一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

吡唑烷酮类肠促胰酶肽和胃泌素拮抗剂及其药物制剂的制作方法

2021-10-24 18:45:08 来源:中国专利 TAG:
专利名称:吡唑烷酮类肠促胰酶肽和胃泌素拮抗剂及其药物制剂的制作方法
技术领域
本发明涉及具有生物活性的吡唑烷酮类化合物。更具体地讲,本发明涉及一些能与肠促胰酶肽(CCK)受体(如脑和胰脏中的CCK受体)以及胃泌素受体(如胃中的胃泌素受体)结合的取代的吡唑烷酮类化合物。本发明化合物是CCK和胃泌素的拮抗剂,可用于治疗和预防温血脊椎动物、特别是人类的与CCK和胃泌素有关的胃肠系统失调、中枢神经系统失调和食欲调节系统失调。
肠促胰酶肽(CCK)是一种在胃肠组织和中枢神经系统组织中发现的神经肽。据信,CCK在食欲调节方面具有重要的作用。CCK的作用包括,刺激结肠运动、刺激胆囊收缩、刺激胰脏酶的分泌以及抑制胃排空。据报道,在一些中脑神经元中CCK与多巴胺共存,因此,CCK也可能在脑内多巴胺能系统的活动中发挥作用。胃泌素是一种主要在胃肠道中发现的神经肽。它是胃酸分泌的主要天然刺激剂之一。它对各种胃肠组织还具有生长刺激作用。
CCK和胃泌素拮抗剂可用于治疗和预防温血脊椎动物的与CCK和胃泌素有关的胃肠系统失调和中枢神经系统失调,并可用来调节温血脊椎动物的食欲调节系统。据认为,CCK/胃泌素受体家族包括下述三种受体亚型,其中括弧内给出的是各原型受体的定位CCK-A(胰脏)、CCK-B(脑)和胃泌素(胃底)。
文献中已报道了几种类型的CCK受体拮抗剂,一类是环核苷酸衍生物如二丁酰基环GMP。先有技术所承认的另一类CCK拮抗剂是CCK的C-端片段及其类似物。还有一类CCK受体拮抗剂是氨基酸衍生物,包括戊酰胺酸衍生物proglumide和N-酰基色氨酸如对氯苯甲酰基-L-色氨酸。最近,在已公开的欧洲专利申请0166355中把一些取代的氨基苯基化合物描述为CCK拮抗剂。由于能结合CCK的化合物具有广泛的潜在临床应用,所以人们一直在进行广泛的研究,以寻找具有CCK受体结合性质的其它化合物。
本发明涉及下述式Ⅰ或Ⅱ所示的新的吡唑烷酮类化合物,已发现它们具有CCK和胃泌素拮抗剂活性。这些化合物可用来治疗和预防温血脊椎动物、特别是人类的与CCK有关的胃肠系统失调和中枢神经系统失调,并可用来调节其食欲调节系统。作为胃泌素拮抗剂,它们特别可用来治疗和预防胃肠溃疡和起因于胃肠的肿瘤。
本发明涉及式Ⅰ或Ⅱ化合物及其可药用盐,
式中R和R1独立地为氢、C1-C6烷基、苯基、苄基、萘基、吡啶基或带有1、2或3个取代基的取代的苯基,所述取代基选自C1-C6烷基、C1-C6烷氧基、C1-C6烷硫基、卤素、三氟甲基、苯基、苯氧基、苯基(C1-C4烷基)、苯基(C1-C4)烷氧基)、苯基乙酰基、C1-C6链烷酰基、氰基、氨甲酰基、硝基、C1-C6烷氧羰基、亚甲二氧基、C3-C6亚烷基、氨基、-NH(C1-C4烷基或苄基)和N(C1-C4烷基)2;
R2为氢、C1-C6烷基、羧甲基、C1-C4烷氧羰基甲基或下式基团,
式中t为1或0;A为-CH2-、-O-、-NH-或-N(C1-C6烷基)-;Y为苯基或上述定义的取代苯基;
R4为C1-C6烷基、羧甲基或C1-C4烷氧羰基甲基;
R3为氢或下式基团,
式中B为O或S;X选自上述定义的苯基取代基;m为0、1或2;n为0或1;Q为-NH-、-N(C1-C6烷基)-、-S-或-O-;R5为式-〔CH(R6)〕q-(CH2)r-R7基团,其中R6为氢或C1-C6烷基,q为0或1,r为0、1或2,R7为氢、C1-C8烷基、C3-C8环烷基、五氟苯基、吡啶基、四氢化萘基、吲哚基、喹啉基、苯基、萘基或带有1、2或3个上述对苯基定义的取代基的苯基或萘基;或者基团-(Q)nR5为2-四氢异喹啉基;
条件是,至少R或R1基团之一不是氢或C1-C6烷基,并且,只有当R和R1中的一个为被苯基取代的苯基时,其另一个才为氢;另一个条件是,至少R2和R3基团之一不是氢,并且当R3为式
基团时,R2不是式
基团。
在式Ⅰ或Ⅱ化合物中,相对于吡唑烷酮环的平面来说,基团R和R1可以是顺式或反式构型。本发明所优选的反式构型被证明为热力学上有利的形式。
本文所用的“卤素”是指氟、氯或溴。术语“C1-C6烷基”包括直链和支链烷基和环烷基,包括甲基、乙基、丙基、环丙基、异丙基、丁基、甲基环丙基、环丁基、异丁基、叔丁基、戊基、环戊基、新戊基、己基、环己基、2-甲基戊基等。在术语“C1-C6烷氧基”和“C1-C6烷硫基”取代基中,烷基部分是如上定义的C1-C6烷基。术语“C1-C6链烷酰基”包括甲酰基、乙酰基、丙酰基、丁酰基、戊酰基、己酰基等。
