一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种转移和控制纳米结构的方法

2021-10-26 12:12:58 来源:中国专利 TAG:
一种转移和控制纳米结构的方法
【专利摘要】一种转移和控制纳米结构的方法,属于材料科学技术领域。本方法涉及到纳米切割技术、物理气相沉积技术、自支持膜技术以及一些刻蚀方面的技术。以聚合物薄膜作为载体,活泼金属层作为牺牲层转移和控制由纳米切割等技术制备的纳米结构,通过连续的堆叠操作,可以构筑各种二维、三维甚至异质结构,进而提升纳米制备技术的应用范围。整个转移过程在常温常压条件下进行,操作过程简单快速,能够保持纳米结构的完整性和均一性,精确控制纳米结构的取向和位置,并且不受基底材料和形貌的限制。
【专利说明】
一种转移和控制纳米结构的方法
技术领域
[0001] 本发明属于材料科学技术领域,具体涉及一种转移和控制纳米结构的方法。
【背景技术】
[0002] 对于纳米结构材料,人们希望它能够展现宏观材料所不具备的独特性质,这就推 动了纳米科学在各个领域的深入研究。在纳米结构体系中,包含越多种类的结构基元,所展 现的性质就会越丰富;但是,这也为制备特定的结构形貌带来了更多的挑战,尤其是在竖直 方向上构筑三维的、异质的结构。因此,在纳米结构制备过程中,要求纳米结构能够被单个 或者整体转移和操控。在保持纳米结构完整性以及控制它们取向的同时,将纳米结构从源 基底可控地转移到目标基底,已成为制备纳米设备的必要条件,也是推动纳米技术发展的 重要因素 [1,2]。
[0003] 目前,一些转移纳米结构的方法主要集中在印刷转移[3,4],以及二维膜材料的转 移 [5,6]。但是对纳米结构连续地重复转移还很难实现,基底的选择也是限制条件。发展一种 稳定的、通用的方法,能够实现对纳米结构简单地转移和精确地控制,成为发展纳米技术和 满足实际应用的迫切需求。

【发明内容】

[0004] 本发明的目的是提供一种简单、稳定地转移和精确地控制纳米结构的方法。
[0005] 本方法涉及到纳米切割技术、物理气相沉积技术、自支持膜技术以及一些刻蚀方 面的技术。以聚合物薄膜作为载体,活泼金属层作为牺牲层转移和控制由纳米切割等技术 制备的纳米结构,通过连续的堆叠操作,可以构筑各种二维、三维甚至异质结构,进而提升 纳米制备技术的应用范围。整个转移过程在常温常压条件下进行,操作过程简单快速,能够 保持纳米结构的完整性和均一性,精确控制纳米结构的取向和位置,并且不受基底材料和 形貌的限制。
[0006] 为此,本发明以转移纳米切割技术制备的纳米结构为例,实现纳米结构的转移与 控制,具体包括以下步骤:
[0007] 1)取洁净的沉积基底,置于真空条件下,以0.2~1A/S的速度热蒸发沉积金属铝,沉 积厚度为10~50nm,得到铝膜基底;
[0008] 2)将40~80yL的111,111,211,211-全氟辛基三氯硅烷加入到小称量瓶中,与另一个洁 净硅片一同放入密闭的干燥器中,60~80°C下保温1~3小时,得到氟化硅片;在真空条件 下,在氟化娃片表面固定一个带有1~2mm宽、5~10mm长的矩形孔的聚四氟乙稀掩板,在聚 四氟乙稀掩板的掩蔽作用下,在氟化娃片表面制备厚度为10~300nm的纳米结构材料矩形 膜图案;取6~10mL环氧树脂预聚体(预聚体与固化剂的体积比例为15:2)覆盖矩形膜图案, 在50~80°C下固化2~5小时后,环氧树脂粘附着纳米结构材料矩形膜图案一并从氟化硅片 上脱离;
