一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

具有不同罩材料的激光再封装的制作方法

2021-10-26 12:22:47 来源:中国专利 TAG:所述 权利 方法
具有不同罩材料的激光再封装的制作方法与工艺

本发明涉及一种根据权利要求1前序部分所述的方法。



背景技术:

由wo2015/120939a1公知这种方法。如果期望在微机械构件的空穴中有确定的内压,或者在空穴中应包含具有确定的化学组分的气体混合物,则通常在封装微机械构件时或者在衬底晶片与罩晶片之间的键合过程中调节内压或化学组分。在封装时例如将罩与衬底连接,由此罩与衬底共同包围空穴。通过调节在封装时在周围环境中存在的气体混合物的大气或压力和/或化学组分,可以因此调节在空穴中的确定的内压和/或确定的化学组分。

通过由wo2015/120939a1已知的方法可以有针对性地调节在微机械构件的空穴中的内压。通过该方法尤其可能的是,制造具有第一空穴的微机械构件,其中,在第一空穴中可以调节第一压力和第一化学组分,该第一压力或第一化学组分不同于在封装时刻的第二压力和第二化学组分。

在根据wo2015/120939a1的用于有针对性地调节微机械构件的空穴中的内压的方法中,在罩中或者说在罩晶片中或在衬底中或者说在传感器晶片中产生到空穴的窄的进入通道。接着以所期望的气体和所期望的内压通过进入通道充满空穴。最后借助激光器局部地加热围绕进入通道的区域,衬底材料局部液化并且在固化时密封地封闭进入通道。



技术实现要素:

本发明的任务是,以相对于现有技术简单并且成本有利的方式提供一种用于制造相对于现有技术机械牢固的以及具有长使用寿命的微机械构件的方法。此外,本发明的任务是,提供一种相对于现有技术紧凑的、机械牢固的并且具有长使用寿命的微机械构件。根据本发明,这尤其适用于具有(第一)空穴的微机械构件。通过根据本发明的方法和根据本发明的微机械构件也还能够实现微机械构件,在该微机械构件中,在第一空穴中可以设定第一压力和第一化学组分,并且在第二空穴中可以设定第二压力和第二化学组分。例如设置这样的用于制造微机械构件的方法,对于该微机械构件有利的是,在第一空穴中包含第一压力并且在第二空穴中包含第二压力,其中,第一压力应不同于第二压力。例如当用于转速测量的第一传感器单元和用于加速度测量的第二传感器单元要集成到微机械构件中时是这种情况。

该任务由此实现,即

-在第四方法步骤中,第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层在衬底或罩的表面上沉积或者生长,和/或

-在第五方法步骤中,提供包括第二晶体层和/或第二无定型层和/或第二纳米晶体层和/或第二多晶体层的衬底或者包括第二晶体层和/或第二无定型层和/或第二纳米晶体层和/或第二多晶体层的罩。

由此以简单并且成本有利的方式提供一种用于制造微机械构件的方法,通过该方法借助于对所使用材料的结晶性有针对性的调节,可以在衬底或罩的在第三方法步骤中过渡到液态聚集态并且在第三方法步骤后过渡到固态聚集态的区域中和封闭进入开口的材料区域中提高相对于裂纹形成和/或裂纹扩展的阻力。

例如由此实现相对于裂纹形成和/或裂纹扩展的阻力的提高,即,多晶体层的或多晶体衬底的晶界作为防止裂纹扩展的障碍起作用。在此尤其微裂纹不会或者说只能以增加的消耗沿着晶轴穿过整个封闭部或者材料区域扩展。更确切地说,微裂纹停止在晶界上。由此防止或者明显妨碍封闭部的撕裂。例如也由此实现相对于裂纹形成提高的阻力,即,通过施加第一晶体层、无定型层、纳米晶体层和多晶体层产生或引起第一应力或者说第一应力起作用,该第一应力起到抵制在封闭部或材料区域中出现的或者说由封闭部或材料区域发出的第二应力的作用,或者说补偿该第二应力。在此第一应力例如是压应力。

此外,如果只局部加热衬底材料并且加热后的材料不仅在固化时而且在冷却时相对于它的周围收缩,通过根据本发明的方法更少出现问题。也更少出现问题的是,在封闭区域中能够出现拉应力。最后,根据应力和材料自发出现的裂纹形成以及在微机械构件受热或机械负载的情况下的裂纹形成在继续加工时或者在场中更不可能。