术语“可药用的盐”包括通过一般酸-碱反应在式Ⅰ或Ⅱ化合物的碱性基团(如氨基)和酸性基团、特别是羧基上形成的那些盐,所以,本发明的可药用盐可通过常规的化学方法从含有碱性或酸性基团的式Ⅰ或Ⅱ化合物制得。通常,在合适的溶剂或溶剂混合物中通过游离碱或酸与化学计量或过量的所期成盐酸或碱反应制备所述盐。合适的成盐酸包括无机酸如盐酸、氢溴酸、硫酸、氨基磺酸、磷酸、硝酸等;有机酸如乙酸、丙酸、琥珀酸、乙醇酸、硬脂酸、乳酸、柠檬酸、苹果酸、酒石酸、抗坏血酸、pamoic acid、马来酸、羟基马来酸、苯乙酸、谷氨酸、苯甲酸、水杨酸、对氨基苯磺酸、2-乙酰氧基苯甲酸、富马酸、甲苯磺酸、甲磺酸、乙二磺酸、草酸、苯磺酸、苦味酸、肉桂酸等。制备具有酸性基团的式Ⅰ或Ⅱ化合物的盐所用的碱包括碱金属或碱土金属的氢氧化物如钠、钾、锂、钙或镁的氢氧化物;氨;或有机碱如苄胺、二苄基胺、二苄基乙二胺、三乙胺、三甲胺、哌啶、吡咯烷、2-羟基乙胺、二(2-羟基乙基)胺、苯基乙基苄基胺等。
本发明化合物在脑和/或外周部位如胰脏、胆囊、胃和回肠中与CCK和胃泌素受体结合。这些化合物对CCK和胃泌素的拮抗能力,使得它们可用作治疗和预防可能涉及到CCK或胃泌素的疾病例如下述疾病的药物胃肠失调如过敏性肠综合征、溃疡、胰或胃分泌过量、急性胰腺炎、运动失调、起源于胃肠的肿瘤;涉及CCK与多巴胺相互作用的中枢神经系统失调如精神抑制失调、迟发性运动障碍、帕金森氏病、精神病或图雷特氏病;确信CCK是诱发因子的其它中枢神经系统失调如疼痛发作以及其它形式的焦虑。本发明化合物还可用来调节食欲调节系统。
优选的结合CCK和胃泌素受体的本发明化合物为式Ⅰ的吡唑烷酮类化合物,特别是R和R1相对于吡唑烷酮环平面处于反式构型的那些化合物。R和R1优选为苯基或取代的苯基。一组优选的式Ⅰ化合物是其中R2为氢,R3为
的那些化合物。一系列这样的优选本发明化合物是这样一些化合物,其中B为S,n为1,Q为-NH-,R5为苯基或取代的苯基。
另一组优选的与CCK和胃泌素受体的有意义结合呈现一致模式的化合物为这样一些式Ⅰ化合物,其中R2为氢,R3为由下式基团限定的基团-CONH-[CH(R6)]q-(CH2)r-R7.
这些化合物中特别优选的是这样一些化合物,其中q和r为O,R7为苯基、取代的苯基、2-萘基或3-喹啉基,R和R1为相对于吡唑烷酮环的平面处于反式构型的苯基、萘基或取代的苯基。当R7为取代的苯基时,优选的取代基是卤素,更特别地为氯、溴或碘;三氟甲基;C1-C4烷基;C3-C4亚烷基;苄氧基;及甲硫基。
本发明化合物可容易地从相应的式Ⅲ化合物制得。
中间体3-吡唑烷酮化合物可容易地通过肼与相应的式R1-CH=C(R)-COOR′的α,β-不饱和酯的反应制得,其中R和R1如上定义,R′为成酯基团,通常为C1-C6烷基。本发明化合物通常是在中性或碱性条件下,通过用为得到本发明的目的化合物所选择的酰化剂或烷化剂对式Ⅲ的3-吡唑烷酮化合物进行酰化或烷化来制备。
本发明的另一实施方案,提供了包含有效量的式Ⅰ或Ⅱ化合物作为活性成分并含有供其所用的可药用载体、赋形剂或稀释剂的药物制剂。这样的制剂可被制备以供口服或非经胃肠给药来治疗和预防温血脊椎动物、尤其是人类的胃肠失调、中枢神经系统失调和食欲调节系统失调。
当本发明的CCK或胃泌素拮抗剂口服使用时,可将所选择的化合物以例如片剂或胶囊的形式或作为水溶液或水悬浮液给药。在片剂情况下,普通赋形剂包括粘结剂,例如,糖浆、阿拉伯胶、明胶、山梨醇、西黄蓍胶、聚乙烯吡咯烷酮(povidone)、甲基纤维素、乙基纤维素、羧甲基纤维素钠、羟丙基甲基纤维素、蔗糖和淀粉;填充剂和载体,例如,玉米淀粉、明胶、乳糖、蔗糖、微晶纤维素、高岭土、甘露醇、磷酸二钙、氯化钠和藻酸;润滑剂,例如,硬脂酸镁;崩解剂,例如,croscarmellose、微晶纤维素、玉米淀粉、淀粉羟乙酸钠和藻酸;以及合适的润湿剂,例如,月桂基硫酸盐。对于以胶囊的形式口服给药,有用的稀释剂包括乳糖和干的玉米淀粉。当需要以水悬浮液的形式口服给药时,可将活性成分与下列诸组分混合乳化剂和悬浮剂,例如,山梨醇、甲基纤维素、葡萄糖浆/糖浆、明胶、羟乙基纤维素、羧甲基纤维素、硬脂酸铝凝胶或氢化食用油如杏仁油、分馏过的椰子油、油脂类、丙二醇或乙醇;调味剂,例如,薄荷、冬青油、樱桃香料等;以及防腐剂,例如,对羟基苯甲酸甲酯或丙酯或抗坏血酸。
也可对本发明的药物制剂进行配制,以供非经胃肠使用。根据一般的药学实践,这样的制剂一般采用活性成分的无菌等渗溶液形式。