[0009] 或在真空条件下,在娃片表面固定一个带有1~2mm宽、5~10mm长的矩形孔的聚四 氟乙稀掩板,在聚四氟乙稀掩板的掩蔽作用下,在娃片表面制备厚度为10~300nm的纳米结 构材料矩形膜图案;取6~10mL硫醇烯类光固化树脂(固化剂比例为lwt%)覆盖纳米结构材 料矩形膜图案,在30~50W紫外光下固化2~5分钟后,硫醇烯类光固化树脂粘附着矩形膜图 案一并从硅片上脱离;
[0010]为了得到适合切割的样品模块,沿着矩形膜图案边缘将膜图案切下来,置于聚乙 烯模具的矩形凹槽当中,添加环氧树脂预聚体或硫醇烯类光固化树脂之后,在50~80°C下 固化2~5小时,形成环氧树脂或硫醇烯类光固化树脂包覆矩形膜图案的长方体样品模块; 接下来将该样品模块围绕着膜图案修整成方便切割的梯形体结构,梯形体结构的上底平面 和下底平面平行于膜图案平面,并且下底宽度适合金刚石刀的宽度;将修整后的梯形体结 构模块固定于切片机的样品卡盘中,首先利用玻璃刀进行预切割,使得模块的梯形结构端 形成光滑的表面,再替换成2~4mm宽的金刚石刀,刀槽内注满水后,以0.6~1.2mm/s的速度 以及垂直膜图案平面的方向切割梯形体结构模块为厚度l〇nm~lOwii的切割薄片;制得的切 割薄片漂浮在刀槽内的水面上,将步骤1)制得的铝膜基底伸入液面以下,通过提拉把切割 薄片收集到基底上;
[0011] 3)将100~200此、浓度为50~100mg/mL的聚合物(聚苯乙烯、聚乳酸或者聚甲基丙 烯酸)的甲苯溶液滴加到覆有切割薄片的铝膜基底表面,然后以1000~3000rpm的转速旋涂 成500nm~2_厚的膜层;将聚合物膜的边缘刮去,再滴加100~300此、浓度为1~4mol/L的 盐酸溶液于基底表面,经过1~5分钟后,盐酸渗透进入聚合物膜并逐渐地刻蚀掉铝膜,聚合 物包覆着切割薄片从基底脱离开来,多余的盐酸可以通过滤纸吸去;此组装体足够坚固形 成自支持膜,利用镊子从边缘将它揭起并转移到有少量水滴的目标基底表面;在光学显微 镜下按照需要制备的纳米结构控制组装体的位置和取向,然后在40~80°C下加热20~40分 钟,除去残留的水并增强切割薄片与目标基底的粘附力;再在120~150°C下加热20~40分 钟消除可能存在的褶皱;最后,在甲苯中浸泡5~10分钟除去聚合物膜,再反应性离子刻蚀 (刻蚀时间1~5min,刻蚀气压为5~lOmTorr,刻蚀温度10~20°C,氧气流速10~30sccm,刻 蚀功率为10~40W)除去环氧树脂或硫醇烯类光固化树脂基体,从而在目标基底上得到转移 后的纳米结构;这种纳米结构的高是切割薄片的厚度,纳米结构的宽为沉积金膜的厚度, 纳米结构的长为聚四氟乙烯掩板中矩形孔的宽度;
[0012] 4)在步骤3)得到转移后的纳米结构后,在该纳米结构上重复步骤3)的操作,可以 得到二维或者三维的结构;如果金膜沉积在平整的表面形成的样品模块,切割后得到的是 纳米线结构,纳米线的长、宽、高分别对应掩板中矩形孔的宽度、沉积金膜的厚度以及切割 薄片的厚度,尺寸分别为1~311皿、10~30〇111]1和1〇111]1~1〇111]1 ;连续转移三次或者四次,控制纳 米线的位置和取向,得到矩形、等边三角形或者平行阵列结构。
[0013] 步骤1)中的沉积基底可以为硅片、或者平整的玻璃片、石英片等。
