一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种抗氧化陶瓷涂料及其制备方法和应用与流程

2021-10-16 02:08:00 来源:中国专利 TAG:无机 抗氧化 制备方法 涂料 陶瓷


1.本发明涉及无机非金属材料技术领域,具体涉及一种抗氧化陶瓷涂料及其制备方法和应用。


背景技术:

2.抗氧化涂料可分为有机抗氧化涂料和无机抗氧化涂料两大类。无机抗氧化涂料是一种以无机材料为主要成膜物质的涂料,是由无机聚合物和经过分散活化的金属、金属氧化物纳米材料、稀土超微粉体组成的无机聚合物涂料,能与钢结构表面铁原子快速反应,生成具有物理、化学双重保护作用,通过化学键与基体牢固结合的无机聚合物防腐涂层。无机抗氧化涂料相对于有机抗氧化涂料往往直接取材于自然界,绝大多数为无毒无机原料。无机材料的生产及使用过程中对环境的污染小,产品多数是以水或无水乙醇为分散介质,无环境和健康方面的不良影响,并能阻燃,600℃以上抗氧化效果良好。但是,在现有技术中,无机抗氧化涂料在1000℃以上的条件下使用,容易脱落,与基体的结合成都不高,涂覆工艺难度系数大,基体抗氧化效果不好等缺陷。


技术实现要素:

3.为了克服现有技术中的不足,本技术提供一种抗氧化陶瓷涂料及其制备方法和应用,具体方案如下:
4.一种抗氧化陶瓷涂料,所述陶瓷涂料的原料组分及配比为:氮化硅20

30份、石墨10

15份、二硅化钼30

40份、铬尖晶石5

10份、稻壳粉40

60份、氧化钇稳定的氧化锆1

5份、纤维4

8份、助剂3

5份、酚醛树脂70

90份、有机溶剂100

120份。
5.优选,所述稻壳粉的粒径为10μm至20μm。
6.优选,所述氮化硅、石墨、二硅化钼、铬尖晶石和氧化钇稳定的氧化锆均为纳米级。
7.优选,所述助剂为聚丙烯及其衍生物;
8.在本发明的一个特别优选的实施方式中,所述助剂为下式(1)所示:
9.其中,a≥1的整数,n≥a的整数。
10.所述式(1)助剂与cr离子反应,从而将重金属离子固定下来。
11.当使用所述式(1)助剂时,能够与cr
2
形成如下产物:
[0012][0013]
优选,所述有机溶剂为无水乙醇或者乙醚。
[0014]
优选,所述纤维为陶瓷纤维、玻璃纤维或者碳纤维。
[0015]
一种制备所述陶瓷涂料的方法,所述方法步骤如下:
[0016]
步骤一、原料的混合;
[0017]
步骤二、原料的混练;
[0018]
步骤三、原料的干燥;
[0019]
步骤四、原料的造粒成型。
[0020]
优选,
[0021]
所述步骤一中,先将有机溶剂与酚醛树脂按照原料配比进行混合,得到溶剂a,再将氮化硅、石墨、二硅化钼、铬尖晶石、稻壳粉、氧化钇稳定的氧化锆、纤维按顺序加入到溶剂a,边搅拌边加入,使加入的固体原料全部浸润;然后再加入助剂;
[0022]
所述步骤二中,保持室温,混练搅拌机转速大于3500r/min,搅拌时间为60min至100min;
[0023]
所述步骤三中,干燥的温度为80

100℃,干燥的时间为60

72小时;
[0024]
所述步骤四中,采用常规的造粒机进行造粒。
[0025]
一种所述陶瓷涂料的应用,所述应用步骤如下:
[0026]
步骤a:将基体置于密闭的耐火材料匣钵中,并用造粒成型的所述陶瓷涂料的颗粒包埋;
[0027]
步骤b:经过1600

1700℃,1小时还原气氛下的烧成,得到具有复合抗氧化陶瓷涂层的基体产品。
[0028]
优选,所述还原气氛为氮气或者氩气等惰性气体条件;所述包埋的厚度为4

7mm。
[0029]
在现有技术中,具有高温抗氧化性能的无机非金属材料有很多种,但是并不是所有的材料或者是几种材料结合使用就可以适合直接作为涂料使用,这是因为,一方面要考虑涂料与基体的热膨胀相容性问题,热膨胀相容性的好坏决定了涂层在实际应用中性能的前景。如果涂料与基体之间的热膨胀系数相差过大,当涂料从室温到高温的热冲击条件下工作或高温冷却到室温时,涂料会因为产生热应力而有剥落和脱落的危险。另一方面,制备工艺步骤以及工艺参数的控制,均对最终产品的抗氧化性能产生很大的影响。
[0030]
涂料需要具有有效的抑制氧的扩散。本技术中涂料的氧化速率可以由公式计算得出其中,r为氧化速率,k是常数,m是涂料的密度,x是基体的厚度的1/2,t为涂层厚度。采用常用的抗氧化指标,有效工作100小时,允许的最大氧化失重率为1%,经过计算,涂料允许的最大氧渗透率为3
×
10