作为人类CCK或胃泌素拮抗剂使用时,本发明化合物的合适剂量将随具体病人的年龄、体重和反应以及症状的严重程度和所治疾病的性质而变化。所以,优选的日剂量通常由主治医生确定。然而,在大多数情况下,本发明化合物的有效日剂量将在大约0.05-50mg/kg之间,优选为大约0.5-20mg/kg,可以将其作为一个剂量或分成多个分剂量给药。
提供下列实施例以进一步描述本发明的化合物和其制备方法。
四氢呋喃(THF)通过从钠/二苯甲酮中蒸出而被干燥。除非另有说明,反应和后处理步骤都是在室温下进行的。在减压下用旋转蒸发器除去溶剂。除非注明,否则层析都是在正相硅胶柱上进行。研制是用2∶1 DMF∶H2O作为溶剂进行。
实施例11-〔(4-氯-3-三氟甲基苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮〔方法A〕在氮气氛下,将4,5-二苯基-3-吡唑烷酮(3.00g,12.6mmol)溶于40ml THF中,然后用2分钟时间加入4-氯-3-三氟甲基苯基异氰酸酯(2.87g,13.0mmol,1.03eq)在10ml THF中的溶液。2.3小时后,减压除去溶剂,残留物用25ml甲苯研制。将产生的固体粉化,用甲苯洗涤两次,于65℃下真空干燥,得到4.95g(85%)白色固体。
1H NMR(d6-DMSO) δ 3.81(br s,1H),5.56(br s,1H),7.26-7.50(m,10H),7.62(d,J=9Hz,1H),7.89(dd,J=3,9Hz,1H),8.13(br s,1H),9.64(br s,1H),10.90(br s,1H);质谱(MS)460(M 1 );
分析C23H17ClF3N3O2计算值C,60.07;H,3.73;N,9.14;
实验值C,59.99;H,3.60;N,8.89.
实施例21-〔(4-N,N-二甲基氨基苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮〔方法B〕在氮气氛下,将4-N,N-二甲基氨基苯胺(2.00g,14.68mmol)和三乙胺(3.63g,35.87mmol,2.44eq)溶于50ml甲苯中,然后将三光气(1.45g,4.89mmol,0.333eq.)以纯固体形式一次加入。将混合物加热回流2.5小时,冷却,然后快速过滤,收集固体,用甲苯洗涤两次,合并滤液,于减压下蒸发,得到粗制4-N,N-二甲基氨基苯基异氰酸酯(2.57g),为棕色油状物。将其重新溶于50ml THF中,用3分钟时间加入4,5-二苯基-3-吡唑烷酮(3.50g,14.69mmol,1.00eq)在50ml THF中的溶液。20.7小时后,减压下除去溶剂,用层析法(制备性HPLC;0-50% EtOAc甲苯梯度)分离产物,得到1.73g黄色油状物,该油状物发生缓慢结晶。用甲苯重结晶,得到744mg(13%)白色结晶状固体1H NMR(d6-DMSO) δ 2.84(s,6H),3.71(s,1H),5.55(s,1H),6.67(d,J=8Hz,2H),7.12-7.52(m,12H),8.86(br s,1H),10.70(br s,1H);MS 400(M );滴定pKa为4.0,7.9.
分析C24H24N4O2计算值C,71.98,H,6.04,N,13.99;
实验值C,72.08,H,6.06,N,14.06.
实施例31-〔(4-苄氧基苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮〔方法C〕将4-苄氧基苯甲酸(2.0g,8.8mmol)与草酰氯(5ml)一起悬浮在50ml甲苯中,然后加热回流15分钟。减压下除去溶剂,残留物重新溶于30ml丙酮中,在用水浴外部冷却的条件下滴加NaN3的水溶液(1.16g,17.6mmol,2.0eq.在10ml H2O中)。将混合物搅拌1小时,用H2O稀释,用甲苯提取两次,然后将合并的提取液用水和盐水洗涤,用Na2SO4干燥。用4,5-二苯基-3-吡唑烷酮(1.6g,6.8mmol,0.76eq.)处理该酰基叠氮溶液,温热至有气泡放出,维持加热30分钟。在室温下搅拌过夜后,减压下除去溶剂,通过层析法(0-30%EtOAc己烷梯度)分离产物,得到1.6g(52%)白色固体;mp 127-30℃。
1H NMR(CDCl3) δ 3.95(d,J=6Hz,1H),5.0(s,2H),5.55(d,J=6Hz,1H),6.8(d,J=10Hz,2H),6.86-7.46(m,16H),7.05(d,J=10Hz,2H),8.95(s,1H);MS 463(M );
滴定pKa7.7.
分析C29H25N3O3计算值C,75.14;H,5.44;N,9.07;
实验值C,75.15;H,5.49;N,9.14.