[0014] 步骤2)中纳米结构材料(即矩形膜图案材料)可以是金属、半导体、陶瓷或者是共 辄聚合物,金属包括金、银等;半导体包括锗、锑等;陶瓷包括二氧化硅、三氧化铝等;共辄聚 合物包括聚(3-己基噻吩)、聚[2-甲氧基-5-(2'_乙基己氧基)-1,4_对亚苯基亚乙烯基]等。 金属通过热蒸发沉积在硅片基底表面,半导体通过电子束沉积在硅片基底表面,陶瓷通过 溅射沉积在硅片基底表面,聚合物通过旋涂在硅片基底表面。
[0015] 步骤3)中的目标基底可以是平面或曲面的硅片、玻璃片或石英片等硬基底,也可 以是平面或曲面的聚二甲基硅烷等软基底。如果纳米结构材料是聚(3-己基噻吩)或聚[2-甲氧基-5-(2'_乙基己氧基)-1,4_对亚苯基亚乙烯基]等有机溶剂敏感的共辄聚合物时,可 省略甲苯除去聚合物膜的步骤,直接利用10~15分钟的反应性离子刻蚀可以一次性除去聚 合物和环氧树脂或硫醇烯类光固化树脂。此方法可以转移单个切割薄片,也可以同时转移 多个切割薄片(多个切割薄片首尾相连形成条带状)集合体。
[0016] 步骤4)中的纳米线可以替换成由纳米切割制备的任意纳米结构,比如纳米环阵 列、阶梯形纳米结构、L形纳米结构、U形纳米结构等等 [7],只要满足可以被放置在铝膜基底 上即可。
[0017] 本发明各个步骤操作简便,可控性强,适于大范围推广使用,解决了纳米制备技术 高度依赖仪器设备这一问题。
【附图说明】
[0018] 图1为转移过程的流程图。图中标示了各种利用的材料和操作过程:样品模块1、沉 积基底2、铝膜3、切割薄片4、聚苯乙烯膜5、目标基底6。图示过程分别对应步骤1)、步骤2)与 步骤3)中的描述。
[0019]图2为切割薄片经过此方法被转移到不同材料的平面基底上(A)金基底;(B)ITO基 底;以及(C)玻璃曲面基底。图中标尺为lcm。可以看出,带有微结构的薄片可以被成功转移 到不同材料和形状特性的基底上。
[0020] 图3为经过此方法转移和控制之后形成的金纳米线组装体的扫描电子显微镜照 片。金纳米线以正交方式连续堆叠形成(A)矩形三维结构;以60°角度连续堆叠形成(B)等边 三角形三维结构;平行方式连续堆叠形成(C)等间距的平行阵列结构。图中标尺为lOwii。
【具体实施方式】
[0021] 实施例1:硅片的洁净处理
[0022] 所用硅片用玻璃刀裁至lcm长、lcm宽大小,放入质量分数98%的浓硫酸与质量分 数30 %的过氧化氢的混合溶液(体积比为3:1)中加热至沸腾,气泡消失停止加热。将混合溶 液倒入废液瓶中,得到的硅片用去离子水超声清洗3次,并用氮气吹干。
[0023]实施例2:铝膜基底的制备
[0024]将处理过的硅片置于真空镀膜系统,在5 Xl(T4Pa的真空度下进行热蒸发沉积金属 铝,先以0.2A/S的速度沉积2nm,再逐渐加大沉积速度至1 A/s,最终沉积铝膜的厚度为20nm。 [0025]实施例3:切割用样品模块的制备
