜面至少保持一特定距离,而本揭示内容的尖端最小开孔427可贴附在透明部410的物侧表面414上,尖端最小开孔427也可埋入在透明部410之中。第四实施例中,尖端最小开孔427埋入在透明部410之中,但并不以此为限。
[0215]
由图4a、图4c及图4d可知,物端面421至阶差结构430的距离为ld,第一外径面424的直径为ψd,光线吸收部420的最小开孔423的直径为ψd,物端面421的外径为ψo,光学有效区411的中心厚度为ct,光学有效区411的像侧中心至物端面421的距离为ft,透明外围区412的最小厚度为etmin,物侧表面414的外径为ψy,尖端最小开孔427沿平行光轴x的方向往透明部410的物侧至物侧表面414的距离为d1,尖端最小开孔427沿平行光轴x的方向往透明部410的像侧至像侧表面415的距离为d2,物端面421至顶面42a的距离为lo,塑胶镜筒42的最小孔径为ψb,成像透镜组的焦距为f,而所述参数满足下列表四条件。
[0216][0217]
<第五实施例>
[0218]
请参照图5a,图5a绘示依照本发明第五实施例中成像镜头模块50的示意图。由图5a可知,成像镜头模块50包含一成像透镜组(图未标示)与一塑胶镜筒52。成像透镜组包含一双色模造透镜元件51。塑胶镜筒52装载成像透镜组,且塑胶镜筒52包含一顶面52a,其中顶面52a朝向成像镜头模块50的物侧。
[0219]
进一步来说,成像透镜组还包含一成像透镜元件,成像透镜元件设置于双色模造
透镜元件51的像侧。第五实施例中,成像透镜组由物侧至像侧依序包含双色模造透镜元件51、成像透镜元件53、54、55,其中双色模造透镜元件51设置于成像透镜组的最物侧。再者,成像透镜元件的数量、结构、面形等光学特征可依照不同成像需求配置,且更可依需求设置其他光学元件,并不以此为限。
[0220]
图5b绘示图5a第五实施例中双色模造透镜元件51的物侧示意图,图5c绘示图5a第五实施例中双色模造透镜元件51的参数示意图,图5d绘示图5a第五实施例中双色模造透镜元件51的另一参数示意图。由图5b至图5d可知,双色模造透镜元件51包含一透明部510、一光线吸收部520及一阶差结构530。
[0221]
具体而言,双色模造透镜元件51可由二次射出成型一体制成,首先第一次射出将透明部510成型,接着第二次射出将光线吸收部520成型,并且光线吸收部520与透明部510的透明外围区512于成型时紧密接合,但成型顺序并不以此为限。透明部510可为透明塑料材质,光线吸收部520可为黑色塑料材质,其中光线吸收部520可吸收非成像光线。借此,本揭示内容提供一种具有小头结构的双色模造透镜元件51,提供成像镜头模块50微型化的可行性。
[0222]
透明部510由中心至周边依序包含一光学有效区511与一透明外围区512,其中成像透镜组的一光轴x通过光学有效区511,且透明外围区512环绕光学有效区511。进一步来说,成像透镜组的一成像光线(图未绘示)通过光学有效区511。
[0223]
光线吸收部520环绕光学有效区511,并设置于透明外围区512的物侧,且包含一物端面521、一外斜面522及一最小开孔523,其中物端面521朝向物侧,且外斜面522由物端面521往光线吸收部520的像侧延伸且逐渐远离光轴x。借此,物端面521与外斜面522可取代塑胶镜筒52的外围遮光功能,进而简化塑胶镜筒52的结构复杂度,还可防止组装时双色模造透镜元件51、成像透镜元件53、54、55与塑胶镜筒52之间的碰撞与干涉。
[0224]
进一步来说,物端面521位于顶面52a的物侧,而物端面521与顶面52a实质上皆与光轴x垂直。外斜面522与光轴x形成一夹角(图未标示),其夹角的角度可介于1度至40度的范围之间,提供成型时的离型角(draft angle),但不以此角度范围为限。
[0225]
由图5c与图5d可知,阶差结构530连接光线吸收部520的一第一外径面524与透明部510的一第二外径面513。借此,可简化射出成型的模具设计,并提高尺寸精度的稳定性。具体而言,阶差结构530会因不同模具设计与不同注料方式,使其设置位置可位于光线吸收部520上或透明外围区512上。第五实施例中,阶差结构530位于光线吸收部520上。
[0226]
由图5b至图5c可知,双色模造透镜元件51可还包含至少一切痕结构,第五实施例中,切痕结构540的数量为二,但并不以此为限。切痕结构540由光线吸收部520延伸至透明外围区512。具体而言,切痕结构540的表面性质与其周围区域的表面不相同,且切痕结构540的形状无特定形式。第五实施例中,切痕结构540为矩形,但并不以此为限。借此,提供二次射出成型中互相匹配的成型模具设计,可简化制程工序并提高产能。详细来说,切痕结构540的表面可为透明塑料、黑色塑料、部分透明塑料与部分黑色塑料或透明塑料与黑色塑料混合,但并不以此为限。
[0227]
光线吸收部520的最小开孔523包含一尖端最小开孔527与二渐缩面528,其中尖端最小开孔527与光学有效区511互相接触,并且形成成像镜头模块的一光圈,而渐缩面528分别由光线吸收部520的物侧与像侧往尖端最小开孔527渐缩。
[0228]
具体来说,尖端最小开孔527为成像镜头模块50的光圈,可用于控制成像镜头模块50的进光量,且尖端最小开孔527的直径即为光线吸收部520的最小开孔523的直径。借此,尖端最小开孔527可取代塑胶镜筒52的开孔遮光,借此简化塑胶镜筒52的开孔结构,降低塑胶镜筒52的制造成本。