实施例41-〔(2-〔1,2,3,4-四氢萘基〕)氨基羰基〕-4,5-二苯基-3-吡唑烷酮〔方法D〕在氮气氛下,将1,2,3,4-四氢-2-萘甲酸(639mg,3.63mmol)溶于80ml苯中,通过蒸掉一小部分溶剂进行共沸干燥,然后加入二苯基磷酰叠氮(1.12g,4.08mmol,1.1eg。)和Et3N(0.41g,4.02mmol,1.1eq.),并将混合物加热回流1小时。减压下除去溶剂,在氮气氛下将残留物溶于无水THF中,加入4,5-二苯基-3-吡唑烷酮(784mg,3.29mmol,0.91eq.),并将混合物搅拌过夜。减压下除去溶剂,通过层析法(25-50%EtOAc己烷梯度)分离产物,得到0.92g(68%)白色泡沫体。用异丙醚/异丙醇对120mg样品重结晶,得到94mg白色固体,NMR证实含有两种非对映异构体的1∶1混合物,mp 82-95℃。
1H NMR(CDCl3) δ 1.46-1.66(m,1H),1.79-1.97(m,1H),2.30-2.84(m,2H),2.95(表观双d,J=6,16Hz,1H),3.87(表观d,J=6Hz,1H),4.09(m,1H),5.12(m,1H),5.34(表观双d,J=6,14Hz,1H),6.86-7.40(m,14H),c.9.0(v br s,1H);MS 411(M ).
分析C26H25N3O2计算值C,75.89;H,6.12;N,10.21;
实验值C,75.75;H,6.32;N,9.72.
实施例51-(3-三氟甲基苯甲酰基)-4,5-二苯基-3-吡唑烷酮〔方法E〕将4,5-苯基-3-吡唑烷酮(2.0g,8.4mmol)在50ml CH2Cl2和5ml吡啶中的溶液用3-三氟甲基苯甲酰氯(1.4g,8.4mmol)在25ml CH2Cl2中的溶液进行滴加处理,然后搅拌过夜。将该混合物用1N HCl洗涤,用Na2SO4干燥,蒸发,通过层析法(制备性HPLC)分离产物,得到840mg(24%)紫色泡沫体。
1H NMR(CDCl3) δ 3.83(s,1H),5.16(s,1H),7.2-7.64(m,15H);MS 410(M );滴定pKa7.15.
分析 C23H17F3N2O2计算值C,67.31;H,4.18;N,6.83;
实验值C,67.52;H,4.18;N,6.66。
实施例61-〔(4-氯苯基)氧羰基〕-4,5-二苯基-3-吡唑烷酮〔方法F〕将4,5-二苯基-3-吡唑烷酮(1.25g,5.26mmol)在50ml CHCl3中的溶液用氯甲酸4-氯苯基酯(1.0g,5.26mmol)在10ml CHCl3中的溶液处理,然后搅拌过夜。减压下除去溶剂,残留物用EtOAc/己烷重结晶,得到1.6g(58%)白色固体,mp 175-7℃。
1H NMR(CDCl3) δ 3.98(d,J=6Hz,1H),5.62(d,J=6Hz,1H),6.8-7.5(m,15H);MS 392(M );滴定pKa7.8.
分析 C22H17ClN2O3计算值C,67.26;H,4.36;N,7.13;
实验值C,67.49,H,4.54,N,7.17.
实施例71-〔(3,4-二氯苄基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮〔方法M〕将1-〔(4-硝基苯基)氧羰基〕-4,5-二苯基-3-吡唑烷酮(1.00g,2.48mmol)和3,4-二氯苄基胺(5ml)在50ml无水乙醇中的溶液加热回流8小时。减压下除去溶剂,残留物溶于CH2Cl2中,用1N盐酸洗涤两次,用pH7的缓冲液洗涤一次,并用Na2SO4干燥。减压下除去溶剂后,通过层析法(0-35%EtOAc己烷梯度)纯化产物,得到250mg(23%)固体。
1H NMR(CDCl3) δ 3.93(d,J=6Hz,1H),4.28(dABq,J=7,15(JAB)Hz,△u=48Hz,2H),5.50(d,J=6Hz,1H),5.56(br t,J=7Hz,1H),6.92-7.44(m,13H),8.73(br s,1H);MS 439(M );滴定pKa8.4.
分析 C23H19Cl2N3O2计算值C,62.74;H,4.35;N,9.54;
实验值C,62.49;H,4.53;N,9.25.
实施例82-〔(4-氯-3-三氟甲基苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮〔方法N〕将1-〔(4-氯-3-三氟甲基苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮(2.00g,4.35mmol)在100ml甲苯中加热回流24小时。减压下除去溶剂后,用层析法(CH2Cl2)分离重排产物,然后用异丙醚/己烷重结晶,得到300mg(15%)白色固体,mp 72-4℃。
1H NMR(CDCl3) δ 4.22(d,J=12Hz,1H),4.82(dd,J=9,12Hz,1H),5.44(d,J=9Hz,1H),7.20(m,2H),7.32-7.42(m,8H),7.46(d,J=9Hz,1H),7.72(dd,J=3,9Hz,1H),7.87(d,J=3Hz,1H),10.56(br s,1H);MS 459(M ).
分析 C23H17ClF3N3O2计算值C,60.07;H,3.73;N,9.14;
实验值C,59.95;H,3.92;N,8.88.
实施例91-〔6-氯-2-苯并噻唑基〕-4,5-二苯基-3-吡唑烷酮〔方法O〕在干燥的氮气氛下进行反应。用0.40g NaH(60%在矿物油中,氢化物含量0.24g,10.0mmol,2.00eq.)处理4,5-二苯基-3-吡唑烷酮(1.19g,5.00mmol)在35ml甲苯中的悬浮液,并将混合物在45℃下搅拌2小时。加入2,6-二氯苯并噻唑(1.02g,5.00mmol,1.00eq.),继续在80℃下搅拌20小时。冷却后,将反应混合物倒到30ml冰冷却的0.5N HCl中,用EtOAc提取,分出有机相,用盐水洗涤两次,用Na2SO4干燥,减压下蒸发溶剂。残留物用Et2O己烷重结晶后,得到1.46g(72%)浅褐色晶体,mp 170.5-2.5℃。
1H NMR(CDCl3) δ 4.07(br d,J=6Hz,1H),5.24(br d,J=6Hz,1H),7.16-7.58(m,14H);MS 405(M );滴定pKa6.6.