[0026]将50yL的111,111,211,211-全氟辛基三氯硅烷加入到小称量瓶中,与另取洁净硅片一 同放入密闭的干燥器中,60°C下保温3小时,得到氟化硅片。再将氟化硅片放置于真空镀膜 系统的样品台上,表面固定一个带有矩形孔的聚四氟乙烯掩板,以0.2 :A/s的速度热蒸发沉 积2nm金膜,再逐渐加大沉积速度到1 A/s,最后沉积厚度为l〇〇nm,在掩板的掩蔽作用下,得 到8mm X 1 ? 5mm矩形金膜图案。取8mL环氧树脂预聚体(预聚体与固化剂的体积比例为15: 2) 将整个基底表面覆盖,于空气中放置5分钟。在60°C下固化3小时后,得到的3mm厚的环氧树 脂层粘附着金膜图案从硅片基底上脱离,沿着矩形金膜图案边缘将金膜图案切下来,置于 聚乙烯模具的矩形凹槽当中,添加适量环氧树脂预聚体之后,在60°C下固化3小时,形成环 氧树脂包覆金膜的1.5 X 0.8 X 0.5cm长方体样品模块。
[0027] 实施例4:纳米切割方法制备纳米结构
[0028] 利用刀片将长方体样品模块围绕着金膜图案部分修整成方便切割的梯形体结构 模块,梯形体的上底平面和下底平面与金膜图案平面平行,并且下底宽度小于金刚石刀的 宽度。将修整后的梯形体结构模块固定于切片机的样品卡盘中,首先利用玻璃刀进行预切 害J,使得模块梯形结构端形成光滑的表面,再替换成3mm宽的金刚石刀,刀槽内注满水后,以 lmm/s的速度以及垂直金膜平面的方向切割模块成下底2.5mm、上底1.5mm、高1mm、厚100nm 的梯形切割薄片。制得的梯形切割薄片漂浮在刀槽内的水面上,可以将它们一次一片地收 集在实施例2中制得的铝膜基底上。
[0029]实施例5:纳米结构的转移与控制
[0030]将200yL、浓度为100mg/mL的聚苯乙烯的甲苯溶液滴加到覆有切割薄片的铝膜基 底表面,利用台式匀胶机以2000rpm的转速旋涂1分钟,得到lwii厚的膜层。利用刀片将聚苯 乙烯膜的边缘刮去,再滴加200此、浓度为2mol/L的盐酸溶液于整个基底表面,3分钟后,盐 酸渗透进入聚苯乙烯膜下并逐渐地刻蚀掉金属铝膜,聚苯乙烯膜包覆着切割薄片从基底脱 离开来,多余的盐酸可以通过滤纸吸去。此组装体足够坚固形成自支持膜,利用镊子从边缘 将它揭起并转移到有少量水滴的目标基底上。在光学显微镜下控制纳米结构位于基底正中 的位置,组装体在60°C下加热30分钟,除去残留的水并增强切割薄片与基底的粘附力。另 外,在130°C下加热30分钟消除可能存在的褶皱。最后,在甲苯中浸泡10分钟除去聚苯乙烯 膜,以及反应性离子刻蚀(刻蚀气压为5mTorr,刻蚀温度20°C,氧气流速2〇 SCCm,刻蚀功率为 30W)3分钟除去环氧树脂基体,得到转移后的纳米结构,纳米结构的尺寸为1.5mm长、lOOnm 宽以及l〇〇nm高。
[0031] 实施例6:二维或三维结构的制备
[0032] 在实施例5中,除去聚苯乙烯膜之后,包覆纳米结构的切割薄片覆盖在目标基底 上。连续转移多条纳米线并控制它们的位置和取向,反应性离子刻蚀除去环氧树脂基质之 后,可以得到二维或者三维的结构。以正交的角度周期性地堆叠四条纳米线得到矩形三维 结构;纳米线的夹角改变为60°,三条纳米线形成等边三角形的二维结构;平行排列多条纳 米线得到等间距的二维平行阵列结构。
[0033] 以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术方案作任何形式 上的限制。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同改变与修 饰,均落入本发明的保护范围内。
[0034] [l]Smythe E.J.;Dickey M.D.;ffhitesides G.M.;Capasso F.,ACS Nano,2009, 3,59-65.