因此,提供一种用于制造微机械构件或者组件的方法,通过该方法可以通过局部熔化产生通道的封闭部,其中,该方法能够实现在微机械构件中尽可能小的裂纹形成倾向。

在本发明上下文中,可以如此理解概念“微机械构件”,即该概念不仅包括微机械构件而且包括微电子机械构件。

此外,在本发明上下文中,概念“晶体”可以理解为“单晶体”。因此在本发明上下文中,在使用概念“晶体“时意味着单晶体或者宏晶体,该宏晶体的原子或分子形成连续一致的、均匀的晶格。换言之,概念“晶体”意味着,每个原子与它的相邻原子的所有距离基本上是清楚限定的。尤其在本发明上下文中,如此理解“晶体”,即,理论上的晶体尺寸或者晶粒尺寸有时候大于1cm或者无穷大。在本发明上下文中,如此理解概念“多晶体”或“纳米晶体”,即指晶体固体,该晶体固体包括多个单晶体或者微晶或者晶粒,其中,晶粒通过晶界相互分开。尤其在本发明上下文中,如此理解“多晶体”,即晶体尺寸或者说粒径尺寸达到1μm到1cm。此外,尤其在本发明上下文中,如此理解“纳米晶体”,即晶体尺寸或晶粒小于1μm。此外,在本发明上下文中,如此理解概念“无定型”,即无定型层的或无定型材料的原子仅具有短程有序,但不具有长程有序。换言之,“无定型”意味着,每个原子仅与它的第一最近的相邻原子的距离是清楚限定的,但与它的第二和其他最近的相邻原子的距离不是清楚限定的。本发明优选设置用于制造具有一个空穴的微机械构件或者说用于具有一个空穴的微机械构件。但是本发明例如也设置用于具有两个空穴或者具有多于两个即三个、四个、五个、六个或多于六个空穴的微机械构件。

优选地,通过借助于激光将能量或热量引入到吸收该能量或热量的衬底或罩的部分中来封闭进入开口。在此优选将能量或热量在时间上先后地分别引入到多个微机械构件的衬底或罩的吸收部分中,这些微机械构件例如在一个晶片上共同制造。但是替代地也设置为,将能量或热量在时间上并行地引入到多个微机械构件的衬底或罩的各个吸收部分中,例如在使用多个激光束或者说激光装置的情况下。

在从属权利要求以及参照附图的描述中可给出本发明的有利构型和扩展方案。

根据优选的扩展方案设置,罩与衬底包围第二空穴,其中,在第二空穴中存在第二压力并且包含具有第二化学组分的第二气体混合物。

根据优选的扩展方案设置,在第六方法步骤中,第三晶体层或第三无定型层或第三纳米晶体层或第三多晶体层在第一晶体层上或在第一无定型层上或在第一纳米晶体层上或在第一多晶体层上沉积或生长。

根据优选的扩展方案设置,在第七方法步骤中,第四晶体层或第四无定型层或第四纳米晶体层或第四多晶体层在第三晶体层上或在第三无定型层上或在第三纳米晶体层上或在第三多晶体层上沉积或生长。

根据优选的扩展方案设置,在第八方法步骤中,第五晶体层或第五无定型层或第五纳米晶体层或第五多晶体层在第四晶体层上或在第四无定型层上或在第四纳米晶体层上或在第四多晶体层上沉积或生长。

根据优选的扩展方案设置,在第十一方法步骤中,其他晶体层和/或其他无定型层和/或其他纳米晶体层和/或其他多晶体层分别在晶体层上或在无定型层上或在纳米晶体层上或在多晶体层上沉积或生长。

通过具有确定结晶度的层或层包的施加可以例如如此调节层应力、优选压应力,使得在材料区域或封闭部中出现的应力能够得到补偿。

根据优选的扩展方案设置,面对微机械构件的周围环境的层具有相比于其他层较低的熔化温度。由此能够有利地实现,使面对微机械构件的周围环境的层在第三方法步骤中可以有针对性地熔化。

根据优选的扩展方案设置,在第九方法步骤中,

-衬底或罩和/或

-第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层和/或

-第二晶体层或第二无定型层或第二纳米晶体层或第二多晶体层和或

-第三晶体层或第三无定型层或第三纳米晶体层或第三多晶体层和或

-第四晶体层或第四无定型层或第四纳米晶体层或第四多晶体层和或

-第五晶体层或第五无定型层或第五纳米晶体层或第五多晶体层被掺杂。因此以有利的方式通过材料掺杂实现相对于裂纹形成的阻力的提高。在此例如通过掺杂改变材料或者层的晶体结构。改变的晶体结构或材料结构例如可以使材料相对于裂纹形成不敏感。