分析 C22H16ClN3OS计算值C,65.10;H,3.97;N,10.35;
实验值C,64.85;H,4.13;N,10.12.
实施例101(4-氨苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮将1-〔(4-硝基苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮(500mg,1.24mmol)溶于50ml乙醇中,于室温和60p.s.i.H2下用5%Pd/C(500mg)氢化过夜。过滤混合物,除去催化剂,减压除去溶剂,通过层析法(0-50%EtOAc己烷梯度)分离产物,得到125mg(27%)固体。
1H NMR(CDCl3) δ 3.97(d,J=6Hz,1H),5.50(d,J=6Hz,1H),6.58(d,J=10Hz,2H),6.96(d,J=10Hz,2H),7.2-7.5(m,10H);MS 372(M );滴定pKa4.5,8.1.
分析 C22H20N4O2计算值C,70.95;H,5.41;N,15.04;
实验值C,70.65;H,5.42;N,14.75.
实施例111-〔(4-溴苯基)氨基羰基〕-2-(O-叔丁基羧甲基)-4,5-二苯基-3-吡唑烷酮和1-〔(4-溴苯基)氨基羰基〕-3-(O-叔丁基羧甲氧基)-4,5-二苯基-2-吡唑啉向1-〔(4-溴苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮(2.0g,4.6mmol)在30ml无水乙醇中的悬浮液中加入KOH(1.1eq.)在无水乙醇中的溶液和溴乙酸叔丁基酯(5ml)。搅拌3天后,出现了溴化钾沉淀。将混合物用水稀释,用Et2O提取,然后Et2O层用水和盐水洗涤,用Na2SO4干燥,然后减压蒸发。通过层析法(0-25%EtOAc己烷梯度)分离两种产物的不可分混合物,得到1.3g(52%)泡沫体,NMR证实,含有的N-烷基化产物对O-烷基化产物的比率为3∶2〔分别为第一个和第二个标题产物〕。
1H NMR(CDCl3)N-烷基化δ 1.53(s,9H),3.96(d,J=19Hz,1H),4.06(s,1H),4.65(d,J=19Hz,1H),5.95(s,1H),7.23-7.46(m,14H),9.70(s,1H);O-烷基化δ 1.53(s,9H),4.18(d,J=7Hz,1H),4.67(s,2H),5.40(d,J=7Hz,1H),7.23-7.46(m,14H),7.74(s,1H);MS 549,551(M ,Br同位素)。
分析 C28H28BrN3O4计算值C,61.10;H,5.13;N,7.63;
实验值C,60.94,H,4.93;N,7.85.
实施例121-〔(4-溴苯基)氨基羰基〕-2-羧甲基-4,5-二苯基-3-吡唑烷酮和1-〔(4-溴苯基)氨基羰基〕-3-羧甲氧基-4,5-二苯基-2-吡唑啉将从实施例11中得到的叔丁酯的区域异构体混合物〔N-对O-烷基化产物的大约3∶2混合物〕(500mg,0.91mmol)溶于30ml CH2Cl2和5ml三氟乙酸中。4小时后,TLC(CH2Cl2)表明,起始原料已消失。减压除去溶剂,通过层析法(0-100%EtOAc己烷梯度)分离两种产物的混合物,得到180mg(40%)泡沫体,NMR表明,包含的N-烷基化产物对O-烷基化产物的比率为4∶3〔分别为第一个和第二个标题产物〕。
1H NMR(CDCl3)N-烷基化δ 4.09(d,J=2Hz,1H),4.10(d,J=19Hz,1H),4.68(d,J=19Hz,1H),5.83(d,J=2Hz,1H),7.20-7.50(m,14H),9.08(s,1H);O-烷基化δ 4.19(d,J=5Hz,1H),4.83(ABq,J=16Hz,△u=30Hz,2H),5.46(d,J=5Hz,1H),7.20-7.50(m,14H),7.75(s,1H);MS 493,495(M ,Br同位素);滴定 pKa4.8.
分析 C24H20BrN3O4计算值C,58.31;H,4.08;N,8.50;
实验值C,58.59;H,4.03;N,8.24.
在Waters C18反相柱上进行层析,用30-40%CH3CN8H2O(用0.3-0.5% NH4OAc缓冲)进行洗脱,分离N-和O-烷基化产物。蒸发首先洗脱下来的领先组分,冷冻干燥,然后溶于CH2Cl2中,用1N HCl洗涤两次,减压除去溶剂,得到28mg O-烷基化产物。
1H NMR(CDCl3δ 4.19(d,J=7Hz,1H),4.84(ABq,J=17Hz,△u=25Hz,2H),5.45(d,J=7Hz,1H),6.39(br s,1H),7.20-7.40(m,14H),7.70(s,1H).
将后洗脱下来的级分再层析两次,然后进行类似的处理,得到8mg N-烷基化产物。
1H NMR(CDCl3) δ CDCl34.05(s,1H),4.08(br d,J=18Hz,1H),4.70(br d,J=18Hz,1H),5.82(s,1H),7.21-7.50(m,14H),9.0(br s,1H).