[0035] [2]Schneider G.F.;Calado V.E.;Zandbergen H.;Vandersypen L.M.K.;Dekker C.,Nano Lett2010,10,1912-1916.
[0036] [3]Meitl M.A.;Zhu Z.-T.;Kumar V.;Lee K.J.;Feng X.;Huang Y.Y.;Adesida I.;Nuzzo R.G.;Rogers J.A.,Nat.Mater.,2006,5,33-38.
[0037] [4]Ahn J.-H.;Kim H.-S.;Lee K.J.;Jeon S.;Kang S.J.;Sun Y.;Nuzzo R.G.; Rogers J.A.,Science,2006,314,1754_1757.
[0038] [5]Gao L.B.;Ni G.X.;Liu Y.P.;Liu B.;Neto A.H.C.;Loh K.P.,Nature,2014, 505,190-194.
[0039] [6]Gurarslan A.;Yu Y.;Su L.;Yu Y.;Suarez F.;Yao S.;Zhu Y.;0zturk M.; Zhang Y.;Cao L.,ACS Nano,2014,8,11522-11528.
[0040] [7]Xu Q.;Rioux R.M.;Dickey M.D.;ffhitesides G.M.,Acc.Chem.Res.,2008, 41,1566-1577。
【主权项】
1. 一种转移和控制纳米结构的方法,其步骤如下: 1) 取洁净的沉积基底,置于真空条件下,以0.2~1A/S的速度热蒸发沉积金属铝,沉积厚 度为10~50nm,得到铝膜基底; 2) 将40~80yL的IH,IH,2H,2H-全氟辛基三氯硅烷加入到小称量瓶中,与另一个洁净硅 片一同放入密闭的干燥器中,60~80°C下保温1~3小时,得到氟化硅片;在真空条件下,在 氟化娃片表面固定一个带有1~2mm宽、5~IOmm长的矩形孔的聚四氟乙稀掩板,在聚四氟乙 烯掩板的掩蔽作用下,在氟化硅片表面制备厚度为10~300nm的纳米结构材料矩形膜图案; 取6~IOmL环氧树脂预聚体覆盖矩形膜图案,在50~80°C下固化2~5小时后,环氧树脂粘附 着纳米结构材料矩形膜图案一并从氟化硅片上脱离; 或在真空条件下,在娃片表面固定一个带有1~2mm宽、5~IOmm长的矩形孔的聚四氟乙 稀掩板,在聚四氟乙稀掩板的掩蔽作用下,在娃片表面制备厚度为10~300nm的纳米结构材 料矩形膜图案;取6~IOmL硫醇烯类光固化树脂覆盖矩形膜图案,在30~50W的紫外光下固 化2~5分钟后,硫醇烯类光固化树脂粘附着纳米结构材料矩形膜图案一并从硅片上脱离; 沿着矩形膜图案边缘将纳米结构材料膜图案切下来,置于聚乙烯模具的矩形凹槽当 中,添加环氧树脂预聚体或硫醇烯类光固化树脂之后,在50~80°C下固化2~5小时,形成环 氧树脂或硫醇烯类光固化树脂包覆矩形膜图案的长方体样品模块;接下来将该样品模块围 绕着膜图案修整成方便切割的梯形体结构,梯形体结构的上底平面和下底平面平行于膜图 案平面,并且下底宽度适合金刚石刀的宽度;将修整后的梯形体结构模块固定于切片机的 样品卡盘中,首先利用玻璃刀进行预切割,使得模块的梯形结构端形成光滑的表面,再替换 成2~4mm宽的金刚石刀,刀槽内注满水后,以0.6~1.2mm/ S的速度以及垂直膜图案平面的 