[0229]
再者,光圈的设计可通过模具精度的控制,使得双色模造透镜元件51成型后光圈能直接与光学有效区511同心设置。因此,有别于传统镜头中以组装遮光元件做为光圈的方式,透过本揭示内容所述的配置可直接避免组装公差。
[0230]
由图5a至图5d可知,光线吸收部520包含至少一消光结构,第五实施例中,消光结构525的数量为一。消光结构525由复数条状凹沟(图未绘示)组成,且条状凹沟以沿圆周方向排列与条状凹沟以成像透镜组的光轴x为中心环绕中的至少一方式设置。借此,可增强光线吸收部520吸收杂散光的能力,并维持成型可行性。第五实施例中,光线吸收部520的消光结构525的条状凹沟以成像透镜组的光轴x为中心环绕,但并不以此为限。借此,可使二次射出成型的塑料更紧密的接合。
[0231]
进一步来说,由图5a可知,光线吸收部520还包含一物侧承靠面526,物侧承靠面526朝向物侧,且较外斜面522远离光轴x,用于与塑胶镜筒52承靠组装。
[0232]
光学有效区511包含一物侧表面514与一像侧表面515,物侧表面514与像侧表面515中其中一者为非球面。第五实施例中,物侧表面514与像侧表面515皆为非球面。借此,提供高精度的光线曲折力,减少光学像差。
[0233]
详细来说,传统光学设计皆是将光圈遮光位置设计在镜片外部,并且会与光学镜面至少保持一特定距离,而本揭示内容的尖端最小开孔527可贴附在透明部510的物侧表面514上,尖端最小开孔527也可埋入在透明部510之中。第五实施例中,尖端最小开孔527埋入在透明部510之中,但并不以此为限。
[0234]
由图5a、图5c及图5d可知,物端面521至阶差结构530的距离为ld,第一外径面524的直径为ψd,光线吸收部520的最小开孔523的直径为ψd,物端面521的外径为ψo,光学有效区511的中心厚度为ct,光学有效区511的像侧中心至物端面521的距离为ft,透明外围区512的最小厚度为etmin,物侧表面514的外径为ψy,尖端最小开孔527沿平行光轴x的方向往透明部510的物侧至物侧表面514的距离为d1,尖端最小开孔527沿平行光轴x的方向往透明部510的像侧至像侧表面515的距离为d2,物端面521至顶面52a的距离为lo,塑胶镜筒52的最小孔径为ψb,成像透镜组的焦距为f,而所述参数满足下列表五条件。
[0235][0236]
<第六实施例>
[0237]
图6a绘示依照本揭示内容第六实施例中电子装置60的示意图,图6b绘示依照图6a第六实施例中电子装置60的方块图。由图6a与图6b可知,电子装置60是一智能手机,且包含一成像镜头模块61,其中成像镜头模块61包含一成像透镜组61a、一电子感光元件61b及一塑胶镜筒(图未绘示)。第六实施例的成像镜头模块61设置于使用者界面62侧边的区域,电子感光元件61b设置于成像镜头模块61的成像面(图未绘示),其中使用者界面62可为触控屏幕或显示屏幕,并不以此为限。成像镜头模块61可为前述第一实施例至第五实施例中的任一者,但本揭示内容不以此为限。
[0238]
进一步来说,使用者透过电子装置60的使用者界面62进入拍摄模式。此时成像镜头模块61汇集成像光线在电子感光元件61b上,并输出有关影像的电子信号至成像信号处理元件(image signal processor,isp)63。
[0239]
因应电子装置60的相机规格,电子装置60可还包含一光学防手震组件64,是可为ois防抖回馈装置,进一步地,电子装置60可还包含至少一个辅助光学元件(未另标号)及至少一个感测元件65。第六实施例中,辅助光学元件为闪光灯模块66与对焦辅助模块67,闪光灯模块66可用以补偿色温,对焦辅助模块67可为红外线测距元件、激光对焦模块等。感测元件65可具有感测物理动量与作动能量的功能,如加速计、陀螺仪、霍尔元件(hall effect element),以感知使用者的手部或外在环境施加的晃动及抖动,进而有利于电子装置60中成像镜头模块61配置的自动对焦功能及光学防手震组件64的发挥,以获得良好的成像品质,有助于依据本揭示内容的电子装置60具备多种模式的拍摄功能,如优化自拍、低光源hdr(high dynamic range,高动态范围成像)、高解析4k(4k resolution)录影等。此外,使用者可由触控屏幕直接目视到相机的拍摄画面,并在触控屏幕上手动操作取景范围,以达成所见即所得的自动对焦功能。
[0240]
此外,电子装置60可还包含但不限于显示单元(display)、控制单元(control unit)、储存单元(storage unit)、随机存取存储器(ram)、只读储存单元(rom)或其组合。
[0241]
图6c绘示依照图6a第六实施例中自拍场景的示意图,图6d绘示依照图6a第六实施
例中拍摄的影像的示意图。由图6a至图6d可知,成像镜头模块61与使用者界面62皆朝向使用者,在进行自拍(selfie)或直播(live streaming)时,可同时观看拍摄影像与进行界面的操作,并于拍摄后可得到如图6d的拍摄的影像。借此,搭配本揭示内容的成像镜头模块61可提供较佳的拍摄体验。
[0242]
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附的权利要求书所界定的范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献