实施例131-〔(4-三氟甲基苯基)氨基羰基〕-3-甲氧基-4,5-二苯基-2-吡唑啉将1-〔(4-三氟甲基苯基)氨基羰基〕-4,5-二苯基-3-吡唑烷酮(740mg,1.74mmol)和KOH(122mg,纯度88%,1.1eq.)在30ml无水乙醇中的溶液用碘甲烷(5ml)处理,并搅拌过夜。将混合物用水稀释,用CH2Cl2提取两次,合并提取液,用水洗涤,用Na2SO4干燥,然后减压蒸发。通过层析法(0-15% EtOAc己烷梯度)分离产物,得到61mg(8%)固体。
1H NMR(CDCl3) δ 4.0(s,3H),4.11(d,J=6Hz,1H),5.48(d,J=6Hz,1H),7.2-7.74(m,14H),8.09(s,1H);MS 439(M ).
还分离出了1-〔(4-三氟甲基苯基)氨基羰基〕-2-甲基-4,5-二苯基-3-吡唑烷酮,它相应于按实施例1的方法从2-甲基-4,5-二苯基-3-吡唑烷酮和4-三氟甲基苯基异氰酸酯制备的产物。
实施例141-(吲哚-2-羰基)-4,5-二苯基-3-吡唑烷酮将吲哚-2-羧酸(1.35g,8.38mmol)、草酰氯(4ml)和DMF(3滴)依次加到50ml甲苯中,搅拌至气体停止放出为止,得到一个均相溶液(大约2分钟)。减压除去溶剂,残留物溶于二氯甲烷中,加到4,5-二苯基-3-吡唑烷酮(2.0g,8.40mmol,1.00eq.)在50ml CH2Cl2和5ml吡啶中的溶液中。搅拌过夜后,将溶液用1N HCl洗涤,用Na2SO4干燥,减压除去溶剂。残留固体物与CH2Cl2一起搅拌,过滤,用DMFH2O重结晶,得到1.42g(44%)白色固体,mp 248-50℃。
1H NMR(d6-DMSO) δ 3.82(s,1H),5.86(s,1H),6.95-7.6(m,16H),11.84(br s,1H);MS 381(M );滴定pKa6.75.
分析 C24H19N3O2计算值C,75.57;H,5.02;N,11.02;
实验值C,75.38,H,5.21;N,10.99.
实施例15-135概括在下述表Ⅰ中。每一实施例的化合物用每一组实施例前给出的结构式说明。每一化合物的制备方法用方法A-O表明,方法A-O对应于前述实施例1-9中所给出的步骤。实施例1-67和74-109的化合物中吡唑烷酮环上的苯基处于反式位置。
a.包括其它纯化方法如所指明的层析、研制及沉淀法。如果只给出溶剂、那么化合物则是用这些溶剂重结晶纯化的。对于其它纯化方法,所用溶剂在其后的括弧内给出。
b.用EtOAc己烷重结晶后。
c.通过提取到1N NaOH中,接着用1N HCl酸化,然后提取到有机溶剂(Et2O或EtOAc)中而纯化。蒸发溶剂后,得到的物质为单一物质(TLC检测),具有令人满意的纯度。
d.用S-(-)-α-甲基苄基异氰酸酯制备。
e.所报告的所有裂分类型都是对图谱进行肉眼观察得到的表观裂分类型,反映了实际的质子-质子磁偶合总结果和由于存在两种非对映异构体的混合物而造成的多重峰现象。
f.用R-( )-α-甲基苄基异氰酸酯制备。
g.用(±)-4-溴-α-甲基苄基异氰酸酯制备。
h.用(R)-(-)-1-(1-萘基)乙基异氰酸酯制备。
CCK和胃泌素受体结合(IC50)试验步骤脑按照Chang和Lotti的方法(Proc.Natl.Acad.Sci.834923-4926,1986),用小鼠脑膜进行脑CCK受体结合试验。用颈脱位法处死雄性CF-1小鼠(每只重23-25g),取出前脑,置于冰冷的50mM Tris缓冲液(pH7)中。用Brinkman Polytron或Tekmar Tissumizer将组织在100倍体积的Tris缓冲液中进行匀浆,然后在40,000g下离心10分钟。将沉淀物再悬浮于Tris缓冲液中,如上进行离心,然后再悬浮在100倍体积的试验用缓冲液(pH6.5,20mM N-2-羟乙基-哌嗪-N′-2-乙烷磺酸(HEPES)、1mM乙二醇二(2-氨基乙基醚-N,N,N′,N′-四乙酸)(EGTA)、5mM MgCl2、130mM NaCl和0.25mg/ml杆菌肽)。结合试验混合液由50μl化合物(或供全部结合用的缓冲液)、50μl125I-CCK-8硫酸盐(20pM)(Amersham IM-159)、200μl试验用缓冲液和200μl匀浆液(80-120μg蛋白质)组成。将样品在室温(25℃)下保温2小时,然后使这些样品过滤通过GF/B玻璃纤维滤膜(使用前在洗涤缓冲液中浸泡2小时),用为受体结合试验而设计的48孔Brandel细胞收集器收集。用3ml 50mM Tris缓冲液(pH7.4,含有0.01%BSA)将滤膜洗涤两次,然后在塑料管中用Micromedic10/600自动伽马计数器对放射性进行计数。
将化合物以10mM的浓度溶于二甲亚砜(DMSO)中,然后进一步用试验用缓冲液稀释。保温过程中DMSO的浓度为0.1%或更小,在该水平,DMSO对试验没有任何影响,用7个浓度的化合物测定并用DeLean、Munson和Rodbard的ALLFIT计算机程序(Am.J.Physiol.235E97-E102,1978)计算置换曲线的IC-50值。由100nM CCK-8硫酸盐对放射性配位体的置换测定非特异性结合。