根据优选的扩展方案设置,在第十方法步骤中,去除至少部分地布置在

-衬底或罩和/或

-第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层和/或

-第二晶体层或第二无定型层或第二纳米晶体层或第二多晶体层和或

-第三晶体层或第三无定型层或第三纳米晶体层或第三多晶体层和或

-第四晶体层或第四无定型层或第四纳米晶体层或第四多晶体层和或

-第五晶体层或第五无定型层或第五纳米晶体层或第五多晶体层上和/或至少部分地在其中的氧化物,和/或使

-衬底或罩和/或

-第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层和/或

-第二晶体层或第二无定型层或第二纳米晶体层或第二多晶体层和或

-第三晶体层或第三无定型层或第三纳米晶体层或第三多晶体层和或

-第四晶体层或第四无定型层或第四纳米晶体层或第四多晶体层和或

-第五晶体层或第五无定型层或第五纳米晶体层或第五多晶体层钝化来防止氧化。由此例如能够实现减少有利于产生裂纹的缺陷原子。因此提高相对于裂纹形成的阻力。

本发明的另一主题是具有衬底和与衬底连接并且与衬底包围第一空穴的罩的微机械构件,其中,在第一空穴中存在第一压力并且包含具有第一化学组分的第一气体混合物,其中,衬底或罩包括封闭的进入开口,其中,

-所述微机械构件包括在衬底或罩的表面上沉积或生长的第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层,和/或

-所述衬底或罩包括第二晶体层或第二无定型层或第二纳米晶体层或第二多晶体层。由此以有利的方式提供紧凑的、机械牢固的并且成本有利的具有设定的第一压力的微机械构件。根据本发明的方法的所述优点相应地也适用于根据本发明的微机械构件。

根据优选的扩展方案设置,微机械构件包括在第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层上沉积或生长的第三晶体层或第三无定型层或第三纳米晶体层或第三多晶体层。由此可以以有利的方式这样调节层应力、优选是压应力,使得可以补偿在材料区域或者封闭部中产生的应力。

根据优选的扩展方案设置,罩与衬底包围第二空穴,其中,在第二空穴中存在第二压力并且包含具有第二化学组分的第二气体混合物。由此以有利的方式提供紧凑的、机械牢固的且成本有利的具有设定的第一压力和第二压力的微机械构件。

根据优选的扩展方案设置为,第一压力小于第二压力,其中,在第一空穴中布置有用于测量转速的第一传感器单元,并且在第二空穴中布置有用于测量加速度的第二传感器单元。由此以有利的方式提供机械牢固的用于测量转速和测量加速度的微机械构件,该微机械构件不仅对于第一传感器单元而且对于第二传感器单元具有优化的运行条件。

附图说明

图1以示意性视图示出根据本发明的示例实施方式的具有敞开的进入开口的微机械构件。

图2以示意性视图示出根据图1的具有封闭的进入开口的微机械构件。

图3以示意性视图示出根据本发明的示例实施方式的用于制造微机械构件的方法。

具体实施方式

在不同的附图中相同的部件总是设置有相同的参考标记,并因此通常也分别只命名或提及一次。

在图1和图2中示出根据本发明的示例实施方式的微机械构件1的示意性视图,该微机械构件在图1中具有敞开的进入开口11并且在图2中具有封闭的进入开口11。在此微机械构件1包括衬底3和罩7。衬底3和罩7相互间优选密封地连接并且共同包围第一空穴5。微机械构件1例如如此构造,使得衬底3和罩7附加地共同包围第二空穴。然而,第二空穴在图1中和在图2中未示出。

例如在第一空穴5中、尤其在如图2中所示的进入开口11封闭的情况下存在第一压力。此外,在第一空穴5中包含具有第一化学组分的第一气体混合物。此外,例如在第二空穴中存在第二压力,并且在第二空穴中包含具有第二化学组分的第二气体混合物。优选地,进入开口11布置在衬底3中或罩7中。在这里的本实施例中,进入开口11示例性地布置在罩7中。然而,根据本发明对此替代地也可以设置,进入开口11布置在衬底3中。

例如设置,第一空穴5中的第一压力小于第二空穴中的第二压力。例如也设置,在第一空穴5中布置有在图1中和图2中未示出的用于转速测量的第一微机械传感器单元,而在第二空穴中布置有在图1和图2中未示出的用于加速度测量的第二微机械传感器单元。

在图3中以示意性视图示出根据本发明的示例实施方式的用于制造微机械构件1的方法。在此,

-在第一方法步骤101中,在衬底3中或在罩7中构造连接第一空穴5与微机械构件1的周围环境9的、尤其是狭长的进入开口11。图1示例性地示出在第一方法步骤101之后的微机械构件1。此外,

-在第二方法步骤102中,调节第一空穴5中的第一压力和/或第一化学组分或者说使第一空穴5通过进入通道以所期望的气体和所期望的内压力充满。此外例如,

-在第三方法步骤103中,通过借助于激光将能量或热量引入到衬底3的或罩7的吸收部分21中来封闭进入开口11。例如替代地也设置,

-在第三方法步骤103中,仅优选通过激光局部加热环绕进入通道的区域并且密封地封闭进入通道。因此有利地可能的是,根据本发明的方法也设置其他不同于激光器的能量源来封闭进入开口11。图2示例性地示出第三方法步骤103之后的微机械构件1。