10
g
·
cm
‑1·
s
‑1。
[0031]
涂料与基体之间的化学相容性主要考虑的问题是在高温下涂层与碳基体间的碳
热还原反应。高温下碳可以与氧化物陶瓷反应生成co,如c与sio2在1450℃下反应生成co和sio,1500℃下,co的蒸汽压将大于0.1mpa,导致碳在反应后向外扩散。
[0032]
从图1

2中可以发现,经过10个小时的静态空气条件下的高温抗氧化测试,在涂料的外部已经形成了连续、致密的液相,液相当中夹杂着涂料的主要成分氮化硅晶体。这样就在涂料的外部形成了一道阻挡氧进入的通道,从而有效的保护基体不被氧化,起到了抗氧化的作用。
[0033]
有益效果
[0034]
1、本技术中的助剂能够有效结合重金属离子,能够起阻止或延缓涂层裂缝扩展的作用,可适度提高其抗拉、抗弯强度并显著提高其韧性。此外,与一般的助剂相比,本发明的聚合物助剂不存在重金属浸出的风险,从而极大提高了使用安全性。
[0035]
2、本技术产品具有较好的抗氧化性能,在连续使用100小时的情况下,氧化失重率小于5%。
附图说明
[0036]
图1是放大1000倍的经过高温抗氧化测试后的石墨基体试样的抗氧化涂料的表面形貌;
[0037]
图2是是放大3000倍的经过高温抗氧化测试后的石墨基体试样的抗氧化涂料的表面形貌。
具体实施方式
[0038]
实施例1
[0039]
一种抗氧化陶瓷涂料,所述陶瓷涂料的原料组分及配比为:氮化硅20份、石墨10份、二硅化钼30份、铬尖晶石5份、稻壳粉40份、氧化钇稳定的氧化锆1份、纤维4份、助剂3份、酚醛树脂70份、有机溶剂100份、分散剂0.5份、ph调节剂1份。
[0040]
所述稻壳粉的粒径为10μm。
[0041]
优选,所述氧化钇稳定的氧化锆为纳米级。
[0042]
优选,所述助剂为聚丙烯。
[0043]
实施例2
[0044]
一种抗氧化陶瓷涂料,所述陶瓷涂料的原料组分及配比为:氮化硅30份、石墨15份、二硅化钼40份、铬尖晶石10份、稻壳粉60份、氧化钇稳定的氧化锆5份、纤维8份、助剂5份、酚醛树脂90份、有机溶剂120份、分散剂1份、ph调节剂2份。
[0045]
优选,所述稻壳粉的粒径为20μm。
[0046]
优选,所述氧化钇稳定的氧化锆为纳米级。
[0047]
优选,所述助剂为聚丙烯衍生物。
[0048]
实施例3
[0049]
一种抗氧化陶瓷涂料,所述陶瓷涂料的原料组分及配比为:氮化硅25份、石墨12份、二硅化钼35份、铬尖晶石8份、稻壳粉50份、氧化钇稳定的氧化锆3份、纤维6份、助剂4份、酚醛树脂80份、有机溶剂110份、分散剂1份、ph调节剂2份。
[0050]
优选,所述稻壳粉的粒径为15μm。
[0051]
优选,所述氧化钇稳定的氧化锆为纳米级。
[0052]
优选,所述助剂为其中a为大于1的整数,n为不小于a的整数。
[0053]
将涂有实施例1

3涂料的石墨基体试样放在马弗炉中,静态空气中,在1100℃、1200℃和1300℃条件下,每保温1小时,取出在室温下自然冷却,称重,反复测试10次,记录数据。连续在1100℃、1200℃和1300℃三个温度条件下,保温10小时,测试试样的质量损失。检测试样的抗氧化性能,升温速度为4℃/min,失重率计算公式为
[0054]
其中,δm试样质量变化,单位g;δm=m


m

;m


试样初始质量,单位g。
[0055]
1100℃温度下,保温1小时,自然冷却,称重,重复10次,得到试样的质量数据如下表1
[0056]
表1
[0057]
[0058]
1200℃温度下,保温1小时,自然冷却,称重,重复10次,得到试样的质量数据如下表2
[0059]
表2
[0060][0061][0062]
1300℃温度下,保温1小时,自然冷却,称重,重复10次,得到试样的质量数据如下表3
[0063]
表3
[0064][0065][0066]
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本技术所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本技术型的保护范围之中。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