胰脏对大鼠胰脏中外周型CCK受体的结合试验用3H-L364,718按照Chang等人的方法(Mol.Pharmacol.,30212-217,1986)来进行。将重150-200g的雄性Sprague-Dawley大鼠用断头法处死,取出胰脏,剖去脂肪和结缔组织。将该组织在30倍体积的50mM Tris缓冲液(pH 7.4)中进行匀浆,然后在40,000g下离心10分钟。将组织沉淀如上述重新悬浮和离心进行洗涤。将最终沉淀悬浮在500倍体积的试验用缓冲液(50mM Tris缓冲液(pH 7.4)、5mM MgCl2、0.14mg/ml杆菌肽和5mM二硫苏糖醇)中,使蛋白质浓度为30-60μg/200μl。试验用各试剂的体积与在对脑膜的CCK结合试验中所用的相同。用氚标记的L-364,718(Dupont NEN,NET-971)作为配位体,其浓度为0.4-0.6nM。将样品在室温下保温1小时。然后如对脑CCK受体所述的那样进行过滤。向滤膜中加入闪烁液,用Micromedic Taurus自动液体闪烁计数器对放射性进行记数。
如对脑CCK实验所述的那样,制备化合物样品,并测定IC-50值。非特异性结合是指加入100nM L-364,718后由于结合在滤膜上而留下的量。
胃粘膜对豚鼠胃粘膜的胃泌素结合试验所用的方法相似于Takeuchi Speir和Johnson所述的方法(Am.J.Physiol,237(3)E284-E294,1979)。从体重为300-350g的雄性Hartley豚鼠体内取出胃底,用玻璃片刮下粘膜。用Dounce玻璃匀浆器将所述粘膜在含有1mM苯甲磺酰氟的50mMTris缓冲液(pH7.4)中进行匀浆,然后将悬浮液在40,000g下离心10分钟。将所得沉淀物再进行一次悬浮和离心操作。将最终沉淀物悬浮在试验用缓冲液(每1个豚鼠胃使用100ml试验用缓冲液)中,使蛋白质浓度为200-300μg/200μl。试验用缓冲液由50mM Tris缓冲液(pH7.4)、5mM MgCl2、0.14mg/ml杆菌肽和亮肽素、抑糜素、抑肽酶和胃酶抑素各1μg/ml组成。试验用各试剂的体积与脑膜CCK结合试验所用的相同。放射性配位体为20pM125I-胃泌素I,得自DuPont NEN(NEX-176)。将各样品在室温下保温3小时,过滤,然后如脑膜CCK结合试验中所述的那样进行记数。如脑膜CCK受体结合试验中所述的那样制备化合物样品并测定IC-50值。用100nM胃泌素I(人工合成,从Sigma化学公司得到)测定非特异性结合。
下面表Ⅱ概述的是例举的本发明化合物的有代表性的CCK和胃泌素结合试验结果。
表ⅡCCK和胃泌素受体结合试验数据IC50,μM,或化合物的 百分抑制 (1或10μM时)实施例编号 脑 胰脏 胃泌素1 0.022 0.19 0.152 0.29 14(10)3 0.054 34(10) 1.14 0.39 78(10)5 77(10) 18(10)6 4.4 15(10)7 1.1 81(10)8 34(10) 2(10)9 3.7 33(10)10 57(10)11 67(10)12 0.34(O-) 64(10)13 67(10)14 2.6 10(10)15 69(10) 10(10)16 0.044 62(10) 0.4217 0.52 6(10)18 0.093 22(10)19 68(10) 36(10)20 0.031 11.6 0.4921 0.057 77(10)22 42(1) 27(10)23 0.49 23(10)
表Ⅱ(续)CCK和胃泌素受体结合试验数据IC50,μM,或化合物的 百分抑制(1或10μM时)实施例编号 脑 胰脏 胃泌素24 0.15 45(10)25 0.21 14(10)26 0.075 47(10)27 0.23 60(10)28 0.44 55(10)29 0.025 47(10)30 0.031 49(10)31 54(1) 71(10)32 42(1) 69(10)33 0.34 20(10)34 1.5 12(10)35 0.39 48(10)36 0.45 33(10)37 82(1) 75(10)38 0.056 53(10) 0.2439 0.33 52(10)40 0.75 38(10)41 57(10) 21(10)42 0.78 37(10)43 0.23 24(10)44 0.26 67(10)45 0.022 0.1646 0.042 1.2 0.2147 0.39 51(10)48 0.080 98(10)49 0.043 40(10) 0.2550 0.013 87(10) 0.08151 18(1) 25(10)52 60(1) 21(10)53 1.2 17(10)54 1.15 53(10)55 0.60 47(10)56 25(1) 15(10)57 1.0 45(10)58 10(1) 85(10)59 44(1) 75(10)60 34(10) 37(10)61 56(10) 78(10)
表Ⅱ(续)CCK和胃泌素受体结合试验数据IC50,μM,或化合物的 P百分抑制(1或10μM时)实施例编号 脑 胰脏 胃泌素62 2.2 37(10)63 0.51 0.07564 5.3 34(1)65 50(10) 37(10)66 40(10) 23(10)67 46(10)68 4.3 70(10)69 0.5 12(10)70 13(1) 36(10)71 1.2 39(10)72 88(10) 22(10)73 16(10) 20(10)74 23(10) 15(10)75 60(10) 40(10)76 55(10) 4(10)77 56(10) 20(10)78 1.8 49(10)79 43(10) 9(10)80 5.2 9(10)81 95(10) 59(10)82 23(10)83 37(1) 12(10)84 70(10) 26(10)85 78(10) 19(10)86 1.1 58(10)87 47(10) 23(10)88 40(10) 37(10)89 34(10) 21(10)90 45(1) 63(10)91 0.010 94(10) 0.06292 0.064 88(10) 0.1693 0.29 75(10) 0.6694 50(10)95 55(10) 18(10)96 42(10) 13(10)97 42(10)98 74(10) 33(10)99 3.3 86(10)