在时间上在第三方法步骤103之后,在图2中示例性示出的横向区域15中在罩7的背离空穴5的表面上以及在垂直于横向区域15到微机械构件1的表面上的投影、即沿着进入开口11并且向着第一空穴5的方向的深度中产生机械应力。该机械应力、尤其是局部的机械应力尤其存在于罩7的在第三加工步骤103中过渡到液态聚集态并且在第三方法步骤103后过渡到固态聚集态并且封闭进入开口11的材料区域13与罩7的在第三方法步骤103中保持固态聚集态的剩余区域之间的界面上和界面附近。在此罩7的在图2中封闭进入开口11的材料区域13尤其关于它的横向的、尤其平行于表面延伸的延伸尺度或成形部而言并且尤其关于它的垂直于横向延伸尺度、尤其垂直于表面延伸的大小或造型结构而言仅视为示意性的或者说示意性地示出。

如在图3中示例地示出的那样,附加地

-在第四方法步骤104中,第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层在衬底3或罩7的表面上沉积或者生长,和/或

-在第五方法步骤中,提供包括第二晶体层和/或第二无定型层和/或纳米晶体层和/或第二多晶体层的衬底3或者包括第二晶体层和/或第二无定型层和/或纳米晶体层和/或第二多晶体层的罩7。

换言之,例如在第四方法步骤104中,将第二晶体材料层、不定型材料层、纳米晶体材料层或优选多晶体材料层或者由上述材料或层构成的材料包施加到晶体衬底材料上或者晶体罩材料上或者施加到传感器晶片上或者罩晶片上。这例如至少部分地发生在时间上前置于第一方法步骤101的第四方法步骤104中。换言之,例如设置,在时间上在第一方法步骤101之前实施第四方法步骤104。但是根据本发明替代地或附加地设置,在时间上在第三方法步骤103之后实施第四方法步骤104。

此外,例如尤其对于材料包或层包的构造,在第六方法步骤中,第三晶体层或第三无定型层或第三纳米晶体层或第三多晶体层在第一晶体层上或在第一无定型层上或在第一纳米晶体层上或在第一多晶体层上沉积或生长。此外,例如在第七方法步骤中,第四晶体层或第四无定型层或第四纳米晶体层或第四多晶体层在第三晶体层上或在第三无定型层上或在第三纳米晶体层上或在第三多晶体层上沉积或生长。此外,例如附加地在第八方法步骤中,第五晶体层或第五无定型层或第五纳米晶体层或第五多晶体层在第四晶体层上或在第四无定型层上或在第四纳米晶体层上或在第四多晶体层上沉积或生长。

尤其在使用层包时例如也设置,例如在第三方法步骤103中有针对性地只熔化最上面的层。

此外例如设置,代替晶体的衬底材料或罩晶片或传感器晶片使用不定型的、纳米晶体的或者优选多晶体的衬底材料或罩材料。为此例如实施第五方法步骤。根据本发明例如设置,在时间上在第一方法步骤之前实施第五方法步骤。

此外例如也设置,对晶体的、多晶体的、纳米晶体的或不定型的衬底材料、施加的层或层包进行掺杂。为此例如在第九方法步骤中,对

-底3或罩7和/或

-第一晶体层或第一无定型层或第一纳米晶体层或第一多晶体层和/或

-第二晶体层或第二无定型层或第二纳米晶体层或第二多晶体层和或

-第三晶体层或第三无定型层或第三纳米晶体层或第三多晶体层和或

-第四晶体层或第四无定型层或第四纳米晶体层或第四多晶体层和或

-第五晶体层或第五无定型层或第五纳米晶体层或第五多晶体层进行掺杂。尤其例如设置,以硼掺杂罩晶片或传感器晶片或衬底3或罩7。此外例如设置,在时间上在第一方法步骤前实施第九方法步骤。此外例如也设置,在时间上在第五方法步骤后实施第九方法步骤。

此外例如设置,去除天然的氧化物或者说为防止重新氧化而钝化。在此例如设置,从罩晶片或传感器晶片或者从罩7或从衬底3去除天然氧化物。此外,在这里例如也设置,保护罩晶片或传感器晶片或衬底3或罩7防止重新氧化。

此外例如附加地设置,掺杂的或未掺杂的衬底材料或施加的材料或材料包或衬底材料和施加的材料或材料包在局部加热过程中、例如在第三方法步骤103中熔化。

最后设置,通过根据本发明的方法制造的微机械构件1例如包括各种不同的和例如不同于现有技术的罩材料、多层罩或者改型的罩材料。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