方向切割梯形体结构模块为厚度IOnm~ΙΟμπι的切割薄片;制得的切割薄片漂浮在刀槽内的 水面上,将步骤1)制得的铝膜基底伸入液面以下,通过提拉把切割薄片收集到基底上; 3) 将100~200yL、浓度为50~100mg/mL的聚苯乙烯、聚乳酸或者聚甲基丙烯酸聚合物 的甲苯溶液滴加到覆有切割薄片的铝膜基底表面,然后以1000~3000rpm的转速旋涂成 500nm~2μπι厚的膜层;将聚合物膜的边缘刮去,再滴加 100~300yL、浓度为1~4mol/L的盐 酸溶液于基底表面,经过1~5分钟后,盐酸渗透进入聚合物膜并逐渐地刻蚀掉铝膜,聚合物 包覆着切割薄片从基底脱离开来,多余的盐酸通过滤纸吸去;此组装体足够坚固形成自支 持膜,利用镊子从边缘将它揭起并转移到有少量水滴的目标基底表面;在光学显微镜下按 照需要制备的纳米结构控制组装体的位置和取向,然后在40~80°C下加热20~40分钟,除 去残留的水并增强切割薄片与目标基底的粘附力;再在120~150°C下加热20~40分钟消除 可能存在的褶皱;最后,在甲苯中浸泡5~10分钟除去聚合物膜,再反应性离子刻蚀除去环 氧树脂或硫醇烯类光固化树脂基体,从而在目标基底上得到转移后的纳米结构;这种纳米 结构的高是切割薄片的厚度,纳米结构的宽为沉积金膜的厚度,纳米结构的长为聚四氟乙 稀掩板中矩形孔的宽度;反应性离子刻蚀时间1~5min,刻蚀气压为5~IOmTorr,刻蚀温度 10~20°C,氧气流速10~30sccm,刻蚀功率为10~40W; 4) 在步骤3)得到转移后的纳米结构后,在该纳米结构上重复步骤3)的操作,可以得到 二维或者三维的纳米结构。2. 如权利要求1所述的一种转移和控制纳米结构的方法,其特征在于:步骤1)中的沉积 基底为硅片、平整的玻璃片或石英片。3. 如权利要求1所述的一种转移和控制纳米结构的方法,其特征在于:步骤2)中的纳米 结构材料是金属、半导体、陶瓷或者是共辄聚合物。4. 如权利要求3所述的一种转移和控制纳米结构的方法,其特征在于:金属为金或银, 半导体为锗或锑,陶瓷为二氧化硅或三氧化铝,共辄聚合物为聚(3-己基噻吩)或聚[2-甲氧 基-5-(2 乙基己氧基)-1,4-对亚苯基亚乙烯基];金属通过热蒸发沉积在硅片表面,半导 体通过电子束沉积在硅片表面,陶瓷通过溅射沉积在硅片表面,聚合物通过旋涂在硅片表 面;且当纳米结构材料是共辄聚合物时,省略步骤3)中所述甲苯除去聚合物膜的步骤,直接 利用10~15分钟的反应性离子刻蚀一次性除去聚合物和环氧树脂。5. 如权利要求1所述的一种转移和控制纳米结构的方法,其特征在于:目标基底是平面 或曲面的硅片、玻璃片或石英片硬基底,或是平面或曲面的聚二甲基硅烷软基底。6. 如权利要求5所述的一种转移和控制纳米结构的方法,其特征在于:当目标基底为平 面基底时,切割后得到的是纳米线结构,纳米线的长、宽、高分别对应聚四氟乙烯掩板中矩 形孔的宽度、沉积纳米结构材料膜的厚度以及切割薄片的厚度;连续转移三次或者四次,控 制纳米线的位置和取向,得到矩形、等边三角形或者平行阵列结构。
【文档编号】B81C1/00GK106006546SQ201610505541
【公开日】2016年10月12日
【申请日】2016年7月1日
【发明人】张刚, 赵志远
【申请人】吉林大学
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