表Ⅱ(续)CCK和胃泌素受体结合试验数据IC50,μM或化合物的 百分抑制(1或10μM时)实施例编号 脑 胰脏 胃泌素100 2.2 78(10)101 1.3 7(10)102 4.7 11(10)103 0.87 78(10)104 0.9 47(10)105 0.49 43(10)106 0.19 78(10)107 86(10) 61(10)108 1.3 87(10)109 6.0 11(10)110 0.007 47(10) 0.13111 0.020 35(10) 0.61112 0.072 42(10) 1.4113 2.5(1) 21(10)114 0.020 38(10) 0.36115 0.15 53(10) 0.32116 0.031 80(10) 0.23117 0.40 64(10) 1.0118 0.36 41(10) 5.2119 1.2 64(10)120 0.016 87(10) 0.12121 0.014 26(10) 0.12122 0.015 8.6 0.22123 0.068 23(10) 0.69124 0.15 36(10) 0.73125 0.10 42(10) 0.59126 0.011 59(10) 0.21127 0.032 73(10) 0.21128 0.49 39(10)129 0.49 69(10) 0.86130 0.012 42(10) 0.10131 0.012 61(10) 0.062132 0.008 48(10) 0.070133 0.006 7.9 0.025134 0.033 75(10) 0.093135 0.14 18(10) 1.权利要求
1.制备下述式Ⅰ或Ⅱ的化合物及其可药用盐的方法,
式中R和R1独立地为氢、C1-C6烷基、苯基、苄基、萘基、吡啶基或带有1、2或3个取代基的取代的苯基,所述取代基选自C1-C6烷基、C1-C6烷氧基、C1-C6烷硫基、卤素、三氟甲基、苯基、苯氧基、苯基(C1-C4烷基)、苯基(C1-C4烷氧基)、苯基乙酰基、C1-C6链烷酰基、氰基、氨甲酰基、硝基、C1-C6烷氧羰基、亚甲二氧基、C3-C6亚烷基、氨基、-NH(C1-C4烷基或苄基)和N(C1-C4烷基)2;R2为氢、C1-C6烷基、羧甲基、C1-C4烷氧羰基甲基或下式基团,
式中t为1或O;A为-CH2-、-O-、-NH-或-N(C1-C6烷基)-;Y为苯基或上述定义的取代苯基;R4为C1-C6烷基、羧甲基或C1-C4烷氧羰基甲基;R3为氢或下式基团,
式中B为O或S;X选自上述定义的苯基取代基;m为O、1或2;n为O或1;Q为-NH-、-N(C1-C6烷基)-、-S-或-O-;R5为式-[CH(R6)]q-(CH2)r-R7基团,其中R6为氢或C1-C6烷基,q为O或1,r为O、1或2,R7为氢、C1-C8烷基、C3-C8环烷基、五氟苯基、吡啶基、四氢化萘基、吲哚基、喹啉基、苯基、萘基或带有1、2或3个上述对苯基定义的取代基的苯基或萘基,或者基团-(Q)nR5为2-四氢异喹啉基;条件是,至少R或R1基团之一不是氢或C1-C6烷基,并且,只有当R和R1中的一个为被苯基取代的苯基时,其另一个才为氢;另一个条件是,至少R2和R3基团之一不是氢,并且当R3为式
基团时,R2不是式
基团,所述方法包括,在中性或碱性条件下,用选择的酰化剂或烷化剂对下式的3-吡唑烷酮进行酰基化或烷基化,得到所需化合物
2.权利要求1所述的方法,其中R和R1为反式立体构型。
3.权利要求1所述的方法,其中R和R1为顺式立体构型。
4.权利要求1-3中任意一项所述的方法,其中化合物结构为
5.权利要求1-3中任意一项所述的方法,其中化合物结构为
6.权利要求5所述的方法,其中R2为式-CONHY基团。
7.权利要求1-6中任意一项所述的方法,其中R3为氢。
8.权利要求1-6中任意一项所述的方法,其中R2为甲基或羧甲基。
9.权利要求1-8中任意一项所述的方法,其中R和R1为苯基或取代的苯基。
10.权利要求1-5中任意一项所述的方法,其中R2为氢。
11.权利要求10所述的方法,其中R3为下式基团
12.权利要求10或11所述的方法,其中R和R1为苯基。
13.权利要求10-12中任意一项所述的方法,其中B为S。
14.权利要求10-12中任意一项所述的方法,其中B为O。
15.权利要求10和12-14中任意一项所述的方法,其中R3为-CB(Q)n-〔CH(R6)〕q-(CH2)r-R7基团。
16.权利要求15所述的方法,其中R3为-CSNH-〔CH(R6)〕q-(CH2)r-R7。
17.权利要求15或16所述的方法,其中q和r为O,R7为苯基或取代的苯基。
18.权利要求15-17中任意一项所述的方法,其中R和R1为苯基或取代的苯基。
全文摘要
已发现,新的取代的吡唑烷酮在脑和/或外周部位如胰脏、胃和回肠可与肠促胰酶肽(CCK)受体和胃泌素受体进行显著的结合。所述吡唑烷酮类化合物是CCK和胃泌素受体拮抗剂,可用于治疗胃肠失调、中枢神经系统失调和调节温血脊椎动物的食欲调节系统。也公开了供这些适应征用的药物制剂。
文档编号C07D403/12GK1058209SQ9110491
公开日1992年1月29日 申请日期1991年7月16日 优先权日1990年7月17日
发明者R·F·布朗, J·F·豪伯特, K·L·洛布, D·A·尼尔, J·K·里尔 申请人:伊莱利利公司
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